1
|
How to Improve the Biocompatibility of Peritoneal Dialysis Solutions (without Jeopardizing the Patient's Health). Int J Mol Sci 2021; 22:ijms22157955. [PMID: 34360717 PMCID: PMC8347640 DOI: 10.3390/ijms22157955] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/23/2022] Open
Abstract
Peritoneal dialysis (PD) is an important, if underprescribed, modality for the treatment of patients with end-stage kidney disease. Among the barriers to its wider use are the deleterious effects of currently commercially available glucose-based PD solutions on the morphological integrity and function of the peritoneal membrane due to fibrosis. This is primarily driven by hyperglycaemia due to its effects, through multiple cytokine and transcription factor signalling-and their metabolic sequelae-on the synthesis of collagen and other extracellular membrane components. In this review, we outline these interactions and explore how novel PD solution formulations are aimed at utilizing this knowledge to minimise the complications associated with fibrosis, while maintaining adequate rates of ultrafiltration across the peritoneal membrane and preservation of patient urinary volumes. We discuss the development of a new generation of reduced-glucose PD solutions that employ a variety of osmotically active constituents and highlight the biochemical rationale underlying optimization of oxidative metabolism within the peritoneal membrane. They are aimed at achieving optimal clinical outcomes and improving the whole-body metabolic profile of patients, particularly those who are glucose-intolerant, insulin-resistant, or diabetic, and for whom daily exposure to high doses of glucose is contraindicated.
Collapse
|
2
|
Padwal M, Cheng G, Liu L, Boivin F, Gangji AS, Brimble KS, Bridgewater D, Margetts PJ. WNT signaling is required for peritoneal membrane angiogenesis. Am J Physiol Renal Physiol 2018; 314:F1036-F1045. [DOI: 10.1152/ajprenal.00497.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The wingless-type mouse mammary tumor virus integration site family (WNT) signaling pathway is involved in wound healing and fibrosis. We evaluated the WNT signaling pathway in peritoneal membrane injury. We assessed WNT1 protein expression in the peritoneal effluents of 54 stable peritoneal dialysis (PD) patients and WNT-related gene expression in ex vivo mesothelial cell cultures from 21 PD patients. In a transforming growth factor-β (TGF-β)-mediated animal model of peritoneal fibrosis, we evaluated regulation of the WNT pathway and the effect of WNT inhibition on peritoneal fibrosis and angiogenesis. WNT1 and WNT2 gene expression were positively correlated with peritoneal membrane solute transport in PD patients. In the mouse peritoneum, TGF-β-induced peritoneal fibrosis was associated with increased expression of WNT2 and WNT4. Peritoneal β-catenin protein was significantly upregulated after infection with adenovirus expressing TGF-β (AdTGF-β) along with elements of the WNT signaling pathway. Treatment with a β-catenin inhibitor (ICG-001) in mice with AdTGF-β-induced peritoneal fibrosis resulted in attenuation of peritoneal angiogenesis and reduced vascular endothelial growth factor. Similar results were also observed with the WNT antagonist Dickkopf-related protein (DKK)-1. In addition to this, DKK-1 blocked epithelial-mesenchymal transition and increased levels of the cell adhesion protein E-cadherin. We provide evidence that WNT signaling is active in the setting of experimental peritoneal fibrosis and WNT1 correlates with patient peritoneal membrane solute transport in PD patients. Intervention in this pathway is a possible therapy for peritoneal membrane injury.
Collapse
Affiliation(s)
- Manreet Padwal
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Genyang Cheng
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Limin Liu
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Felix Boivin
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Azim S. Gangji
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | - Peter J. Margetts
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Abstract
Peritoneal dialysis (PD) is a modality for treatment of patients with end-stage renal disease (ESRD) that depends on the structural and functional integrity of the peritoneal membrane. However, long-term PD can lead to morphological and functional changes in the peritoneum; in particular, peritoneal fibrosis has become one of the most common complications that ultimately results in ultrafiltration failure (UFF) and discontinuation of PD. Several factors and mechanisms such as inflammation and overproduction of transforming growth factor-β1 have been implicated in the development of peritoneal fibrosis, but there is no effective therapy to prevent or delay this process. Recent studies have shown that activation of multiple receptor tyrosine kinases (RTKs) is associated with the development and progression of tissue fibrosis in various organs, and there are also reports indicating the involvement of some RTKs in peritoneal fibrosis. This review will describe the role and mechanisms of RTKs in peritoneal fibrosis and discuss the possibility of using them as therapeutic targets for prevention and treatment of this complication.
Collapse
Affiliation(s)
- Li Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University, Shanghai, China Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
4
|
Padwal M, Margetts PJ. Experimental systems to study the origin of the myofibroblast in peritoneal fibrosis. Kidney Res Clin Pract 2016; 35:133-41. [PMID: 27668155 PMCID: PMC5025470 DOI: 10.1016/j.krcp.2016.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 01/14/2023] Open
Abstract
Peritoneal fibrosis is one of the major complications occurring in long-term peritoneal dialysis patients as a result of injury. Peritoneal fibrosis is characterized by submesothelial thickening and fibrosis which is associated with a decline in peritoneal membrane function. The myofibroblast has been identified as the key player involved in the development and progression of peritoneal fibrosis. Activation of the myofibroblast is correlated with expansion of the extracellular matrix and changes in peritoneal membrane integrity. Over the years, epithelial to mesenchymal transition (EMT) has been accepted as the predominant source of the myofibroblast. Peritoneal mesothelial cells have been described to undergo EMT in response to injury. Several animal and in vitro studies support the role of EMT in peritoneal fibrosis; however, emerging evidence from genetic fate-mapping studies has demonstrated that myofibroblasts may be arising from resident fibroblasts and pericytes/perivascular fibroblasts. In this review, we will discuss hypotheses currently surrounding the origin of the myofibroblast and highlight the experimental systems predominantly being used to investigate this.
Collapse
Affiliation(s)
- Manreet Padwal
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - Peter J Margetts
- Division of Nephrology, Department of Medicine, McMaster University, St. Joseph's Hospital, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Sandoval P, Jiménez-Heffernan JA, Guerra-Azcona G, Pérez-Lozano ML, Rynne-Vidal Á, Albar-Vizcaíno P, Gil-Vera F, Martín P, Coronado MJ, Barcena C, Dotor J, Majano PL, Peralta AA, López-Cabrera M. Mesothelial-to-mesenchymal transition in the pathogenesis of post-surgical peritoneal adhesions. J Pathol 2016; 239:48-59. [DOI: 10.1002/path.4695] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/30/2015] [Accepted: 01/26/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Pilar Sandoval
- Centro de Biología Molecular-Severo Ochoa; CSIC. Cantoblanco; Madrid Spain
| | - José A Jiménez-Heffernan
- Departamento de Anatomía Patológica; Hospital Universitario La Princesa, Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
| | | | | | - Ángela Rynne-Vidal
- Centro de Biología Molecular-Severo Ochoa; CSIC. Cantoblanco; Madrid Spain
| | - Patricia Albar-Vizcaíno
- Unidad de Biología Molecular y Servicio de Nefrología, Hospital Universitario La Princesa; Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
| | | | - Paloma Martín
- Departamento de Anatomía Patológica; Hospital Universitario Puerta de Hierro; Madrid Spain
| | - María José Coronado
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Hospital Puerta de Hierro; Madrid Spain
| | - Carmen Barcena
- Departamento de Anatomía Patológica, Hospital Universitario 12 de Octubre; Madrid Spain
| | | | - Pedro Lorenzo Majano
- Unidad de Biología Molecular y Servicio de Nefrología, Hospital Universitario La Princesa; Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
| | - Abelardo Aguilera Peralta
- Unidad de Biología Molecular y Servicio de Nefrología, Hospital Universitario La Princesa; Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
| | | |
Collapse
|
6
|
Animal Models of Peritoneal Dialysis: Thirty Years of Our Own Experience. BIOMED RESEARCH INTERNATIONAL 2015; 2015:261813. [PMID: 26236720 PMCID: PMC4506843 DOI: 10.1155/2015/261813] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/23/2014] [Accepted: 01/10/2015] [Indexed: 11/17/2022]
Abstract
Experimental animal models improve our understanding of technical problems in peritoneal dialysis PD, and such studies contribute to solving crucial clinical problems. We established an acute and chronic PD model in nonuremic and uremic rats. We observed that kinetics of PD in rats change as the animals are aging, and this effect is due not only to an increasing peritoneal surface area, but also to changes in the permeability of the peritoneum. Changes of the peritoneal permeability seen during chronic PD in rats are comparable to results obtained in humans treated with PD. Effluent dialysate can be drained repeatedly to measure concentration of various bioactive molecules and to correlate the results with the peritoneal permeability. Additionally we can study in in vitro conditions properties of the effluent dialysate on cultured peritoneal mesothelial cells or fibroblasts. We can evaluate acute and chronic effect of various additives to the dialysis fluid on function and permeability of the peritoneum. Results from such study are even more relevant to the clinical scenario when experiments are performed in uremic rats. Our experimental animal PD model not only helps to understand the pathophysiology of PD but also can be used for testing biocompatibility of new PD fluids.
Collapse
|
7
|
Siddique I, Curran SP, Ghayur A, Liu L, Shi W, Hoff CM, Gangji AS, Brimble KS, Margetts PJ. Gremlin promotes peritoneal membrane injury in an experimental mouse model and is associated with increased solute transport in peritoneal dialysis patients. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2976-84. [PMID: 25194662 DOI: 10.1016/j.ajpath.2014.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 11/29/2022]
Abstract
The peritoneal membrane becomes damaged in patients on peritoneal dialysis (PD). Gremlin 1 (GREM1) inhibits bone morphogenic proteins (BMPs) and plays a role in kidney development and fibrosis. We evaluated the role of gremlin in peritoneal fibrosis and angiogenesis. In a cohort of 32 stable PD patients, GREM1 concentration in the peritoneal effluent correlated with measures of peritoneal membrane damage. AdGrem1, an adenovirus to overexpress gremlin in the mouse peritoneum, induced submesothelial thickening, fibrosis, and angiogenesis in C57BL/6 mice, which was associated with decreased expression of BMP4 and BMP7. There was evidence of mesothelial cell transition to a mesenchymal phenotype with increased α smooth muscle actin expression and suppression of E-cadherin. Some of the GREM1 effects may be reversed with recombinant BMP7 or a pan-specific transforming growth factor β (TGF-β) antibody. Neovascularization was not inhibited with a TGF-β antibody, suggesting a TGF-β-independent angiogenic mechanism. Swiss/Jackson Laboratory (SJL) mice, which are resistant to TGF-β-induced peritoneal fibrosis, responded in a similar fashion to AdGrem1 as did C57BL/6 mice with fibrosis, angiogenesis, and mesothelial-to-mesenchymal transition. GREM1 was associated with up-regulated TGF-β expression in both SJL and C57BL/6 mice, but SJL mice demonstrated a defective TGF-β-induced GREM1 expression. In summary, GREM1 induces fibrosis and angiogenesis in mouse peritoneum and is associated with increased solute transport in these PD patients.
Collapse
Affiliation(s)
- Imad Siddique
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Simon P Curran
- Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
| | - Ayesha Ghayur
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Limin Liu
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Wei Shi
- Children's Hospital Los Angeles, University of Southern California, Los Angeles, California
| | | | - Azim S Gangji
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - K Scott Brimble
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Peter J Margetts
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
8
|
Peritoneal fibrosis and the putative role of decorin. Int J Organ Transplant Med 2013. [DOI: 10.1016/j.hkjn.2013.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Catar R, Witowski J, Wagner P, Annett Schramm I, Kawka E, Philippe A, Dragun D, Jörres A. The proto-oncogene c-Fos transcriptionally regulates VEGF production during peritoneal inflammation. Kidney Int 2013; 84:1119-28. [PMID: 23760290 DOI: 10.1038/ki.2013.217] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 12/20/2022]
Abstract
Vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1) are key mediators of adverse peritoneal membrane remodeling in peritoneal dialysis eventually leading to ultrafiltration failure. Both are pleiotropic growth factors with cell type-dependent regulation of expression and biological effects. Here we studied regulation of TGF-β1-induced VEGF expression in human peritoneal mesothelial cells in the absence or presence of proinflammatory stimuli, tumor necrosis factor-α (TNF-α) or interleukin-1β (IL-1β). Quiescent human peritoneal mesothelial cells secreted only trace amounts of VEGF. Stimulation with TGF-β1 resulted in time- and dose-dependent increases in VEGF mRNA expression and protein release. TNF-α and IL-1β alone had minimal effects but acted in synergy with TGF-β1. Combined stimulation led to induction of transcription factor c-Fos and activation of the VEGF promoter region with high-affinity binding sites for c-Fos. Inhibition of c-Fos by small interfering RNA interference or by pharmacological blockade with SR-11302 decreased VEGF promoter activity and downregulated its expression and release. Exposure of human peritoneal mesothelial cells to dialysate effluent containing increased levels of TGF-β1, TNF-α, and IL-1β obtained during peritonitis resulted in a dose-dependent VEGF induction that was significantly attenuated by SR-11302. Thus, dialysate TGF-β1, IL-1β, and TNF-α act through c-Fos to synergistically upregulate VEGF production in peritoneal mesothelium and may represent an important regulatory link between inflammation and angiogenesis in the peritoneal membrane.
Collapse
Affiliation(s)
- Rusan Catar
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sadek KH, Cagampang FR, Bruce KD, Macklon N, Cheong Y. Variation in stability of housekeeping genes in healthy and adhesion-related mesothelium. Fertil Steril 2012; 98:1023-7. [PMID: 22795637 DOI: 10.1016/j.fertnstert.2012.06.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the stability of various housekeeping genes (HKG) within healthy versus scarred peritoneal mesothelium. The use of HKG as internal controls for quantitative real-time polymerase chain reaction (qRT-PCR) studies is based on the assumption of their inherent stability. However, recent evidence suggests that this is not true for all HKG and that stability may be tissue specific and affected by certain pathologies. DESIGN Paired mesothelial (n = 10) and adhesion tissue samples (n = 10) were taken during laparoscopic surgery. The stability of 12 candidate reference genes in the mesothelial tissues were evaluated; these include ATP5b, SDHA, CYC1, 18S rRNA, RPL13A, ACTB, YWHAZ, TOP1, UBC, EIF4A2, GAPDH, and B2M. SETTING Hospital. PATIENT(S) Female patients undergoing laparoscopic gynecological surgery were recruited from the Princess Anne Hospital, United Kingdom. INTERVENTION(S) Assessment of HKG expression stability using geNorm algorithm software. MAIN OUTCOME MEASURE(S) Stability measure (M) generated by geometric averaging of multiple target genes and mean pairwise variation of genes. RESULT(S) The most stable HKGs observed across both healthy and adhesion-related mesothelium were found to be ACTB, YWHAZ, and CYC1. ACTB had a higher expression in healthy mesothelium compared with in peritoneal adhesion tissue. CONCLUSION(S) This study indicates that ACTB, YWHAZ, and CYC1 are the appropriate internal controls for qRT-PCR analysis in mesothelial gene expression studies. Published discrepancies in gene expression studies using the mesothelium may therefore be due in part to inappropriate HKG selection.
Collapse
Affiliation(s)
- Khaled Hassan Sadek
- Human Development and Health Unit, University of Southampton Faculty of Medicine, Southampton, United Kingdom.
| | | | | | | | | |
Collapse
|
11
|
Margetts PJ. Twist: a new player in the epithelial-mesenchymal transition of the peritoneal mesothelial cells. Nephrol Dial Transplant 2012; 27:3978-81. [PMID: 22798507 DOI: 10.1093/ndt/gfs172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The peritoneal membrane is a vital structure for peritoneal dialysis (PD) patients. It has been increasingly recognized that the transition of the peritoneal lining mesothelial cells into a more fibroblastic phenotype is a key step in peritoneal membrane injury. METHODS Relevant literature was reviewed and summarized. RESULTS Epithelial-to-mesenchymal transition (EMT) is a basic cellular process that occurs in a variety of physiologic and pathologic processes. The hallmark of this process is a loss of epithelial markers, and E-cadherin is a prototypical epithelial transmembrane protein. E-cadherin expression is suppressed at many levels and the gene is regulated by a family of transcription factors. Twist is one of the lesser studied E-cadherin regulatory factors, which belongs to a larger family of basic helix-loop-helix DNA-binding proteins. In this issue of Nephrology Dialysis Transplantation, Cuixiang Li reports on in vitro experiments where the expression of Twist led to a decreased expression of E-cadherin and the evidence of EMT. In an in vivo model of dialysate exposure, Li demonstrates that Twist expression is increased in the injured peritoneal tissues. CONCLUSIONS These important observations are the first to link Twist to mesothelial cell EMT and peritoneal membrane injury. Like most novel observations, this paper leaves many questions unanswered. Twist is only one of several transcription factors involved in EMT and how these factors interact will require further investigations. Furthermore, the question of whether Twist interacts at multiple levels in the EMT process, or simply gives an initial push to the process, is left unanswered. Finally, to bring these early significant findings to the bedside as potential therapies for PD patients will require further innovation.
Collapse
|
12
|
Pathophysiological changes to the peritoneal membrane during PD-related peritonitis: the role of mesothelial cells. Mediators Inflamm 2012; 2012:484167. [PMID: 22577250 PMCID: PMC3337720 DOI: 10.1155/2012/484167] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 01/18/2012] [Accepted: 01/18/2012] [Indexed: 01/08/2023] Open
Abstract
The success of peritoneal dialysis (PD) is dependent on the structural and functional integrity of the
peritoneal membrane. The mesothelium lines the peritoneal membrane and is the first line of
defense against chemical and/or bacterial insult. Peritonitis remains a major complication of PD and
is a predominant cause of technique failure, morbidity and mortality amongst PD patients. With
appropriate antibiotic treatment, peritonitis resolves without further complications, but in some PD
patients excessive peritoneal inflammatory responses lead to mesothelial cell exfoliation and
thickening of the submesothelium, resulting in peritoneal fibrosis and sclerosis. The detrimental
changes in the peritoneal membrane structure and function correlate with the number and severity
of peritonitis episodes and the need for catheter removal. There is evidence that despite clinical
resolution of peritonitis, increased levels of inflammatory and fibrotic mediators may persist in the
peritoneal cavity, signifying persistent injury to the mesothelial cells. This review will describe the
structural and functional changes that occur in the peritoneal membrane during peritonitis and how
mesothelial cells contribute to these changes and respond to infection. The latter part of the review
discusses the potential of mesothelial cell transplantation and genetic manipulation in the
preservation of the peritoneal membrane.
Collapse
|
13
|
Liu D, Glaser AP, Patibandla S, Blum A, Munson PJ, McCoy JP, Raghavachari N, Cannon RO. Transcriptional profiling of CD133(+) cells in coronary artery disease and effects of exercise on gene expression. Cytotherapy 2011; 13:227-36. [PMID: 21235297 DOI: 10.3109/14653249.2010.491611] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS Bone marrow (BM)-derived progenitor cells are under investigation for cardiovascular repair but may be altered by disease. Our aim was to identify differences in gene expression in CD133(+) cells of patients with coronary artery disease (CAD) and healthy controls, and determine whether exercise modifies gene expression. METHODS CD133(+) cells were flow-sorted from 10 CAD patients and four controls, and total RNA was isolated for microarray-based gene expression profiling. Genes that were found to be differentially regulated in patients were analyzed further to investigate whether exercise had any normalizing effect on CD133(+) cells in CAD patients following 3 months of an exercise program. RESULTS Improvement in effort tolerance and increases in the number of CD133(+) cells were observed in CAD patients after 3 months of exercise. Gene expression analysis of the CD133(+) cells identified 82 differentially expressed genes (2-fold cut-off, 25% false-discovery rate and % present calls) in patients compared with controls, of which 59 were found to be up-regulated and 23 down-regulated. These genes were found to be involved in carbohydrate metabolism, cell cycle, cellular development and signaling, and molecular transport. Following completion of the exercise program, gene expression patterns resembled those of controls in seven of 10 patients. CONCLUSIONS Alterations in gene expression of BM-derived CD133(+) progenitor cells were found in CAD patients, which in part may be normalized by exercise.
Collapse
Affiliation(s)
- Delong Liu
- Genomics Core, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139:871-90. [PMID: 19945376 DOI: 10.1016/j.cell.2009.11.007] [Citation(s) in RCA: 7685] [Impact Index Per Article: 480.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
Collapse
|
15
|
Schilte MN, Celie JW, ter Wee PM, Beelen RH, van den Born J. Factors Contributing to Peritoneal Tissue Remodeling in Peritoneal Dialysis. Perit Dial Int 2009. [DOI: 10.1177/089686080902900604] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Peritoneal dialysis (PD) is associated with functional and structural changes of the peritoneal membrane. In this review we describe factors contributing to peritoneal tissue remodeling, including uremia, peritonitis, volume loading, the presence of a catheter, and the PD fluid itself. These factors initiate recruitment and activation of peritoneal cells such as macrophages and mast cells, as well as activation of peritoneal cells, including mesothelial cells, fibroblasts, and endothelial cells. We provide an overview of cytokines, growth factors, and other mediators involved in PD-associated changes. Activation of downstream pathways of cellular modulators can induce peritoneal tissue remodeling, leading to ultrafiltration loss. Identification of molecular pathways, cells, and cytokines involved in the development of angiogenesis, fibrosis, and membrane failure may lead to innovative therapeutic strategies that can protect the peritoneal membrane from the consequences of long-term PD.
Collapse
Affiliation(s)
- Margot N. Schilte
- Departments of Molecular Cell Biology and Immunology VU University Medical Center, Amsterdam, The Netherlands
| | - Johanna W.A.M Celie
- Departments of Molecular Cell Biology and Immunology VU University Medical Center, Amsterdam, The Netherlands
| | - Piet M. ter Wee
- Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | - Robert H.J. Beelen
- Departments of Molecular Cell Biology and Immunology VU University Medical Center, Amsterdam, The Netherlands
| | - Jacob van den Born
- Departments of Molecular Cell Biology and Immunology VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Fielding CA, Topley N. Article Commentary: Piece by Piece: Solving the Puzzle of Peritoneal Fibrosis. Perit Dial Int 2008. [DOI: 10.1177/089686080802800509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ceri A. Fielding
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University Cardiff, United Kingdom
| | - Nicholas Topley
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University Cardiff, United Kingdom
| |
Collapse
|