1
|
Zhang X, Wang H, Kilpatrick LA, Dong TS, Gee GC, Beltran-Sanchez H, Wang MC, Vaughan A, Church A. Connectome modeling of discrimination exposure: Impact on your social brain and psychological symptoms. Prog Neuropsychopharmacol Biol Psychiatry 2025; 139:111366. [PMID: 40239889 DOI: 10.1016/j.pnpbp.2025.111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/22/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
Discrimination is a social stressor that is associated with adverse health outcomes, but the underlying neural mechanisms remain unclear. The fusiform, including the fusiform face area (FFA) plays a critical role in face perception especially regarding hostile faces during discrimination exposure; and are key regions involved in social cognition. We compared resting-state spontaneous activity and connectivity of the fusiform and FFA, between 153 individuals (110 women) with high (N = 73) and low (N = 80) levels of discrimination (measured by the Everyday Discrimination Scale) and evaluated the relationships of these brain signatures with psychological outcomes and stress-related neurotransmitters. Discrimination-related group differences showed altered fusiform signal fluctuation dynamics (Hurst exponent) and connectivity. These alterations predicted discrimination experiences and correlated with anxiety, depression, and cognitive difficulties. A molecular architecture analysis using cross-modal spatial correlation of brain signatures and nuclear imaging derived estimates of stress-related neurotransmitters demonstrated overlap between discrimination-related connectivity and dopamine, serotonin, gamma-aminobutyric acid (GABA), and acetylcholine. Discrimination exposure associated with alterations in the fusiform and face processing area may reflect enhanced baseline preparedness and vigilance towards facial stimuli and decreased top-down regulation of potential threats. These brain alterations may contribute to increased vulnerability for the development of mental health symptoms, demonstrating clinical relevance of social cognition in stressful interpersonal relationships.
Collapse
Affiliation(s)
- Xiaobei Zhang
- G. Oppenheimer Center for Neurobiology of Stress & Resilience, at UCLA, United States of America; Vatche and Tamar Manoukian Division of Digestive Diseases, at UCLA, United States of America; David Geffen School of Medicine at UCLA, United States of America; University of California, Los Angeles, United States of America; UCLA Goodman-Luskin Microbiome Center, United States of America
| | - Hao Wang
- G. Oppenheimer Center for Neurobiology of Stress & Resilience, at UCLA, United States of America; State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, China
| | - Lisa A Kilpatrick
- G. Oppenheimer Center for Neurobiology of Stress & Resilience, at UCLA, United States of America; Vatche and Tamar Manoukian Division of Digestive Diseases, at UCLA, United States of America; David Geffen School of Medicine at UCLA, United States of America; University of California, Los Angeles, United States of America; UCLA Goodman-Luskin Microbiome Center, United States of America
| | - Tien S Dong
- G. Oppenheimer Center for Neurobiology of Stress & Resilience, at UCLA, United States of America; Vatche and Tamar Manoukian Division of Digestive Diseases, at UCLA, United States of America; David Geffen School of Medicine at UCLA, United States of America; University of California, Los Angeles, United States of America; UCLA Goodman-Luskin Microbiome Center, United States of America
| | - Gilbert C Gee
- Department of Community Health Sciences Fielding School of Public Health, United States of America; California Center for Population Research, UCLA, United States of America
| | - Hiram Beltran-Sanchez
- Department of Community Health Sciences Fielding School of Public Health, United States of America; California Center for Population Research, UCLA, United States of America
| | - May C Wang
- Department of Community Health Sciences Fielding School of Public Health, United States of America
| | - Allison Vaughan
- G. Oppenheimer Center for Neurobiology of Stress & Resilience, at UCLA, United States of America; Vatche and Tamar Manoukian Division of Digestive Diseases, at UCLA, United States of America; David Geffen School of Medicine at UCLA, United States of America; University of California, Los Angeles, United States of America; UCLA Goodman-Luskin Microbiome Center, United States of America
| | - Arpana Church
- G. Oppenheimer Center for Neurobiology of Stress & Resilience, at UCLA, United States of America; Vatche and Tamar Manoukian Division of Digestive Diseases, at UCLA, United States of America; David Geffen School of Medicine at UCLA, United States of America; University of California, Los Angeles, United States of America; UCLA Goodman-Luskin Microbiome Center, United States of America.
| |
Collapse
|
2
|
Ronde M, van der Zee EA, Kas MJH. Default mode network dynamics: An integrated neurocircuitry perspective on social dysfunction in human brain disorders. Neurosci Biobehav Rev 2024; 164:105839. [PMID: 39097251 DOI: 10.1016/j.neubiorev.2024.105839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Our intricate social brain is implicated in a range of brain disorders, where social dysfunction emerges as a common neuropsychiatric feature cutting across diagnostic boundaries. Understanding the neurocircuitry underlying social dysfunction and exploring avenues for its restoration could present a transformative and transdiagnostic approach to overcoming therapeutic challenges in these disorders. The brain's default mode network (DMN) plays a crucial role in social functioning and is implicated in various neuropsychiatric conditions. By thoroughly examining the current understanding of DMN functionality, we propose that the DMN integrates diverse social processes, and disruptions in brain communication at regional and network levels due to disease hinder the seamless integration of these social functionalities. Consequently, this leads to an altered balance between self-referential and attentional processes, alongside a compromised ability to adapt to social contexts and anticipate future social interactions. Looking ahead, we explore how adopting an integrated neurocircuitry perspective on social dysfunction could pave the way for innovative therapeutic approaches to address brain disorders.
Collapse
Affiliation(s)
- Mirthe Ronde
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Eddy A van der Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands.
| |
Collapse
|
3
|
Brietzke SC, Barbarossa K, Meyer ML. Get out of my head: social evaluative brain states carry over into post-feedback rest and influence remembering how others view us. Cereb Cortex 2024; 34:bhae280. [PMID: 39010819 PMCID: PMC11250231 DOI: 10.1093/cercor/bhae280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/05/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024] Open
Abstract
Learning how others perceive us helps us tune our behavior to form adaptive relationships. But which perceptions stick with us? And when in the learning process are they codified in memory? We leveraged a popular television series-The Office-to answer these questions. Prior to their functional magnetic resonance imaging (fMRI) session, viewers of The Office reported which characters they identified with, as well as which characters they perceived another person (i.e. counterpart) was similar to. During their fMRI scan, participants found out which characters other people thought they and the counterpart were like, and also completed rest scans. Participants remembered more feedback inconsistent with their self-views (vs. views of the counterpart). Although neural activity while encoding self-inconsistent feedback did not meaningfully predict memory, returning to the inconsistent self feedback during subsequent rest did. During rest, participants reinstated neural patterns engaged while receiving self-inconsistent feedback in the dorsomedial prefrontal cortex (DMPFC). DMPFC reinstatement also quadratically predicted self-inconsistent memory, with too few or too many reinstatements compromising memory performance. Processing social feedback during rest may impact how we remember and integrate the feedback, especially when it contradicts our self-views.
Collapse
Affiliation(s)
- Sasha C Brietzke
- Department of Psychology, Columbia University, New York, NY, United States
| | - Klara Barbarossa
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Meghan L Meyer
- Department of Psychology, Columbia University, New York, NY, United States
| |
Collapse
|
4
|
Mildner JN, Tamir DI. Why do we think? The dynamics of spontaneous thought reveal its functions. PNAS NEXUS 2024; 3:pgae230. [PMID: 38939015 PMCID: PMC11210302 DOI: 10.1093/pnasnexus/pgae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/15/2024] [Indexed: 06/29/2024]
Abstract
Spontaneous thought-mind wandering, daydreaming, and creative ideation-makes up most of everyday cognition. Is this idle thought, or does it serve an adaptive function? We test two hypotheses about the functions of spontaneous thought: First, spontaneous thought improves memory efficiency. Under this hypothesis, spontaneous thought should prioritize detailed, vivid episodic simulations. Second, spontaneous thought helps us achieve our goals. Under this hypothesis, spontaneous thought should prioritize content relevant to ongoing goal pursuits, or current concerns. We use natural language processing and machine learning to quantify the dynamics of thought in a large sample (N = 3,359) of think aloud data. Results suggest that spontaneous thought both supports memory optimization and keeps us focused on current concerns.
Collapse
Affiliation(s)
- Judith N Mildner
- Department of Psychology, Princeton University, Princeton, NJ 08540, USA
| | - Diana I Tamir
- Department of Psychology, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
5
|
Rocca P, Brasso C, Montemagni C, Del Favero E, Bellino S, Bozzatello P, Giordano GM, Caporusso E, Fazio L, Pergola G, Blasi G, Amore M, Calcagno P, Rossi R, Rossi A, Bertolino A, Galderisi S, Maj M. The relationship between the resting state functional connectivity and social cognition in schizophrenia: Results from the Italian Network for Research on Psychoses. Schizophr Res 2024; 267:330-340. [PMID: 38613864 DOI: 10.1016/j.schres.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/24/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
Deficits in social cognition (SC) interfere with recovery in schizophrenia (SZ) and may be related to resting state brain connectivity. This study aimed at assessing the alterations in the relationship between resting state functional connectivity and the social-cognitive abilities of patients with SZ compared to healthy subjects. We divided the brain into 246 regions of interest (ROI) following the Human Healthy Volunteers Brainnetome Atlas. For each participant, we calculated the resting-state functional connectivity (rsFC) in terms of degree centrality (DC), which evaluates the total strength of the most powerful coactivations of every ROI with all other ROIs during rest. The rs-DC of the ROIs was correlated with five measures of SC assessing emotion processing and mentalizing in 45 healthy volunteers (HVs) chosen as a normative sample. Then, controlling for symptoms severity, we verified whether these significant associations were altered, i.e., absent or of opposite sign, in 55 patients with SZ. We found five significant differences between SZ patients and HVs: in the patients' group, the correlations between emotion recognition tasks and rsFC of the right entorhinal cortex (R-EC), left superior parietal lobule (L-SPL), right caudal hippocampus (R-c-Hipp), and the right caudal (R-c) and left rostral (L-r) middle temporal gyri (MTG) were lost. An altered resting state functional connectivity of the L-SPL, R-EC, R-c-Hipp, and bilateral MTG in patients with SZ may be associated with impaired emotion recognition. If confirmed, these results may enhance the development of non-invasive brain stimulation interventions targeting those cerebral regions to reduce SC deficit in SZ.
Collapse
Affiliation(s)
- Paola Rocca
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Via Cherasco, 15, 10126 Turin, Italy
| | - Claudio Brasso
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Via Cherasco, 15, 10126 Turin, Italy.
| | - Cristiana Montemagni
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Via Cherasco, 15, 10126 Turin, Italy
| | - Elisa Del Favero
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Via Cherasco, 15, 10126 Turin, Italy
| | - Silvio Bellino
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Via Cherasco, 15, 10126 Turin, Italy
| | - Paola Bozzatello
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Via Cherasco, 15, 10126 Turin, Italy
| | - Giulia Maria Giordano
- Department of Psychiatry, University of Campania 'Luigi Vanvitelli', Largo Madonna Delle Grazie, 1, 80138 Naples, Italy
| | - Edoardo Caporusso
- Department of Psychiatry, University of Campania 'Luigi Vanvitelli', Largo Madonna Delle Grazie, 1, 80138 Naples, Italy
| | - Leonardo Fazio
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Policlinico, Piazza G. Cesare, 11, 70124 Bari, Italy; Department of Medicine and Surgery, LUM University, Strada Statale 100, 70010 Casamassima (BA), Italy
| | - Giulio Pergola
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Policlinico, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Giuseppe Blasi
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Policlinico, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Mario Amore
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, Section of Psychiatry, University of Genoa, Largo Paolo Daneo, 3, 16132 Genoa, Italy
| | - Pietro Calcagno
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, Section of Psychiatry, University of Genoa, Largo Paolo Daneo, 3, 16132 Genoa, Italy
| | - Rodolfo Rossi
- Section of Psychiatry, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio - Coppito, 67100 L'Aquila, Italy; Policlinico Tor Vergata, Viale Oxford, 81, 00133 Rome, Italy
| | - Alessandro Rossi
- Section of Psychiatry, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio - Coppito, 67100 L'Aquila, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Policlinico, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Silvana Galderisi
- Department of Psychiatry, University of Campania 'Luigi Vanvitelli', Largo Madonna Delle Grazie, 1, 80138 Naples, Italy
| | - Mario Maj
- Department of Psychiatry, University of Campania 'Luigi Vanvitelli', Largo Madonna Delle Grazie, 1, 80138 Naples, Italy
| |
Collapse
|
6
|
Jimenez CA, Meyer ML. The dorsomedial prefrontal cortex prioritizes social learning during rest. Proc Natl Acad Sci U S A 2024; 121:e2309232121. [PMID: 38466844 PMCID: PMC10962978 DOI: 10.1073/pnas.2309232121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Sociality is a defining feature of the human experience: We rely on others to ensure survival and cooperate in complex social networks to thrive. Are there brain mechanisms that help ensure we quickly learn about our social world to optimally navigate it? We tested whether portions of the brain's default network engage "by default" to quickly prioritize social learning during the memory consolidation process. To test this possibility, participants underwent functional MRI (fMRI) while viewing scenes from the documentary film, Samsara. This film shows footage of real people and places from around the world. We normed the footage to select scenes that differed along the dimension of sociality, while matched on valence, arousal, interestingness, and familiarity. During fMRI, participants watched the "social" and "nonsocial" scenes, completed a rest scan, and a surprise recognition memory test. Participants showed superior social (vs. nonsocial) memory performance, and the social memory advantage was associated with neural pattern reinstatement during rest in the dorsomedial prefrontal cortex (DMPFC), a key node of the default network. Moreover, it was during early rest that DMPFC social pattern reinstatement was greatest and predicted subsequent social memory performance most strongly, consistent with the "prioritization" account. Results simultaneously update 1) theories of memory consolidation, which have not addressed how social information may be prioritized in the learning process, and 2) understanding of default network function, which remains to be fully characterized. More broadly, the results underscore the inherent human drive to understand our vastly social world.
Collapse
Affiliation(s)
| | - Meghan L. Meyer
- Department of Psychology, Columbia University, New York, NY10027
| |
Collapse
|
7
|
Delgado MR, Fareri DS, Chang LJ. Characterizing the mechanisms of social connection. Neuron 2023; 111:3911-3925. [PMID: 37804834 PMCID: PMC10842352 DOI: 10.1016/j.neuron.2023.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023]
Abstract
Understanding how individuals form and maintain strong social networks has emerged as a significant public health priority as a result of the increased focus on the epidemic of loneliness and the myriad protective benefits conferred by social connection. In this review, we highlight the psychological and neural mechanisms that enable us to connect with others, which in turn help buffer against the consequences of stress and isolation. Central to this process is the experience of rewards derived from positive social interactions, which encourage the sharing of perspectives and preferences that unite individuals. Sharing affective states with others helps us to align our understanding of the world with another's, thereby continuing to reinforce bonds and strengthen relationships. These psychological processes depend on neural systems supporting reward and social cognitive function. Lastly, we also consider limitations associated with pursuing healthy social connections and outline potential avenues of future research.
Collapse
Affiliation(s)
- Mauricio R Delgado
- Department of Psychology, Rutgers University-Newark, Newark, NJ 07102, USA.
| | - Dominic S Fareri
- Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY 11530, USA
| | - Luke J Chang
- Consortium for Interacting Minds, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
8
|
McNamara P. Religion and the brain: Jordan Grafman's contributions to religion and brain research and the special case of religious language. Cortex 2023; 169:374-379. [PMID: 37995522 DOI: 10.1016/j.cortex.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/12/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Grafman and colleagues' papers in religion and brain research have documented the extent to which religious beliefs and behaviors are mediated by standard social cognitive networks in brain. Grafman's work however also points beyond treatments of religious cognition as merely a species of more general social cognitive processes. Data emerging from experiments targeting mystical states as well as reports of encounters with supernatural agents during controlled experiments with psychedelics, suggest that brain mediation of mystical encounters with supernatural agents involves both disruption/downregulation of social cognitive networks and activation of an additional as yet only partially identified neural process suggesting that a full neuroscience account of religious beliefs, behaviors and experiences must extend beyond treatment of religion as an ordinary social process.
Collapse
Affiliation(s)
- Patrick McNamara
- Department of Psychology, National University, USA; Boston University School of Medicine, USA; Boston University School of Theology, USA; Co-PI Cognitive Neuroscience of Religious Cognition (CNRC) Project, USA; Center for Mind and Culture, Boston, MA, USA.
| |
Collapse
|
9
|
Lemmers-Jansen I, Velthorst E, Fett AK. The social cognitive and neural mechanisms that underlie social functioning in individuals with schizophrenia - a review. Transl Psychiatry 2023; 13:327. [PMID: 37865631 PMCID: PMC10590451 DOI: 10.1038/s41398-023-02593-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/23/2023] Open
Abstract
In many individuals with a diagnosis of schizophrenia social functioning is impaired across the lifespan. Social cognition has emerged as one of the possible factors that may contribute to these challenges. Neuroimaging research can give further insights into the underlying mechanisms of social (cognitive) difficulties. This review summarises the evidence on the associations between social cognition in the domains of theory of mind and emotion perception and processing, and individuals' social functioning and social skills, as well as associated neural mechanisms. Eighteen behavioural studies were conducted since the last major review and meta-analysis in the field (inclusion between 7/2017 and 1/2022). No major review has investigated the link between the neural mechanisms of social cognition and their association with social functioning in schizophrenia. Fourteen relevant studies were included (from 1/2000 to 1/2022). The findings of the behavioural studies showed that associations with social outcomes were slightly stronger for theory of mind than for emotion perception and processing. Moreover, performance in both social cognitive domains was more strongly associated with performance on social skill measures than questionnaire-based assessment of social functioning in the community. Studies on the underlying neural substrate of these associations presented mixed findings. In general, higher activation in various regions of the social brain was associated with better social functioning. The available evidence suggests some shared regions that might underlie the social cognition-social outcome link between different domains. However, due to the heterogeneity in approaches and findings, the current knowledge base will need to be expanded before firm conclusions can be drawn.
Collapse
Affiliation(s)
- Imke Lemmers-Jansen
- Department of Clinical, Neuro and Developmental Psychology, Faculty of Behavioural and Movement Sciences, Institute for Brain and Behaviour (iBBA) Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eva Velthorst
- GGZ Noord-Holland-Noord, Heerhugowaard, The Netherlands
| | - Anne-Kathrin Fett
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Department of Psychology, City, University of London, London, UK.
| |
Collapse
|
10
|
Iyer S, Collier E, Finn ES, Meyer ML. Negative affect homogenizes and positive affect diversifies social memory consolidation across people. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.20.528994. [PMID: 36865262 PMCID: PMC9980006 DOI: 10.1101/2023.02.20.528994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We are often surprised when an interaction we remember positively is recalled by a peer negatively. What colors social memories with positive versus negative hues? We show that when resting after a social experience, individuals showing similar default network responding subsequently remember more negative information, while individuals showing idiosyncratic default network responding remember more positive information. Results were specific to rest after the social experience (as opposed to before or during the social experience, or rest after a nonsocial experience). The results provide novel neural evidence in support of the "broaden and build" theory of positive emotion, which posits that while negative affect confines, positive affect broadens idiosyncrasy in cognitive processing. For the first time, we identified post-encoding rest as a key moment and the default network as a key brain system in which negative affect homogenizes, whereas positive affect diversifies social memories.
Collapse
|
11
|
Pintos Lobo R, Bottenhorn KL, Riedel MC, Toma AI, Hare MM, Smith DD, Moor AC, Cowan IK, Valdes JA, Bartley JE, Salo T, Boeving ER, Pankey B, Sutherland MT, Musser ED, Laird AR. Neural systems underlying RDoC social constructs: An activation likelihood estimation meta-analysis. Neurosci Biobehav Rev 2023; 144:104971. [PMID: 36436737 PMCID: PMC9843621 DOI: 10.1016/j.neubiorev.2022.104971] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Neuroscientists have sought to identify the underlying neural systems supporting social processing that allow interaction and communication, forming social relationships, and navigating the social world. Through the use of NIMH's Research Domain Criteria (RDoC) framework, we evaluated consensus among studies that examined brain activity during social tasks to elucidate regions comprising the "social brain". We examined convergence across tasks corresponding to the four RDoC social constructs, including Affiliation and Attachment, Social Communication, Perception and Understanding of Self, and Perception and Understanding of Others. We performed a series of coordinate-based meta-analyses using the activation likelihood estimate (ALE) method. Meta-analysis was performed on whole-brain coordinates reported from 864 fMRI contrasts using the NiMARE Python package, revealing convergence in medial prefrontal cortex, anterior cingulate cortex, posterior cingulate cortex, temporoparietal junction, bilateral insula, amygdala, fusiform gyrus, precuneus, and thalamus. Additionally, four separate RDoC-based meta-analyses revealed differential convergence associated with the four social constructs. These outcomes highlight the neural support underlying these social constructs and inform future research on alterations among neurotypical and atypical populations.
Collapse
Affiliation(s)
| | - Katherine L Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Michael C Riedel
- Department of Physics, Florida International University, Miami, FL, USA
| | - Afra I Toma
- Department of Biomedical Engineering, Emory University, Atlanta, GA, USA
| | - Megan M Hare
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Donisha D Smith
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Alexandra C Moor
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Isis K Cowan
- Department of Psychology, Old Dominion University, Norfolk, VA, USA
| | - Javier A Valdes
- College of Medicine, Florida International University, Miami, FL, USA
| | - Jessica E Bartley
- Department of Physics, Florida International University, Miami, FL, USA
| | - Taylor Salo
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Emily R Boeving
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Brianna Pankey
- Department of Psychology, Florida International University, Miami, FL, USA
| | | | - Erica D Musser
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA
| |
Collapse
|
12
|
Neural synchronization predicts marital satisfaction. Proc Natl Acad Sci U S A 2022; 119:e2202515119. [PMID: 35981139 PMCID: PMC9407484 DOI: 10.1073/pnas.2202515119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Marital attachment plays an important role in maintaining intimate personal relationships and sustaining psychological well-being. Mate-selection theories suggest that people are more likely to marry someone with a similar personality and social status, yet evidence for the association between personality-based couple similarity measures and marital satisfaction has been inconsistent. A more direct and useful approach for understanding fundamental processes underlying marital satisfaction is to probe similarity of dynamic brain responses to maritally and socially relevant communicative cues, which may better reflect how married couples process information in real time and make sense of their mates and themselves. Here, we investigate shared neural representations based on intersubject synchronization (ISS) of brain responses during free viewing of marital life-related, and nonmarital, object-related movies. Compared to randomly selected pairs of couples, married couples showed significantly higher levels of ISS during viewing of marital movies and ISS between married couples predicted higher levels of marital satisfaction. ISS in the default mode network emerged as a strong predictor of marital satisfaction and canonical correlation analysis revealed a specific relation between ISS in this network and shared communication and egalitarian components of martial satisfaction. Our findings demonstrate that brain similarities that reflect real-time mental responses to subjective perceptions, thoughts, and feelings about interpersonal and social interactions are strong predictors of marital satisfaction, reflecting shared values and beliefs. Our study advances foundational knowledge of the neurobiological basis of human pair bonding.
Collapse
|
13
|
Krendl AC, Betzel RF. Social cognitive network neuroscience. Soc Cogn Affect Neurosci 2022; 17:510-529. [PMID: 35352125 PMCID: PMC9071476 DOI: 10.1093/scan/nsac020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 12/31/2022] Open
Abstract
Over the past three decades, research from the field of social neuroscience has identified a constellation of brain regions that relate to social cognition. Although these studies have provided important insights into the specific neural regions underlying social behavior, they may overlook the broader neural context in which those regions and the interactions between them are embedded. Network neuroscience is an emerging discipline that focuses on modeling and analyzing brain networks-collections of interacting neural elements. Because human cognition requires integrating information across multiple brain regions and systems, we argue that a novel social cognitive network neuroscience approach-which leverages methods from the field of network neuroscience and graph theory-can advance our understanding of how brain systems give rise to social behavior. This review provides an overview of the field of network neuroscience, discusses studies that have leveraged this approach to advance social neuroscience research, highlights the potential contributions of social cognitive network neuroscience to understanding social behavior and provides suggested tools and resources for conducting network neuroscience research.
Collapse
Affiliation(s)
- Anne C Krendl
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Richard F Betzel
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
14
|
Udochi AL, Blain SD, Sassenberg TA, Burton PC, Medrano L, DeYoung CG. Activation of the default network during a theory of mind task predicts individual differences in agreeableness and social cognitive ability. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:383-402. [PMID: 34668171 DOI: 10.3758/s13415-021-00955-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Social cognitive processes, such as emotion perception and empathy, allow humans to navigate complex social landscapes and are associated with specific neural systems. In particular, theory of mind (ToM), which refers to our ability to decipher the mental states of others, is related to the dorsal medial prefrontal cortex and temporoparietal junction, which include portions of the default network. Both social cognition and the default network have been linked to the personality trait Agreeableness. We hypothesized that default network activity during a ToM task would positively predict social cognitive abilities and Agreeableness. In a 3T fMRI scanner, participants (N = 1050) completed a ToM task in which they observed triangles displaying random or social (i.e., human-like) movement. Participants also completed self-report measures of Agreeableness and tests of intelligence and social cognitive ability. In each participant, average blood oxygen level dependent responses were calculated for default network regions associated with social cognition, and structural equation modeling was used to test associations of personality and task performance with activation in those brain regions. Default network activation in the dorsal medial subsystem was greater for social versus random animations. Default network activation in response to social animations predicted better performance on social cognition tasks and, to a lesser degree, higher Agreeableness. Neural response to social stimuli in the default network may be associated with effective social processing and could have downstream effects on social interactions. We discuss theoretical and methodological implications of this work for social and personality neuroscience.
Collapse
Affiliation(s)
- Aisha L Udochi
- Department of Psychology, University of Minnesota Twin Cities, Elliott Hall, 75 E River Rd, Minneapolis, MN, 55455, United States.
| | - Scott D Blain
- Department of Psychology, University of Minnesota Twin Cities, Elliott Hall, 75 E River Rd, Minneapolis, MN, 55455, United States.
| | - Tyler A Sassenberg
- Department of Psychology, University of Minnesota Twin Cities, Elliott Hall, 75 E River Rd, Minneapolis, MN, 55455, United States
| | - Philip C Burton
- Department of Psychology, University of Minnesota Twin Cities, Elliott Hall, 75 E River Rd, Minneapolis, MN, 55455, United States
| | - Leroy Medrano
- Department of Psychology, University of Minnesota Twin Cities, Elliott Hall, 75 E River Rd, Minneapolis, MN, 55455, United States
| | - Colin G DeYoung
- Department of Psychology, University of Minnesota Twin Cities, Elliott Hall, 75 E River Rd, Minneapolis, MN, 55455, United States
| |
Collapse
|
15
|
Morningstar M, Mattson WI, Nelson EE. Longitudinal Change in Neural Response to Vocal Emotion in Adolescence. Soc Cogn Affect Neurosci 2022; 17:890-903. [PMID: 35323933 PMCID: PMC9527472 DOI: 10.1093/scan/nsac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 01/09/2023] Open
Abstract
Adolescence is associated with maturation of function within neural networks supporting the processing of social information. Previous longitudinal studies have established developmental influences on youth’s neural response to facial displays of emotion. Given the increasing recognition of the importance of non-facial cues to social communication, we build on existing work by examining longitudinal change in neural response to vocal expressions of emotion in 8- to 19-year-old youth. Participants completed a vocal emotion recognition task at two timepoints (1 year apart) while undergoing functional magnetic resonance imaging. The right inferior frontal gyrus, right dorsal striatum and right precentral gyrus showed decreases in activation to emotional voices across timepoints, which may reflect focalization of response in these areas. Activation in the dorsomedial prefrontal cortex was positively associated with age but was stable across timepoints. In addition, the slope of change across visits varied as a function of participants’ age in the right temporo-parietal junction (TPJ): this pattern of activation across timepoints and age may reflect ongoing specialization of function across childhood and adolescence. Decreased activation in the striatum and TPJ across timepoints was associated with better emotion recognition accuracy. Findings suggest that specialization of function in social cognitive networks may support the growth of vocal emotion recognition skills across adolescence.
Collapse
Affiliation(s)
- Michele Morningstar
- Correspondence should be addressed to Michele Morningstar, Department of Psychology, Queen’s University, 62 Arch Street, Kingston, ON K7L 3L3, Canada. E-mail:
| | - Whitney I Mattson
- Center for Biobehavioral Health, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Eric E Nelson
- Center for Biobehavioral Health, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
16
|
Mori K, Haruno M. Resting functional connectivity of the left inferior frontal gyrus with the dorsomedial prefrontal cortex and temporoparietal junction reflects the social network size for active interactions. Hum Brain Mapp 2022; 43:2869-2879. [PMID: 35261111 PMCID: PMC9120559 DOI: 10.1002/hbm.25822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 11/08/2022] Open
Abstract
The size of an individual active social network is a key parameter of human social behavior and is correlated with subjective well-being. However, it remains unknown how the social network size of active interactions is represented in the brain. Here, we examined whether resting-state functional magnetic resonance imaging (fMRI) connectivity is associated with the social network size of active interactions using behavioral data of a large sample (N = 222) on Twitter. Region of interest (ROI)-to-ROI analysis, graph theory analysis, seed-based analysis, and decoding analysis together provided compelling evidence that people who have a large social network size of active interactions, as measured by "reply," show higher fMRI connectivity of the left inferior frontal gyrus with the dorsomedial prefrontal cortex and temporoparietal junction, which represents the core of the theory of mind network. These results demonstrated that people who have a large social network size of active interactions maintain activity of the identified functional connectivity in daily life, possibly providing a mechanism for efficient information transmission between the brain networks related to language and theory-of-mind.
Collapse
Affiliation(s)
- Kazuma Mori
- Center for Information and Neural Networks, National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan.,Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | - Masahiko Haruno
- Center for Information and Neural Networks, National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan.,Grauduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
17
|
|
18
|
Abraham E, Wang Y, Svob C, Semanek D, Gameroff MJ, Shankman SA, Weissman MM, Talati A, Posner J. Organization of the social cognition network predicts future depression and interpersonal impairment: a prospective family-based study. Neuropsychopharmacology 2022; 47:531-542. [PMID: 34162998 PMCID: PMC8674240 DOI: 10.1038/s41386-021-01065-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Deficits in social cognition and functioning are common in major depressive disorder (MDD). Still, no study into the pathophysiology of MDD has examined the social cognition-related neural pathways through which familial risk for MDD leads to depression and interpersonal impairments. Using resting-state fMRI, we applied a graph theoretical analysis to quantify the influence of nodes within the fronto-temporo-parietal cortical social cognition network in 108 generation 2 and generation 3 offspring at high and low-risk for MDD, defined by the presence or absence, respectively, of moderate to severe MDD in generation 1. New MDD episodes, future depressive symptoms, and interpersonal impairments were tested for associations with social cognition nodal influence, using regression analyses applied in a generalized estimating equations approach. Increased familial risk was associated with reduced nodal influence within the network, and this predicted new depressive episodes, worsening depressive symptomatology, and interpersonal impairments, 5-8 years later. Findings remained significant after controlling for current depressive/anxiety symptoms and current/lifetime MDD and anxiety disorders. Path-analysis models indicate that increased familial risk impacted offspring's brain function in two ways. First, high familial risk was indirectly associated with future depression, both new MDD episodes and symptomatology, via reduced nodal influence of the right posterior superior temporal gyrus (pSTG). Second, high familial risk was indirectly associated with future interpersonal impairments via reduced nodal influence of right inferior frontal gyrus (IFG). Finally, reduced nodal influence was associated with high familial risk in (1) those who had never had MDD at the time of scanning and (2) a subsample (n = 52) rescanned 8 years later. Together, findings reveal a potential pathway for the intergenerational transmission of vulnerability via the aberrant social cognition network organization and suggest using the connectome of neural network related to social cognition to identify intervention and prevention targets for those particularly at risk.
Collapse
Affiliation(s)
- Eyal Abraham
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Divisions of Translational Epidemiology and New York State Psychiatric Institute, New York, NY, USA.
| | - Yun Wang
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Child Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Connie Svob
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Divisions of Translational Epidemiology and New York State Psychiatric Institute, New York, NY, USA
| | - David Semanek
- Child Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Marc J Gameroff
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Divisions of Translational Epidemiology and New York State Psychiatric Institute, New York, NY, USA
| | - Stewart A Shankman
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Evanston, USA
| | - Myrna M Weissman
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Divisions of Translational Epidemiology and New York State Psychiatric Institute, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ardesheer Talati
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Divisions of Translational Epidemiology and New York State Psychiatric Institute, New York, NY, USA
| | - Jonathan Posner
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Child Psychiatry, New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
19
|
The impact of social isolation and changes in work patterns on ongoing thought during the first COVID-19 lockdown in the United Kingdom. Proc Natl Acad Sci U S A 2021; 118:2102565118. [PMID: 34599096 DOI: 10.1073/pnas.2102565118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
The COVID-19 pandemic led to lockdowns in countries across the world, changing the lives of billions of people. The United Kingdom's first national lockdown, for example, restricted people's ability to socialize and work. The current study examined how changes to socializing and working during this lockdown impacted ongoing thought patterns in daily life. We compared the prevalence of thought patterns between two independent real-world, experience-sampling cohorts, collected before and during lockdown. In both samples, young (18 to 35 y) and older (55+ y) participants completed experience-sampling measures five times daily for 7 d. Dimension reduction was applied to these data to identify common "patterns of thought." Linear mixed modeling compared the prevalence of each thought pattern 1) before and during lockdown, 2) in different age groups, and 3) across different social and activity contexts. During lockdown, when people were alone, social thinking was reduced, but on the rare occasions when social interactions were possible, we observed a greater increase in social thinking than prelockdown. Furthermore, lockdown was associated with a reduction in future-directed problem solving, but this thought pattern was reinstated when individuals engaged in work. Therefore, our study suggests that the lockdown led to significant changes in ongoing thought patterns in daily life and that these changes were associated with changes to our daily routine that occurred during lockdown.
Collapse
|
20
|
Wang Y, Metoki A, Xia Y, Zang Y, He Y, Olson IR. A large-scale structural and functional connectome of social mentalizing. Neuroimage 2021; 236:118115. [PMID: 33933599 DOI: 10.1016/j.neuroimage.2021.118115] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
Humans have a remarkable ability to infer the mind of others. This mentalizing skill relies on a distributed network of brain regions but how these regions connect and interact is not well understood. Here we leveraged large-scale multimodal neuroimaging data to elucidate the brain-wide organization and mechanisms of mentalizing processing. Key connectomic features of the mentalizing network (MTN) have been delineated in exquisite detail. We found the structural architecture of MTN is organized by two parallel subsystems and constructed redundantly by local and long-range white matter fibers. We uncovered an intrinsic functional architecture that is synchronized according to the degree of mentalizing, and its hierarchy reflects the inherent information integration order. We also examined the correspondence between the structural and functional connectivity in the network and revealed their differences in network topology, individual variance, spatial specificity, and functional specificity. Finally, we scrutinized the connectome resemblance between the default mode network and MTN and elaborated their inherent differences in dynamic patterns, laterality, and homogeneity. Overall, our study demonstrates that mentalizing processing unfolds across functionally heterogeneous regions with highly structured fiber tracts and unique hierarchical functional architecture, which make it distinguishable from the default mode network and other vicinity brain networks supporting autobiographical memory, semantic memory, self-referential, moral reasoning, and mental time travel.
Collapse
Affiliation(s)
- Yin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Athanasia Metoki
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yunman Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yinyin Zang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Ingrid R Olson
- Department of Psychology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Affiliation(s)
- Jeffrey W. Sherman
- Department of Psychology, University of California, Davis, California, USA
| | - Andrew M. Rivers
- Department of Psychology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
22
|
Yeshurun Y, Nguyen M, Hasson U. The default mode network: where the idiosyncratic self meets the shared social world. Nat Rev Neurosci 2021; 22:181-192. [PMID: 33483717 PMCID: PMC7959111 DOI: 10.1038/s41583-020-00420-w] [Citation(s) in RCA: 311] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 01/29/2023]
Abstract
The default mode network (DMN) is classically considered an 'intrinsic' system, specializing in internally oriented cognitive processes such as daydreaming, reminiscing and future planning. In this Perspective, we suggest that the DMN is an active and dynamic 'sense-making' network that integrates incoming extrinsic information with prior intrinsic information to form rich, context-dependent models of situations as they unfold over time. We review studies that relied on naturalistic stimuli, such as stories and movies, to demonstrate how an individual's DMN neural responses are influenced both by external information accumulated as events unfold over time and by the individual's idiosyncratic past memories and knowledge. The integration of extrinsic and intrinsic information over long timescales provides a space for negotiating a shared neural code, which is necessary for establishing shared meaning, shared communication tools, shared narratives and, above all, shared communities and social networks.
Collapse
Affiliation(s)
- Yaara Yeshurun
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel.
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| | - Mai Nguyen
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- Department of Psychology, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Uri Hasson
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel.
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
- Department of Psychology, Princeton University, Princeton, NJ, USA.
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
23
|
Bossi F, Willemse C, Cavazza J, Marchesi S, Murino V, Wykowska A. The human brain reveals resting state activity patterns that are predictive of biases in attitudes toward robots. Sci Robot 2021; 5:5/46/eabb6652. [PMID: 32999049 DOI: 10.1126/scirobotics.abb6652] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/18/2020] [Indexed: 01/11/2023]
Abstract
The increasing presence of robots in society necessitates a deeper understanding into what attitudes people have toward robots. People may treat robots as mechanistic artifacts or may consider them to be intentional agents. This might result in explaining robots' behavior as stemming from operations of the mind (intentional interpretation) or as a result of mechanistic design (mechanistic interpretation). Here, we examined whether individual attitudes toward robots can be differentiated on the basis of default neural activity pattern during resting state, measured with electroencephalogram (EEG). Participants observed scenarios in which a humanoid robot was depicted performing various actions embedded in daily contexts. Before they were introduced to the task, we measured their resting state EEG activity. We found that resting state EEG beta activity differentiated people who were later inclined toward interpreting robot behaviors as either mechanistic or intentional. This pattern is similar to the pattern of activity in the default mode network, which was previously demonstrated to have a social role. In addition, gamma activity observed when participants were making decisions about a robot's behavior indicates a relationship between theory of mind and said attitudes. Thus, we provide evidence that individual biases toward treating robots as either intentional agents or mechanistic artifacts can be detected at the neural level, already in a resting state EEG signal.
Collapse
Affiliation(s)
- Francesco Bossi
- Social Cognition in Human-Robot Interaction (S4HRI), Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy.,IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Cesco Willemse
- Social Cognition in Human-Robot Interaction (S4HRI), Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy.
| | - Jacopo Cavazza
- Pattern Analysis and Computer Vision (PAVIS), Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy
| | - Serena Marchesi
- Social Cognition in Human-Robot Interaction (S4HRI), Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy
| | - Vittorio Murino
- Pattern Analysis and Computer Vision (PAVIS), Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy.,Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.,Huawei Technologies Ltd., Ireland Research Center, Georges Court, Townsend Street, Dublin 2, Ireland
| | - Agnieszka Wykowska
- Social Cognition in Human-Robot Interaction (S4HRI), Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy.,Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
24
|
Ribeiro da Costa C, Soares JM, Oliveira-Silva P, Sampaio A, Coutinho JF. Interplay Between the Salience and the Default Mode Network in a Social-Cognitive Task Toward a Close Other. Front Psychiatry 2021; 12:718400. [PMID: 35197871 PMCID: PMC8859259 DOI: 10.3389/fpsyt.2021.718400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/06/2021] [Indexed: 01/09/2023] Open
Abstract
Social cognition relies on two main subsystems to construct the understanding of others, which are sustained by different social brain networks. One of these social networks is the default mode network (DMN) associated with the socio-cognitive subsystem (i.e., mentalizing), and the other is the salience network (SN) associated with the socio-affective route (i.e., empathy). The DMN and the SN are well-known resting state networks that seem to constitute a baseline for the performance of social tasks. We aimed to investigate both networks' functional connectivity (FC) pattern in the transition from resting state to social task performance. A sample of 38 participants involved in a monogamous romantic relationship completed a questionnaire of dyadic empathy and underwent an fMRI protocol that included a resting state acquisition followed by a task in which subjects watched emotional videos of their romantic partner and elaborated on their partner's (Other condition) or on their own experience (Self condition). Independent component and ROI-to-ROI correlation analysis were used to assess alterations in task-independent (Rest condition) and task-dependent (Self and Other conditions) FC. We found that the spatial FC maps of the DMN and SN evidenced the traditional regions associated with these networks in the three conditions. Anterior and posterior DMN regions exhibited increased FC during the social task performance compared to resting state. The Other condition revealed a more limited SN's connectivity in comparison to the Self and Rest conditions. The results revealed an interplay between the main nodes of the DMN and the core regions of the SN, particularly evident in the Self and Other conditions.
Collapse
Affiliation(s)
- Cátia Ribeiro da Costa
- Psychological Neuroscience Lab, CIPsi - Psychology Research Center, School of Psychology, University of Minho, Braga, Portugal
| | - Jose M Soares
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
| | | | - Adriana Sampaio
- Psychological Neuroscience Lab, CIPsi - Psychology Research Center, School of Psychology, University of Minho, Braga, Portugal
| | - Joana F Coutinho
- Psychological Neuroscience Lab, CIPsi - Psychology Research Center, School of Psychology, University of Minho, Braga, Portugal
| |
Collapse
|
25
|
Inagaki TK, Meyer ML. Individual differences in resting-state connectivity and giving social support: implications for health. Soc Cogn Affect Neurosci 2020; 15:1076-1085. [PMID: 31269205 PMCID: PMC7657449 DOI: 10.1093/scan/nsz052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/14/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022] Open
Abstract
There is a growing appreciation for the health benefits of giving support, though variability in such behavior exists. Based on the possibility that the dorsomedial (DMPFC) default network subsystem is associated with social thinking and behavior, integrity of this subsystem may facilitate giving support to others. The current study tested associations between DMPFC subsystem connectivity at rest and tendencies related to giving support. During a functional magnetic resonance imaging session, 45 participants completed an emotional social cues task, a resting-state scan and self-report measures of social support. Supportive behavior during the month following the scan was also assessed. Greater DMPFC subsystem connectivity at rest was associated with greater support giving (though not receiving or perceiving support) at the time of the scan and one month later. Results held after adjusting for extraversion. In addition, greater resting-state DMPFC subsystem connectivity was associated with attenuated dorsal anterior cingulate cortex, anterior insula and amygdala activity to others’ negative emotional social cues, suggesting that DMPFC subsystem integrity at rest is also associated with the dampened withdrawal response proposed to facilitate care for others in need. Together, results begin to hint at an additional role for the ‘default’ social brain: giving support to others.
Collapse
Affiliation(s)
- Tristen K Inagaki
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Meghan L Meyer
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
26
|
Gaesser B. Episodic mindreading: Mentalizing guided by scene construction of imagined and remembered events. Cognition 2020; 203:104325. [DOI: 10.1016/j.cognition.2020.104325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/21/2020] [Accepted: 05/07/2020] [Indexed: 01/10/2023]
|
27
|
Inagaki TK, Brietzke S, Meyer ML. The Resting Brain Sets Support-Giving in Motion: Dorsomedial Prefrontal Cortex Activity During Momentary Rest Primes Supportive Responding. Cereb Cortex Commun 2020; 1:tgaa081. [PMID: 34296139 PMCID: PMC8152835 DOI: 10.1093/texcom/tgaa081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/10/2023] Open
Abstract
Humans give support, care, and assistance to others on a daily basis. However, the brain mechanisms that set such supportive behavior in motion are unknown. Based on previous findings demonstrating that activity in a portion of the brain’s default network—the dorsomedial prefrontal cortex (DMPFC)—during brief rest primes social thinking and behavior, momentary fluctuations in this brain region at rest may prime supportive responding. To test this hypothesis, 26 participants underwent functional magnetic resonance imaging (fMRI) while they alternated between deciding whether to give support to a close other in financial need, receive support for themselves, and make arbitrary decisions unrelated to support. Decisions were interleaved with brief periods of rest. Results showed that, within participants, spontaneous activity in the DMPFC during momentary periods of rest primed supportive-responding: greater activity in this region at the onset of a brief period of rest predicted, on a trial-by-trial basis, faster decisions to give support to the close other. Thus, activating the DMPFC as soon as our minds are free from external demands to attention may help individuals “default” to support-giving. Implications for understanding the prosocial functions of the resting brain are discussed.
Collapse
Affiliation(s)
- Tristen K Inagaki
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Sasha Brietzke
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Meghan L Meyer
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
28
|
Uhlmann L, Pazen M, van Kemenade BM, Steinsträter O, Harris LR, Kircher T, Straube B. Seeing your own or someone else's hand moving in accordance with your action: The neural interaction of agency and hand identity. Hum Brain Mapp 2020; 41:2474-2489. [PMID: 32090439 PMCID: PMC7268012 DOI: 10.1002/hbm.24958] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/17/2020] [Accepted: 02/11/2020] [Indexed: 01/10/2023] Open
Abstract
Forward models can predict sensory consequences of self-action, which is reflected by less neural processing for actively than passively generated sensory inputs (BOLD suppression effect). However, it remains open whether forward models take the identity of a moving body part into account when predicting the sensory consequences of an action. In the current study, fMRI was used to investigate the neural correlates of active and passive hand movements during which participants saw either an on-line display of their own hand or someone else's hand moving in accordance with their movement. Participants had to detect delays (0-417 ms) between their movement and the displays. Analyses revealed reduced activation in sensory areas and higher delay detection thresholds for active versus passive movements. Furthermore, there was increased activation in the hippocampus, the amygdala, and the middle temporal gyrus when someone else's hand was seen. Most importantly, in posterior parietal (angular gyrus and precuneus), frontal (middle, superior, and medial frontal gyrus), and temporal (middle temporal gyrus) regions, suppression for actively versus passively generated feedback was stronger when participants were viewing their own compared to someone else's hand. Our results suggest that forward models can take hand identity into account when predicting sensory action consequences.
Collapse
Affiliation(s)
- Lukas Uhlmann
- Department of Psychiatry and PsychotherapyUniversity of MarburgMarburgGermany
- Center for Mind, Brain and Behavior (CMBB)University of MarburgMarburgGermany
| | - Mareike Pazen
- Department of Psychiatry and PsychotherapyUniversity of MarburgMarburgGermany
- Center for Mind, Brain and Behavior (CMBB)University of MarburgMarburgGermany
| | - Bianca M. van Kemenade
- Department of Psychiatry and PsychotherapyUniversity of MarburgMarburgGermany
- Center for Mind, Brain and Behavior (CMBB)University of MarburgMarburgGermany
| | - Olaf Steinsträter
- Department of Psychiatry and PsychotherapyUniversity of MarburgMarburgGermany
- Core Facility Brain ImagingUniversity of MarburgMarburgGermany
| | | | - Tilo Kircher
- Department of Psychiatry and PsychotherapyUniversity of MarburgMarburgGermany
- Center for Mind, Brain and Behavior (CMBB)University of MarburgMarburgGermany
| | - Benjamin Straube
- Department of Psychiatry and PsychotherapyUniversity of MarburgMarburgGermany
- Center for Mind, Brain and Behavior (CMBB)University of MarburgMarburgGermany
| |
Collapse
|
29
|
Fareri DS, Smith DV, Delgado MR. The influence of relationship closeness on default-mode network connectivity during social interactions. Soc Cogn Affect Neurosci 2020; 15:261-271. [PMID: 32232362 PMCID: PMC7235957 DOI: 10.1093/scan/nsaa031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/07/2020] [Accepted: 03/06/2020] [Indexed: 01/05/2023] Open
Abstract
Reciprocated trust plays a critical role in forming and maintaining relationships, and has consistently been shown to implicate neural circuits involved in reward-related processing and social cognition. Less is known about neural network connectivity during social interactions involving trust, however, particularly as a function of closeness between an investor and a trustee. We examined network reactivity and connectivity in participants who played an economic trust game with close friends, strangers and a computer. Network reactivity analyses showed enhanced activation of the default-mode network (DMN) to social relative to non-social outcomes. A novel network psychophysiological interaction (nPPI) analysis revealed enhanced connectivity between the DMN and the superior frontal gyrus and superior parietal lobule when experiencing reciprocated vs violated trust from friends relative to strangers. Such connectivity tracked with differences in self-reported social closeness with these partners. Interestingly, reactivity of the executive control network (ECN), involved in decision processes, demonstrated no social vs non-social preference, and ECN-ventral striatum connectivity did not track social closeness. Taken together, these novel findings suggest that DMN interacts with components of attention and control networks to signal the relative importance of positive experiences with close others vs strangers.
Collapse
Affiliation(s)
- Dominic S Fareri
- Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY 11530, USA
| | - David V Smith
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
30
|
Collier E, Meyer ML. Memory of Others' Disclosures Is Consolidated during Rest and Associated with Providing Support: Neural and Linguistic Evidence. J Cogn Neurosci 2020; 32:1672-1687. [PMID: 32379001 DOI: 10.1162/jocn_a_01573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Social scientists have documented the power of being heard: Disclosing emotional experiences to others promotes mental and physical health. Yet, far less is known about how listeners digest the sensitive information people share with them. We combined brain imaging and text analysis methods with a naturalistic emotional disclosure paradigm to assess how listeners form memories of others' disclosures. Neural and linguistic evidence support the hypothesis that listeners consolidate memories for others' disclosures during rest after listening and that their ability to do so facilitates subsequently providing the speakers with support. In Study 1, brain imaging methods showed that functional connectivity between the dorsomedial subsystem of the default network and frontoparietal control network increased during rest after listening to others' disclosures and predicted subsequent memory for their experiences. Moreover, graph analytic methods demonstrated that the left anterior temporal lobe may function as a connector hub between these two networks when consolidating memory for disclosures. In Study 2, linguistic analyses revealed other-focused thought increased during rest after listening to others' disclosures and predicted not only memory for the information disclosed but also whether listeners supported the speakers the next day. Collectively, these findings point to the important role of memory consolidation during rest in helping listeners respond supportively to others' disclosures. In our increasingly busy lives, pausing to briefly rest may not only help us care for ourselves but also help us care for others.
Collapse
|
31
|
Mildner JN, Tamir DI. Spontaneous Thought as an Unconstrained Memory Process. Trends Neurosci 2019; 42:763-777. [PMID: 31627848 DOI: 10.1016/j.tins.2019.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 01/12/2023]
Abstract
The stream of thought can flow freely, without much guidance from attention or cognitive control. What determines what we think about from one moment to the next? Spontaneous thought shares many commonalities with memory processes. We use insights from computational models of memory to explain how the stream of thought flows through the landscape of memory. In this framework of spontaneous thought, semantic memory scaffolds episodic memory to form the content of thought, and drifting context modulated by one's current state - both internal and external - constrains the area of memory to explore. This conceptualization of spontaneous thought can help to answer outstanding questions such as: what is the function of spontaneous thought, and how does the mind select what to think about?
Collapse
Affiliation(s)
- Judith N Mildner
- Department of Psychology, Princeton University, Princeton, NJ 08540, USA.
| | - Diana I Tamir
- Department of Psychology, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|