1
|
Zhang T, Huang S, Wang M, Yang N, Zhu H. Integrated untargeted and targeted proteomics to unveil plasma prognostic markers for patients with acute paraquat poisoning: A pilot study. Food Chem Toxicol 2023; 182:114187. [PMID: 37967786 DOI: 10.1016/j.fct.2023.114187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Paraquat (PQ) is a widely used but strongly toxic herbicide, which can induce multiple organ failure. The overall survival rate of the poisoned patients was only 54.4% due to lack of specific antidotes. Besides, the definite pathogenic mechanism of PQ is still not fully understood. In this pilot study, untargeted and targeted proteomics were integrated to explore the expression characteristics of plasma protein in PQ poisoned patients, and identify the differentially expressed proteins between survivors and non-survivors. A total of 494 plasma proteins were detected, and of which 47 were upregulated and 44 were downregulated in PQ poisoned patients compared to healthy controls. Among them, five differential plasma proteins (S100A9, S100A8, MB, ACTB and RAB11FIP3) were further validated by multiple reaction monitoring (MRM)-based targeted proteomic approach, and three of them (S100A9, S100A8 and ACTB) were confirmed to be correlated with PQ poisoning. Meanwhile, 84 dysregulated plasma proteins were identified in non-survivors compared with survivors. Moreover, targeted proteomic and ROC analysis suggested that ACTB had a good performance in predicting the prognosis of PQ poisoned patients. These findings highlighted the value of label-free and mass spectrometry-based proteomics in screening prognostic biomarkers of PQ poisoning and studying the mechanism of PQ toxicity.
Collapse
Affiliation(s)
- Tianqi Zhang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, 210008, China
| | - Siqi Huang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Min Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, 210008, China
| | - Na Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, 210008, China.
| | - Huaijun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, 210008, China.
| |
Collapse
|
2
|
Kaur H, Chandran VP, Rashid M, Kunhikatta V, Poojari PG, Bakkannavar SM, Balakrishnan JM, Thunga G. The significance of APACHE II as a predictor of mortality in paraquat poisoning: A systematic review and meta-analysis. J Forensic Leg Med 2023; 97:102548. [PMID: 37327568 DOI: 10.1016/j.jflm.2023.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023]
Abstract
The Acute Physiology and Chronic Health Evaluation II (APACHE II) scoring system is utilised as a prognostic method in paraquat poisoning; however, current evidence shows ambiguity. Although some studies have shown APACHE II to be a superior tool, others have reported it inferior to other prognostic markers, such as lactate, severity index of paraquat poisoning and urine paraquat concentration. Hence, to address this ambiguity, we conducted a systematic review and meta-analysis to analyse prognostic accuracy of APACHE II score in predicting mortality in paraquat poisoning. We included twenty studies with 2524 paraquat poisoned patients in the systematic review, after a comprehensive literature search in databases PubMed, Embase, Web of Science, Scopus and Cochrane Library, from which 16 studies were included in the meta-analysis. The survivors of paraquat poisoning were found to have significantly lower APACHE II scores (Mean Difference (MD): -5.76; 95% CI: -7.93 to -3.60 p < 0.0001; n = 16 studies) compared to non-survivors. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR) and diagnostic odds ratio (DOR) for APACHE II score <9 was found to be 74%, 68%, 2.58, 0.38 and 7.10, respectively (n = 5 studies). The area under the curve (AUC) of the bivariate summary receiver operating characteristic (SROC) curve was found to be 0.80. The pooled sensitivity, specificity, PLR, NLR and DOR for APACHE II score ≥9 was found to be 73%, 86%, 4.69, 0.33 and 16.42, respectively (n = 9 studies). The AUC of the SROC curve was found to be 0.89. Pairwise AUC comparison of APACHE II with other prognostic markers showed serum presepsin to have a significantly better discriminatory ability than APACHE II. Through the findings of this study, we conclude that APACHE II was found to be a good indicator of death in paraquat poisoning patients. However, higher APACHE II scores (≥9) depicted greater specificity in predicting mortality in paraquat poisoning. Thus, APACHE II can be used as a practical tool in the hand of physicians to prognose patients with paraquat poisoning to aid clinical decisions.
Collapse
Affiliation(s)
- Harsimran Kaur
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Viji Pulikkel Chandran
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Muhammed Rashid
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Vijayanarayana Kunhikatta
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Pooja Gopal Poojari
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Shankar M Bakkannavar
- Department of Forensic Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Jayaraj Mymbilly Balakrishnan
- Department of Emergency Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Girish Thunga
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
3
|
Isorhapontigenin Modulates SOX9/TOLLIP Expression to Attenuate Cell Apoptosis and Oxidative Stress in Paraquat-Induced Acute Kidney Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3328623. [PMID: 35720190 PMCID: PMC9203234 DOI: 10.1155/2022/3328623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/07/2022] [Indexed: 11/18/2022]
Abstract
Paraquat (PQ) is a widely used herbicide but can be lethal to humans. The kidney is vital for PQ elimination; therefore, explorations for therapeutic approaches for PQ-induced acute kidney injury (AKI) are of great significance. Here, the effects of a natural bioactive polyphenol isorhapontigenin (ISO) on PQ-AKI were investigated. In vitro experiments carried out in PQ-intoxicated rat renal tubular epithelial cells (NRK-52E) showed that ISO treatment inhibited PQ-induced cell apoptosis and oxidative stress, which was evidenced by the decreased proapoptotic proteins [cleaved caspase 3/9 and poly (ADP-ribose) polymerase (PARP)], the reduced oxidative stress indicators [reactive oxygen species (ROS), malondialdehyde (MDA), and lactate dehydrogenase (LDH) leakage], and the increased antioxidants [superoxide dismutase (SOD), nuclear factor E2-related factor 2 (NRF2), and oxygenase-1 (HO-1)]. Furthermore, 50 mg/kg ISO pretreatment before PQ administration significantly attenuated PQ-AKI in rats, as manifested by the improved renal tubule damage, the reduced serum and urine markers of kidney injury, and the inhibited cell apoptosis and oxidative stress in the renal cortex. Furthermore, expression of sex-determining region Y box 9 (SOX9) and Toll-interacting protein (TOLLIP) in NRK-52E cells and the renal cortex was significantly upregulated after ISO treatment. Overexpression of SOX9 increased TOLLIP transcription and attenuated PQ-induced apoptosis and oxidative stress, whereas knockdown of SOX9 impaired the protective effects of ISO on NRK-52E cells against PQ toxicity. In conclusion, the present study demonstrated that ISO modulated SOX9/TOLLIP expression to attenuate cell apoptosis and oxidative stress in PQ-AKI, suggesting the potential of ISO in treating PQ-poisoned patients.
Collapse
|
4
|
Zhang D, Liu Z, Liu Q, Lan H, Peng J, Liu X, Liu W. Tenascin-C Participates Pulmonary Injury Induced by Paraquat Through Regulating TLR4 and TGF-β Signaling Pathways. Inflammation 2021; 45:222-233. [PMID: 34463846 DOI: 10.1007/s10753-021-01540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
This study was conducted to investigate the role of Tenascin-C (TNC) in paraquat (PQ)-induced lung injury in vivo and in vitro and explore its related mechanism during this process. Six- to eight-week-old male C57BL/6 mice were injected with 30 mg/kg PQ by intraperitoneal injection and sacrificed on 2 days, 7 days, 14 days, and 28 days after PQ administration. In vivo, we detected the expression of TNC at all time points of lung tissues in mice by reverse transcription-quantitative-polymerase chain reaction, western blotting, and immunohistochemistry. Expression of TLR4, NF-κB p65, TGF-β1, and α-SMA in lung tissues have also been tested. In vitro, siRNA was used to knock down TNC expression in A549 cells and TLR4, NF-κB p65, and TGF-β1 expressions were examined after PQ exposure. TNC expression increased in both lung tissues of mice model and A549 cells after PQ administration. In vivo, TNC mostly located at the extracellular matrix of thickened alveolar septum, especially at sites of injury, together with the increasing of TLR4, NF-κB p65, TGF-β1, and α-SMA. In vitro, PQ exposure also increased the expressions of TLR4, NF-κB p65, and TGF-β1 in A549 cells, but knocking down TNC gene expression obviously down-regulated the expressions of TLR4, NF-κB p65, NF-κB Pp65, and TGF-β1. The results of this study demonstrate, for the first time, that TNC participates in the development of lung injury induced by PQ poisoning. The role of TNC in this process is closely related to TLR4 and TGF-β signaling pathways.
Collapse
Affiliation(s)
- Di Zhang
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Zhi Liu
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Qianqian Liu
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Honghai Lan
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Jinjin Peng
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Xiaowei Liu
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Wei Liu
- Emergency Department, First Hospital of China Medical University, Shenyang, China. .,Emergency Department, First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|