1
|
D'Agostini F, La Maestra S. Micronuclei in Fish Erythrocytes as Genotoxic Biomarkers of Water Pollution: An Overview. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 258:195-240. [PMID: 34611757 DOI: 10.1007/398_2021_76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Freshwater and marine water bodies receive chemical contaminants from industrial, agricultural, urban, and domestic wastes. Eco-genotoxicity assays are useful tools to assess the cumulative genotoxicity of these pollutants. Fish are suitable indicators for biomonitoring of mutagenic and carcinogenic pollution.In this review, we present a complete overview of the studies performed so far using the micronucleus test in peripheral erythrocytes of fish exposed to polluted water. We have listed all the species of fish used and the geographical distribution of the investigations. We have analyzed and discussed all technical aspects of using this test in fish, as well as the advantages and disadvantages of the different experimental protocols. We have reported the results of all studies. This assay has become, for years, one of the simplest, fastest, and most cost-effective for assessing genotoxic risk in aquatic environments. However, there are still several factors influencing the variability of the results. Therefore, we have given indications and suggestions to achieve a standardization of experimental procedures and ensure uniformity of future investigations.
Collapse
|
2
|
Rossner P, Cervena T, Vojtisek-Lom M, Vrbova K, Ambroz A, Novakova Z, Elzeinova F, Margaryan H, Beranek V, Pechout M, Macoun D, Klema J, Rossnerova A, Ciganek M, Topinka J. The Biological Effects of Complete Gasoline Engine Emissions Exposure in a 3D Human Airway Model (MucilAir TM) and in Human Bronchial Epithelial Cells (BEAS-2B). Int J Mol Sci 2019; 20:E5710. [PMID: 31739528 PMCID: PMC6888625 DOI: 10.3390/ijms20225710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/30/2019] [Accepted: 11/12/2019] [Indexed: 01/31/2023] Open
Abstract
The biological effects induced by complete engine emissions in a 3D model of the human airway (MucilAirTM) and in human bronchial epithelial cells (BEAS-2B) grown at the air-liquid interface were compared. The cells were exposed for one or five days to emissions generated by a Euro 5 direct injection spark ignition engine. The general condition of the cells was assessed by the measurement of transepithelial electrical resistance and mucin production. The cytotoxic effects were evaluated by adenylate kinase (AK) and lactate dehydrogenase (LDH) activity. Phosphorylation of histone H2AX was used to detect double-stranded DNA breaks. The expression of the selected 370 relevant genes was analyzed using next-generation sequencing. The exposure had minimal effects on integrity and AK leakage in both cell models. LDH activity and mucin production in BEAS-2B cells significantly increased after longer exposures; DNA breaks were also detected. The exposure affected CYP1A1 and HSPA5 expression in MucilAirTM. There were no effects of this kind observed in BEAS-2B cells; in this system gene expression was rather affected by the time of treatment. The type of cell model was the most important factor modulating gene expression. In summary, the biological effects of complete emissions exposure were weak. In the specific conditions used in this study, the effects observed in BEAS-2B cells were induced by the exposure protocol rather than by emissions and thus this cell line seems to be less suitable for analyses of longer treatment than the 3D model.
Collapse
Affiliation(s)
- Pavel Rossner
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Tereza Cervena
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic
| | - Michal Vojtisek-Lom
- Center of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 160 00 Prague, Czech Republic; (M.V.-L.); (V.B.)
| | - Kristyna Vrbova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Antonin Ambroz
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Zuzana Novakova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Fatima Elzeinova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Hasmik Margaryan
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Vit Beranek
- Center of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 160 00 Prague, Czech Republic; (M.V.-L.); (V.B.)
| | - Martin Pechout
- Department of Vehicles and Ground Transport, Czech University of Life Sciences in Prague, Kamycka 129, 165 21 Prague, Czech Republic; (M.P.); (D.M.)
| | - David Macoun
- Department of Vehicles and Ground Transport, Czech University of Life Sciences in Prague, Kamycka 129, 165 21 Prague, Czech Republic; (M.P.); (D.M.)
| | - Jiri Klema
- Department of Computer Science, Czech Technical University in Prague, 12135 Prague, Czech Republic;
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Miroslav Ciganek
- Department of Chemistry and Toxicology, Veterinary Research Institute, 621 00 Brno, Czech Republic;
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| |
Collapse
|
3
|
Pradeep P, Povinelli RJ, Merrill SJ, Bozdag S, Sem DS. Novel Uses of In Vitro Data to Develop Quantitative Biological Activity Relationship Models for in Vivo Carcinogenicity Prediction. Mol Inform 2015; 34:236-45. [PMID: 27490169 DOI: 10.1002/minf.201400168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/24/2015] [Indexed: 01/06/2023]
Abstract
The availability of large in vitro datasets enables better insight into the mode of action of chemicals and better identification of potential mechanism(s) of toxicity. Several studies have shown that not all in vitro assays can contribute as equal predictors of in vivo carcinogenicity for development of hybrid Quantitative Structure Activity Relationship (QSAR) models. We propose two novel approaches for the use of mechanistically relevant in vitro assay data in the identification of relevant biological descriptors and development of Quantitative Biological Activity Relationship (QBAR) models for carcinogenicity prediction. We demonstrate that in vitro assay data can be used to develop QBAR models for in vivo carcinogenicity prediction via two case studies corroborated with firm scientific rationale. The case studies demonstrate the similarities between QBAR and QSAR modeling in: (i) the selection of relevant descriptors to be used in the machine learning algorithm, and (ii) the development of a computational model that maps chemical or biological descriptors to a toxic endpoint. The results of both the case studies show: (i) improved accuracy and sensitivity which is especially desirable under regulatory requirements, and (ii) overall adherence with the OECD/REACH guidelines. Such mechanism based models can be used along with QSAR models for prediction of mechanistically complex toxic endpoints.
Collapse
Affiliation(s)
- Prachi Pradeep
- Department of Mathematics, Computer Science and Statistics, Marquette University, 1313 W. Wisconsin Avenue, Milwaukee, WI 53233, USA fax: (414) 288-5472.
| | - Richard J Povinelli
- Department of Electrical and Computer Engineering, Marquette University, 1515 W. Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Stephen J Merrill
- Department of Mathematics, Computer Science and Statistics, Marquette University, 1313 W. Wisconsin Avenue, Milwaukee, WI 53233, USA fax: (414) 288-5472
| | - Serdar Bozdag
- Department of Mathematics, Computer Science and Statistics, Marquette University, 1313 W. Wisconsin Avenue, Milwaukee, WI 53233, USA fax: (414) 288-5472
| | - Daniel S Sem
- School of Pharmacy, Concordia University Wisconsin, 12800 N. Lake Shore Drive, Mequon, WI 53097, USA
| |
Collapse
|
4
|
Radi Z, Bartholomew P, Elwell M, Vogel WM. Comparative pathophysiology, toxicology, and human cancer risk assessment of pharmaceutical-induced hibernoma. Toxicol Appl Pharmacol 2013; 273:456-63. [PMID: 24141031 DOI: 10.1016/j.taap.2013.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/05/2013] [Accepted: 10/09/2013] [Indexed: 01/26/2023]
Abstract
In humans, hibernoma is a very rare, benign neoplasm of brown adipose tissue (BAT) that typically occurs at subcutaneous locations and is successfully treated by surgical excision. No single cause has been accepted to explain these very rare human tumors. In contrast, spontaneous hibernoma in rats is rare, often malignant, usually occurs in the thoracic or abdominal cavity, and metastases are common. In recent years, there has been an increased incidence of spontaneous hibernomas in rat carcinogenicity studies, but overall the occurrence remains relatively low and highly variable across studies. There have only been four reported examples of pharmaceutical-induced hibernoma in rat carcinogenicity studies. These include phentolamine, an alpha-adrenergic antagonist; varenicline, a nicotine partial agonist; tofacitinib, a Janus kinase (JAK) inhibitor; and hydromorphone, an opiod analgesic. Potential non-genotoxic mechanisms that may contribute to the pathogenesis of BAT activation/proliferation and/or subsequent hibernoma development in rats include: (1) physiological stimuli, (2) sympathetic stimulation, (3) peroxisome proliferator-activated receptor (PPAR) agonism, and/or (4) interference or inhibition of JAK/Signal Transducer and Activator of Transcription (JAK/STAT) signaling. The evaluation of an apparent increase of hibernoma in rats from 2-year carcinogenicity studies of novel pharmaceutical therapeutics and its relevance to human safety risk assessment is complex. One should consider: the genotoxicity of the test article, dose/exposure and safety margins, and pathophysiologic and morphologic differences and similarities of hibernoma between rats and humans. Hibernomas observed to date in carcinogenicity studies of pharmaceutical agents do not appear to be relevant for human risk at therapeutic dosages.
Collapse
Affiliation(s)
- Zaher Radi
- Pfizer Worldwide Research and Development, Drug Safety R&D, 1 Burtt Rd., Andover, MA 01810, USA.
| | | | | | | |
Collapse
|
5
|
Radi ZA, Morton D. Human safety risk assessment of lymph node angiomas observed in 2-year carcinogenicity studies in rats. Regul Toxicol Pharmacol 2012; 64:435-41. [DOI: 10.1016/j.yrtph.2012.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 10/06/2012] [Accepted: 10/09/2012] [Indexed: 11/29/2022]
|
6
|
Eastmond DA. Factors influencing mutagenic mode of action determinations of regulatory and advisory agencies. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2012; 751:46-63. [DOI: 10.1016/j.mrrev.2012.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/11/2012] [Accepted: 04/21/2012] [Indexed: 11/17/2022]
|
7
|
Wu KM, Powley MW, Ghantous H. Timing of carcinogenicity studies and predictability of genotoxicity for tumorigenicity in anti-HIV drug development. Int J Toxicol 2012; 31:211-21. [PMID: 22550047 DOI: 10.1177/1091581812439585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The timing of carcinogenicity studies in parallel with the clinical development of anti-human immunodeficiency virus (HIV) drugs has been flexible for most cases in the past. This includes postponement of the initiation of the studies and submission of final audited reports to the US Food and Drug Administration (FDA) for a new drug application (NDA) approval. We address this regulatory practice for anti-HIV drugs for which, in the past, there had been no effective treatment. We also examine the correlation of genotoxicity data with carcinogenicity data for the varied subclasses of anti-HIV drugs. We suggest that this regulatory policy regarding the timing of carcinogenicity testing does not compromise the safety standards of FDA's drug evaluation and the approval process. The policy does facilitate availability of these agents to meet the medical needs of the target population. Our analysis on the profile of carcinogenicity findings of anti-HIV drugs shows trends of class effects. Additionally, both carcinogenicity and genotoxicity data show significant correlations, which provide useful insights into issues involving these 2 important areas of toxicological investigations.
Collapse
Affiliation(s)
- Kuei-Meng Wu
- Division of Antiviral Products, Office of Antimicrobial Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| | | | | |
Collapse
|