1
|
Fasolato S, Del Bianco P, Malacrida S, Mattiolo A, Gringeri E, Angeli P, Pontisso P, Calabrò ML. Studies on the Role of Compartmentalized Profiles of Cytokines in the Risk of Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:13432. [PMID: 37686245 PMCID: PMC10563083 DOI: 10.3390/ijms241713432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most common form of liver cancer, is frequently diagnosed late due to the absence of symptoms during early disease, thus heavily affecting the overall survival of these patients. Soluble immunological factors persistently produced during cirrhosis have been recognized as promoters of chronic inflammation and neoplastic transformation. The aim of this pilot study was to evaluate the predictive value of the cytokine profiles for HCC development. A Luminex xMAP approach was used for the quantification of 45 proteins in plasma and ascitic fluids of 44 cirrhotic patients without or with HCC of different etiologies. The association with patient survival was also evaluated. Univariate analyses revealed that very low levels of interleukin 5 (IL-5) (<15.86 pg/mL) in ascites and IL-15 (<12.40 pg/mL) in plasma were able to predict HCC onset with an accuracy of 81.8% and a sensitivity of 95.2%. Univariate analyses also showed that HCC, hepatitis B virus/hepatitis C virus infections, low levels of IL-5 and granulocyte-macrophage colony-stimulating factor in ascitic fluids, and high levels of eotaxin-1, hepatocyte growth factor and stromal-cell-derived factor 1α in plasma samples were factors potentially associated with a poor prognosis and decreased survival. Our results suggest a potential protective role of some immune modulators that may act in the peritoneal cavity to counteract disease progression leading to HCC development.
Collapse
Affiliation(s)
- Silvano Fasolato
- Department of Medicine, Padua University Hospital, I-35128 Padua, Italy; (P.A.); (P.P.)
| | - Paola Del Bianco
- Clinical Research Unit, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy;
| | - Sandro Malacrida
- Institute of Mountain Emergency Medicine, Eurac Research, I-39100 Bozen, Italy;
| | - Adriana Mattiolo
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy; (A.M.); (M.L.C.)
| | - Enrico Gringeri
- Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, I-35128 Padua, Italy;
| | - Paolo Angeli
- Department of Medicine, Padua University Hospital, I-35128 Padua, Italy; (P.A.); (P.P.)
| | - Patrizia Pontisso
- Department of Medicine, Padua University Hospital, I-35128 Padua, Italy; (P.A.); (P.P.)
| | - Maria Luisa Calabrò
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy; (A.M.); (M.L.C.)
| |
Collapse
|
2
|
Català C, Velasco-de Andrés M, Casadó-Llombart S, Leyton-Pereira A, Carrillo-Serradell L, Isamat M, Lozano F. Innate immune response to peritoneal bacterial infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 371:43-61. [PMID: 35965000 DOI: 10.1016/bs.ircmb.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spontaneous and secondary peritoneal infections, mostly of bacterial origin, easily spread to cause severe sepsis. Cellular and humoral elements of the innate immune system are constitutively present in peritoneal cavity and omentum, and play an important role in peritonitis progression and resolution. This review will focus on the description of the anatomic characteristics of the peritoneal cavity and the composition and function of such innate immune elements under both steady-state and bacterial infection conditions. Potential innate immune-based therapeutic interventions in bacterial peritonitis alternative or adjunctive to classical antibiotic therapy will be briefly discussed.
Collapse
Affiliation(s)
- Cristina Català
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Sergi Casadó-Llombart
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Marcos Isamat
- Sepsia Therapeutics S.L. 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francisco Lozano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Servei d'Immunologia, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain; Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
3
|
Repáraz D, Hommel M, Navarro F, Llopiz D. The role of dendritic cells in the immune niche of the peritoneum. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 371:1-14. [PMID: 35964997 DOI: 10.1016/bs.ircmb.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dendritic cells (DCs) are professional antigen presenting cells that play an important role in the induction of T cell responses. Different subsets (cDC1s, cDC2s, pDCs, and moDCs) were described based on the expression of different surface markers and functions. In the context of peritoneum, DCs are also a key population cell orchestrating immune responses against pathogens, malignant cells and tissue-damage. Furthermore, they play an important role in the promotion of an anti-inflammatory microenvironment, which is necessary to maintain tolerance and adipocyte homeostasis. The aim of this review is to summarize the current knowledge of the functional and phenotypic features of peritoneal DCs and shed some light on the importance of these cells within this unique cavity and its associated components: the omentum, the mesentery and gut-associated lymphoid tissue (GALT).
Collapse
Affiliation(s)
- David Repáraz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; CIBEREHD, Pamplona, Spain.
| | - Mirja Hommel
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Flor Navarro
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Diana Llopiz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; CIBEREHD, Pamplona, Spain.
| |
Collapse
|
4
|
Isaza-Restrepo A, Martin-Saavedra JS, Velez-Leal JL, Vargas-Barato F, Riveros-Dueñas R. The Peritoneum: Beyond the Tissue - A Review. Front Physiol 2018; 9:738. [PMID: 29962968 PMCID: PMC6014125 DOI: 10.3389/fphys.2018.00738] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Background: Despite its complexity, the peritoneum is usually underestimated in classical medical texts simply as the surrounding tissue (serous membrane) of the gut. Novel findings on physiology and morphology of the peritoneum and mesothelial cell exist but they are usually focused or limited to Continuous Ambulatory Peritoneal Dialysis research and practice. This review aims to expose, describe and analyze the most recent evidence on the peritoneum’s morphology, embryology and physiology. Materials and Methods: A literature review was performed on Pubmed and MEDLINE. With no limit of publication date, original papers and literature reviews about the peritoneum, the peritoneal cavity, peritoneal fluid, and mesothelial cells were included (n = 72). Results: Peritoneum develops in close relationship to the gut from an early period in embryogenesis. Analyzing together the development of the primitive gut and the surrounding mesothelium helps understanding that the peritoneal cavity, the mesenteries and other structures can be considered parts of the peritoneum. However, some authors consider that structures like the mesenteries are different to the peritoneum. The mesothelial cell has a complex ultrastructural organization with intercellular junctions and apical microvilli. This complexity is further proven by the large array of functions like selective fluid and cell transport; physiological protective barrier; immune induction, modulation, and inhibition; tissue repair and scarring; preventing adhesion and tumoral dissemination; cellular migration; and the epithelial-mesenchymal transition capacity. Conclusion: Recent evidence on the anatomy, histology, and physiology of the peritoneum, shows that this structure is more complex than a simple serous membrane. These results call for a new conceptualization of peritoneum, and highlight the need of adequate research for identifying clinical relevance of this knowledge.
Collapse
Affiliation(s)
- Andres Isaza-Restrepo
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.,Department of Clinical Surgery, Hospital Universitario Mayor - Méderi, Bogotá, Colombia
| | - Juan S Martin-Saavedra
- Clinical Research Group, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Juan L Velez-Leal
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Felipe Vargas-Barato
- Department of Clinical Surgery, Hospital Universitario Mayor - Méderi, Bogotá, Colombia
| | - Rafael Riveros-Dueñas
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
5
|
Groza D, Gehrig S, Kudela P, Holcmann M, Pirker C, Dinhof C, Schueffl HH, Sramko M, Hoebart J, Alioglu F, Grusch M, Ogris M, Lubitz W, Keppler BK, Pashkunova-Martic I, Kowol CR, Sibilia M, Berger W, Heffeter P. Bacterial ghosts as adjuvant to oxaliplatin chemotherapy in colorectal carcinomatosis. Oncoimmunology 2018; 7:e1424676. [PMID: 29721389 DOI: 10.1080/2162402x.2018.1424676] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 12/29/2017] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer mortality worldwide. At late stage of the disease CRC often shows (multiple) metastatic lesions in the peritoneal cavity which cannot be efficiently targeted by systemic chemotherapy. This is one major factor contributing to poor prognosis. Oxaliplatin is one of the most commonly used systemic treatment options for advanced CRC. However, drug resistance - often due to insufficient drug delivery - is still hampering successful treatment. The anticancer activity of oxaliplatin includes besides DNA damage also a strong immunogenic component. Consequently, the aim of this study was to investigate the effect of bacterial ghosts (BGs) as adjuvant immunostimulant on oxaliplatin efficacy. BGs are empty envelopes of gram-negative bacteria with a distinct immune-stimulatory potential. Indeed, we were able to show that the combination of BGs with oxaliplatin treatment had strong synergistic anticancer activity against the CT26 allograft, resulting in prolonged survival and even a complete remission in this murine model of CRC carcinomatosis. This synergistic effect was based on an enhanced induction of immunogenic cell death and activation of an efficient T-cell response leading to long-term anti-tumor memory effects. Taken together, co-application of BGs strengthens the immunogenic component of the oxaliplatin anticancer response and thus represents a promising natural immune-adjuvant to chemotherapy in advanced CRC.
Collapse
Affiliation(s)
- Diana Groza
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Austria
| | - Sebastian Gehrig
- Laboratory of MacroMolecular Cancer Therapeutics ( MMCT), Center of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | | | - Martin Holcmann
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Carina Dinhof
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Hemma H Schueffl
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Austria
| | | | - Julia Hoebart
- Laboratory of MacroMolecular Cancer Therapeutics ( MMCT), Center of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Fatih Alioglu
- Laboratory of MacroMolecular Cancer Therapeutics ( MMCT), Center of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Manfred Ogris
- Laboratory of MacroMolecular Cancer Therapeutics ( MMCT), Center of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | | | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Austria
| | - Irena Pashkunova-Martic
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Austria
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Austria
| |
Collapse
|
6
|
Liao CT, Andrews R, Wallace LE, Khan MWA, Kift-Morgan A, Topley N, Fraser DJ, Taylor PR. Peritoneal macrophage heterogeneity is associated with different peritoneal dialysis outcomes. Kidney Int 2017; 91:1088-1103. [PMID: 28065517 PMCID: PMC5402633 DOI: 10.1016/j.kint.2016.10.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/20/2016] [Accepted: 10/20/2016] [Indexed: 12/20/2022]
Abstract
Peritonitis remains the major obstacle for the maintenance of long-term peritoneal dialysis and dysregulated host peritoneal immune responses may compromise local anti-infectious defense, leading to treatment failure. Whilst, tissue mononuclear phagocytes, comprising macrophages and dendritic cells, are central to a host response to pathogens and the development of adaptive immune responses, they are poorly characterized in the human peritoneum. Combining flow cytometry with global transcriptome analysis, the phenotypic features and lineage identity of the major CD14+ macrophage and CD1c+ dendritic cell subsets in dialysis effluent were defined. Their functional specialization was reflected in cytokine generation, phagocytosis, and antigen processing/presentation. By analyzing acute bacterial peritonitis, stable (infection-free) and new-starter patients receiving peritoneal dialysis, we identified a skewed distribution of macrophage to dendritic cell subsets (increasing ratio) that associated with adverse peritonitis outcomes, history of multiple peritonitis episodes, and early catheter failure, respectively. Intriguingly, we also noted significant alterations of macrophage heterogeneity, indicative of different maturation and activation states that were associated with different peritoneal dialysis outcomes. Thus, our studies delineate peritoneal dendritic cells from macrophages within dialysate, and define cellular characteristics associated with peritoneal dialysis treatment failure. These are the first steps to unravelling the detrimental adaptive immune responses occurring as a consequence of peritonitis.
Collapse
Affiliation(s)
- Chia-Te Liao
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Robert Andrews
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Leah E Wallace
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Mohd Wajid A Khan
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Ann Kift-Morgan
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Nicholas Topley
- Wales Kidney Research Unit, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Donald J Fraser
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK; Wales Kidney Research Unit, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Philip R Taylor
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.
| |
Collapse
|
7
|
Ganshina IV. Serous cavities of coelomic origin as possible organs of the immune system. Part 1. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s2079086416060025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Liao CT, Rosas M, Davies LC, Giles PJ, Tyrrell VJ, O'Donnell VB, Topley N, Humphreys IR, Fraser DJ, Jones SA, Taylor PR. IL-10 differentially controls the infiltration of inflammatory macrophages and antigen-presenting cells during inflammation. Eur J Immunol 2016; 46:2222-32. [PMID: 27378515 PMCID: PMC5026061 DOI: 10.1002/eji.201646528] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 05/19/2016] [Accepted: 06/29/2016] [Indexed: 12/31/2022]
Abstract
The inflammatory activation and recruitment of defined myeloid populations is essential for controlling the bridge between innate and adaptive immunity and shaping the immune response to microbial challenge. However, these cells exhibit significant functional heterogeneity and the inflammatory signals that differentially influence their effector characteristics are poorly characterized. In this study, we defined the phenotype of discrete subsets of effective antigen‐presenting cells (APCs) in the peritoneal cavity during peritonitis. When the functional properties of these cells were compared to inflammatory monocyte‐derived macrophages we noted differential responses to the immune‐modulatory cytokine IL‐10. In contrast to the suppressive actions of IL‐10 on inflammatory macrophages, the recruitment of APCs was relatively refractory and we found no evidence for selective inhibition of APC differentiation. This differential response of myeloid cell subsets to IL‐10 may thus have limited impact on development of potentially tissue‐damaging adaptive immune responses, while restricting the magnitude of the inflammatory response. These findings may have clinical relevance in the context of peritoneal dialysis patients, where recurrent infections are associated with immune‐mediated membrane dysfunction, treatment failure, and increased morbidity.
Collapse
Affiliation(s)
- Chia-Te Liao
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Marcela Rosas
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Luke C Davies
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Peter J Giles
- Central Biotechnology Services, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Victoria J Tyrrell
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Valerie B O'Donnell
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.,Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Nicholas Topley
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Ian R Humphreys
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.,Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Donald J Fraser
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.,Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Simon A Jones
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.,Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Philip R Taylor
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK. .,Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK.
| |
Collapse
|