1
|
Berkel C. Inducers and Inhibitors of Pyroptotic Death of Granulosa Cells in Models of Premature Ovarian Insufficiency and Polycystic Ovary Syndrome. Reprod Sci 2024; 31:2972-2992. [PMID: 39026050 PMCID: PMC11438836 DOI: 10.1007/s43032-024-01643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Granulosa cells (GCs), the largest cell population and primary source of steroid hormones in the ovary, are the important somatic ovarian components. They have critical roles in folliculogenesis by supporting oocyte, facilitating its growth, and providing a microenvironment suitable for follicular development and oocyte maturation, thus having essential functions in maintaining female fertility and in reproductive health in general. Pyroptotic death of GCs and associated inflammation have been implicated in the pathogenesis of several reproductive disorders in females including Premature Ovarian Insufficiency (POI) and Polycystic Ovary Syndrome (PCOS). Here, I reviewed factors, either intrinsic or extrinsic, that induce or inhibit pyroptosis in GCs in various models of these disorders, both in vitro and in vivo, and also covered associated molecular mechanisms. Most of these studied factors influence NLRP3 inflammasome- and GSDMD (Gasdermin D)-mediated pyroptosis in GCs, compared to other inflammasomes and gasdermins (GSDMs). I conclude that a more complete mechanistic understanding of these factors in terms of GC pyroptosis is required to be able to develop novel strategies targeting inflammatory cell death in the ovary.
Collapse
Affiliation(s)
- Caglar Berkel
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Türkiye.
| |
Collapse
|
2
|
Liu K, Wu Y, Yang W, Li T, Wang Z, Xiao S, Peng Z, Li M, Xiong W, Li M, Chen X, Zhang S, Lei X. α-Ketoglutarate Improves Ovarian Reserve Function in Primary Ovarian Insufficiency by Inhibiting NLRP3-Mediated Pyroptosis of Granulosa Cells. Mol Nutr Food Res 2024; 68:e2300784. [PMID: 38314939 DOI: 10.1002/mnfr.202300784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/14/2023] [Indexed: 02/07/2024]
Abstract
SCOPE Premature ovarian insufficiency (POI) is a common female infertility problem, with its pathogenesis remains unknown. The NOD-like receptor family pyrin domain-containing 3 (NLRP3)-mediated pyroptosis has been proposed as a possible mechanism in POI. This study investigates the therapeutic effect of α-ketoglutarate (AKG) on ovarian reserve function in POI rats and further explores the potential molecular mechanisms. METHODS AND RESULTS POI rats are caused by administration of cyclophosphamide (CTX) to determine whether AKG has a protective effect. AKG treatment increases the ovarian index, maintains both serum hormone levels and follicle number, and improves the ovarian reserve function in POI rats, as evidence by increased the level of lactate and the expression of rate-limiting enzymes of glycolysis in the ovaries, additionally reduced the expression of NLRP3, Gasdermin D (GSDMD), Caspase-1, Interleukin-18 (IL-18), and Interleukin-1 beta (IL-1β). In vitro, KGN cells are treated with LPS and nigericin to mimic pyroptosis, then treated with AKG and MCC950. AKG inhibits inflammatory and pyroptosis factors such as NLRP3, restores the glycolysis process in vitro, meanwhile inhibition of NLRP3 has the same effect. CONCLUSION AKG ameliorates CTX-induced POI by inhibiting NLRP3-mediated pyroptosis, which provides a new therapeutic strategy and drug target for clinical POI patients.
Collapse
Affiliation(s)
- Ke Liu
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yafei Wu
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenqin Yang
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Tianlong Li
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhongxu Wang
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shu Xiao
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhenghua Peng
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Meng Li
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenhao Xiong
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | - Meixiang Li
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xi Chen
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China
| | - Xiaocan Lei
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
3
|
Zeng L, Zhou C, Xu W, Huang Y, Wang W, Ma Z, Huang J, Li J, Hu L, Xue Y, Luo T, Zheng L. The ovarian-related effects of polystyrene nanoplastics on human ovarian granulosa cells and female mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114941. [PMID: 37087970 DOI: 10.1016/j.ecoenv.2023.114941] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Nanoplastics (NPs) have recently emerged in the context of global plastic pollution. They may be more toxic than macroplastics litter and microplastic fragments due to its abundances, tiny sizes, and cellular accessibility. The female reproductive toxicity of NPs has been widely documented for aquatic animals, but their effects and underlying mechanisms remain poorly understood in mammals. This study aimed to explore the effects of NPs on female reproduction using human ovarian granulosa cells (GCs) and female mice. The accumulation of polystyrene NPs (PS-NPs) in human granulosa-like tumor cells (KGN cells) and the ovaries of female Balb/c mice were evaluated by exposure to fluorescent PS-NPs. Proliferation and apoptosis, reactive oxygen species (ROS), and Hippo signaling pathway-related factors were analyzed in KGN cells. In addition, fertility rate, litter size, ovarian weight and microstructure, follicle development, serum level of anti-Mullerian hormone, and apoptosis in ovaries were examined in female mice. Here, the PS-NPs can penetrate the KGN cells and accumulate in the ovaries. In vitro, 100 μg/ml PS-NPs inhibited proliferation, induced apoptosis, accumulated ROS, activated three key regulators of the Hippo signaling pathway (MST1, LATS1, and YAP1), and downregulated the mRNA levels of CTGF and Cyr61 in KGN cells. Furthermore, salidroside, an antioxidative compound extracted from Rhodiola rosea, alleviated the damage of PS-NPs to KGN and inhibited the activation of the Hippo signal pathway. In vivo, exposure to 1 mg/day PS-NPs resulted in decreased fertility, abnormal ovarian function, and increased ovarian apoptosis in female mice. Overall, our data suggest that PS-NPs cause granulosa cell apoptosis and affect ovarian functions, leading to reduced fertility in female mice, by inducing oxidative stress and dysregulating the Hippo pathway.
Collapse
Affiliation(s)
- Lianjie Zeng
- School of Public Health and Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chong Zhou
- School of Public Health and Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wenqing Xu
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Basic Medical College and Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yupei Huang
- School of Public Health and Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wencan Wang
- School of Public Health and Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhangqiang Ma
- School of Public Health and Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jian Huang
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jia Li
- School of Public Health and Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Liaoliao Hu
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yue Xue
- School of Public Health and Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Tao Luo
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Basic Medical College and Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Liping Zheng
- School of Public Health and Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|