1
|
Muge Q, Qing Y, Bao W, Bao X, Gaowa A, Chen L. LncRNA CCAT1 decreases the sensitivity to doxorubicin in lung cancer cells by regulating miR-181a/CPEB2 axis. Med Oncol 2025; 42:109. [PMID: 40089944 DOI: 10.1007/s12032-025-02668-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
Recently, long non-coding RNAs have gained an increasing amount of attention in treating lung cancer. However, a full understanding of how CCAT1 lncRNA works against proliferation is not yet available. Therefore, we assess the impact of CCAT1 on the lung cancer cell proliferation, apoptosis, and doxorubicin (DOX) sensitivity, and the involvement of miR-181a/CPEB2 pathway. For this purpose, lung cancer A549 cells were exposed to siRNA against CCAT1 and DOX and cell viability were measured by MTT assay. ELISA was used to evaluate cell apoptosis. The protein and mRNA expression levels of apoptotic markers, miR-181a and CPEB2 were measured by western blot and qRT-PCR. Knock-downing CCAT1 inhibited the cell viability of A549 cells. In addition, si-CCAT1 treatment increased apoptosis in both cell lines via modulating the anti- and pro-apoptotic markers. Si-CCAT1 increased the levels miR-181a and decreased CPEB2 in A549 cells. In conclusion, our study has provided strong evidence that lncRNA CCAT1 decreased the sensitivity to doxorubicin in lung cancer cells by regulating the miR-181a/CPEB2 axis.
Collapse
Affiliation(s)
- Qi Muge
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
- The Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia, China
| | - Yu Qing
- The Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia, China
| | - Wenshan Bao
- The Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia, China
| | - Xiangrong Bao
- Inner Mongolia University for Nationalities, Tongliao, 028000, China
| | - Arong Gaowa
- Inner Mongolia University for Nationalities, Tongliao, 028000, China
| | - Lanying Chen
- National Engineering Research Center of Traditional Chinese Medicine Solid Preparation Manufacturing Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
2
|
Wang Y, Lei F, Lin Y, Han Y, Yang L, Tan H. Peroxisome proliferator-activated receptors as therapeutic target for cancer. J Cell Mol Med 2024; 28:e17931. [PMID: 37700501 PMCID: PMC10902584 DOI: 10.1111/jcmm.17931] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the nuclear receptor family. There are three subtypes of PPARs, including PPAR-α, PPAR-β/δ and PPAR-γ. They are expressed in different tissues and act by regulating the expression of target genes in the form of binding to ligands. Various subtypes of PPAR have been shown to have significant roles in a wide range of biological processes including lipid metabolism, body energy homeostasis, cell proliferation and differentiation, bone formation, tissue repair and remodelling. Recent studies have found that PPARs are closely related to tumours. They are involved in cancer cell growth, angiogenesis and tumour immune response, and are essential components in tumour progression and metastasis. As such, they have become a target for cancer therapy research. In this review, we discussed the current state of knowledge on the involvement of PPARs in cancer, including their role in tumourigenesis, the impact of PPARs in tumour microenvironment and the potential of using PPARs combinational therapy to treat cancer by targeting essential signal pathways, or as adjuvants to boost the effects of current chemo and immunotherapies. Our review highlights the complexity of PPARs in cancer and the need for a better understanding of the mechanism in order to design effective cancer therapies.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Internal MedicineMontefiore Medical Center, Wakefield CampusBronxNew YorkUSA
| | - Feifei Lei
- Department of Infectious Disease, Lab of Liver Disease, Renmin HospitalHubei University of MedicineShiyanChina
| | - Yiyun Lin
- Department of Biomedical SciencesUniversity of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Yuru Han
- Qinghai Provincial People's HospitalXiningChina
| | - Lei Yang
- Department of Biomedical SciencesUniversity of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Huabing Tan
- Department of Infectious Disease, Lab of Liver Disease, Renmin HospitalHubei University of MedicineShiyanChina
| |
Collapse
|
3
|
Alemi F, Sadeghsoltani F, Fattah K, Hassanpour P, Malakoti F, Kardeh S, Izadpanah M, de Campos Zuccari DAP, Yousefi B, Majidinia M. Applications of engineered exosomes in drugging noncoding RNAs for cancer therapy. Chem Biol Drug Des 2023; 102:1257-1275. [PMID: 37496299 DOI: 10.1111/cbdd.14300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/31/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Noncoding RNAs (ncRNAs) are engaged in key cell biological and pathological events, and their expression alteration is connected to cancer progression both directly and indirectly. A huge number of studies have mentioned the significant role of ncRNAs in cancer prevention and therapy that make them an interesting subject for cancer therapy. However, there are several limitations, including delivery, uptake, and short half-life, in the application of ncRNAs in cancer treatment. Exosomes are introduced as promising options for the delivery of ncRNAs to the target cells. In this review, we will briefly discuss the application and barriers of ncRNAs. After that we will focus on exosome-based ncRNAs delivery and their advantages as well as the latest achievements in drugging ncRNAs with exosomes.
Collapse
Affiliation(s)
- Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khashayar Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Kardeh
- Central Clinical School, Monash University, Melbourne, Australia
| | - Melika Izadpanah
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Pulat S, Kim DA, Hillman PF, Oh DC, Kim H, Nam SJ, Fenical W. Actinoquinazolinone, a New Quinazolinone Derivative from a Marine Bacterium Streptomyces sp. CNQ-617, Suppresses the Motility of Gastric Cancer Cells. Mar Drugs 2023; 21:489. [PMID: 37755102 PMCID: PMC10532864 DOI: 10.3390/md21090489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
A HPLC-UV guided fractionation of the culture broth of Streptomyces sp. CNQ-617 has led to the isolation of a new quinazolinone derivative, actinoquinazolinone (1), as well as two known compounds, 7-hydroxy-6-methoxy-3,4-dihydroquinazolin-4-one (2) and 7-methoxy-8-hydroxy cycloanthranilylproline (3). The interpretation of 1D, 2D NMR, and MS spectroscopic data revealed the planar structure of 1. Furthermore, compound 1 suppressed invasion ability by inhibiting epithelial-mesenchymal transition markers (EMT) in AGS cells at a concentration of 5 µM. In addition, compound 1 decreased the expression of seventeen genes related to human cell motility and slightly suppressed the signal transducer and activator of the transcription 3 (STAT3) signal pathway in AGS cells. Together, these results demonstrate that 1 is a potent inhibitor of gastric cancer cells.
Collapse
Affiliation(s)
- Sultan Pulat
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea;
| | - Da-Ae Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea; (D.-A.K.); (P.F.H.)
| | - Prima F. Hillman
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea; (D.-A.K.); (P.F.H.)
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea;
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea;
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea; (D.-A.K.); (P.F.H.)
| | - William Fenical
- Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| |
Collapse
|
5
|
Rajput D, Tsering D, Karuppasamy M, Kapoor KK, Nagarajan S, Maheswari CU, Bhuvanesh N, Sridharan V. Diversity-Oriented Synthesis of Benzo[ f][1,4]oxazepine-, 2 H-Chromene-, and 1,2-Dihydroquinoline-Fused Polycyclic Nitrogen Heterocycles under Microwave-Assisted Conditions. J Org Chem 2023. [PMID: 37318181 DOI: 10.1021/acs.joc.3c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An efficient, diversity-oriented synthesis of oxazepino[5,4-b]quinazolin-9-ones, 6H-chromeno[4,3-b]quinolines, and dibenzo[b,h][1,6]naphthyridines was established involving a substrate-based approach under microwave-assisted and conventional heating conditions in high yields (up to 88%). The CuBr2-catalyzed, chemoselective cascade annulation of O-propargylated 2-hydroxybenzaldehydes and 2-aminobenzamides delivered oxazepino[5,4-b]quinazolin-9-ones involving a 6-exo-trig cyclization-air oxidation-1,3-proton shift-7-exo-dig cyclization sequence. This one-pot process showed excellent atom economy (-H2O) and constructed two new heterocyclic rings (six- and seven-membered) and three new C-N bonds in a single synthetic operation. On the other side of diversification, the reaction between O/N-propargylated 2-hydroxy/aminobenzaldehydes and 2-aminobenzyl alcohols delivered 6H-chromeno[4,3-b]quinolines and dibenzo[b,h][1,6]naphthyridines involving sequential imine formation-[4 + 2] hetero-Diels-Alder reaction-aromatization steps. The influence of microwave assistance was superior to conventional heating, where the reactions were clean, rapid, and completed in 15 min, and the conventional heating required a longer reaction time at a relatively elevated temperature.
Collapse
Affiliation(s)
- Diksha Rajput
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, Jammu and Kashmir, India
| | - Dolma Tsering
- Department of Chemistry, University of Jammu, Jammu 180006, Jammu and Kashmir, India
| | - Muthu Karuppasamy
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, Jammu and Kashmir, India
| | - Kamal K Kapoor
- Department of Chemistry, University of Jammu, Jammu 180006, Jammu and Kashmir, India
| | - Subbiah Nagarajan
- Department of Chemistry, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - C Uma Maheswari
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur613401, Tamil Nadu, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, Jammu and Kashmir, India
| |
Collapse
|
6
|
Sun J, Yu L, Qu X, Huang T. The role of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anticancer therapy. Front Pharmacol 2023; 14:1184794. [PMID: 37251321 PMCID: PMC10213337 DOI: 10.3389/fphar.2023.1184794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) have been extensively studied for over 3 decades and consist of three isotypes, including PPARα, γ, and β/δ, that were originally considered key metabolic regulators controlling energy homeostasis in the body. Cancer has become a leading cause of human mortality worldwide, and the role of peroxisome proliferator-activated receptors in cancer is increasingly being investigated, especially the deep molecular mechanisms and effective cancer therapies. Peroxisome proliferator-activated receptors are an important class of lipid sensors and are involved in the regulation of multiple metabolic pathways and cell fate. They can regulate cancer progression in different tissues by activating endogenous or synthetic compounds. This review emphasizes the significance and knowledge of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anti-cancer treatment by summarizing recent research on peroxisome proliferator-activated receptors. In general, peroxisome proliferator-activated receptors either promote or suppress cancer in different types of tumor microenvironments. The emergence of this difference depends on various factors, including peroxisome proliferator-activated receptor type, cancer type, and tumor stage. Simultaneously, the effect of anti-cancer therapy based on drug-targeted PPARs differs or even opposes among the three peroxisome proliferator-activated receptor homotypes and different cancer types. Therefore, the current status and challenges of the use of peroxisome proliferator-activated receptors agonists and antagonists in cancer treatment are further explored in this review.
Collapse
Affiliation(s)
- Jiaao Sun
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Liyan Yu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Xueling Qu
- Dalian Women and Children’s Medical Center(Group), Dalian, Liaoning, China
| | - Tao Huang
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Mafi A, Rezaee M, Hedayati N, Hogan SD, Reiter RJ, Aarabi MH, Asemi Z. Melatonin and 5-fluorouracil combination chemotherapy: opportunities and efficacy in cancer therapy. Cell Commun Signal 2023; 21:33. [PMID: 36759799 PMCID: PMC9912526 DOI: 10.1186/s12964-023-01047-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/14/2023] [Indexed: 02/11/2023] Open
Abstract
Combined chemotherapy is a treatment method based on the simultaneous use of two or more therapeutic agents; it is frequently necessary to produce a more effective treatment for cancer patients. Such combined treatments often improve the outcomes over that of the monotherapy approach, as the drugs synergistically target critical cell signaling pathways or work independently at different oncostatic sites. A better prognosis has been reported in patients treated with combination therapy than in patients treated with single drug chemotherapy. In recent decades, 5-fluorouracil (5-FU) has become one of the most widely used chemotherapy agents in cancer treatment. This medication, which is soluble in water, is used as the first line of anti-neoplastic agent in the treatment of several cancer types including breast, head and neck, stomach and colon cancer. Within the last three decades, many studies have investigated melatonin as an anti-cancer agent; this molecule exhibits various functions in controlling the behavior of cancer cells, such as inhibiting cell growth, inducing apoptosis, and inhibiting invasion. The aim of this review is to comprehensively evaluate the role of melatonin as a complementary agent with 5-FU-based chemotherapy for cancers. Additionally, we identify the potential common signaling pathways by which melatonin and 5-FU interact to enhance the efficacy of the combined therapy. Video abstract.
Collapse
Affiliation(s)
- Alireza Mafi
- grid.411036.10000 0001 1498 685XDepartment of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Malihe Rezaee
- grid.411600.2School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran ,grid.411705.60000 0001 0166 0922Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Neda Hedayati
- grid.411746.10000 0004 4911 7066School of Medicine, Iran University of Medical Science, Tehran, Islamic Republic of Iran
| | - Sara Diana Hogan
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Russel J. Reiter
- grid.43582.380000 0000 9852 649XDepartment of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX USA
| | - Mohammad-Hossein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
8
|
Mihanfar A, Yousefi B, Azizzadeh B, Majidinia M. Interactions of melatonin with various signaling pathways: implications for cancer therapy. Cancer Cell Int 2022; 22:420. [PMID: 36581900 PMCID: PMC9798601 DOI: 10.1186/s12935-022-02825-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022] Open
Abstract
Melatonin is a neuro-hormone with conserved roles in evolution. Initially synthetized as an antioxidant molecule, it has gained prominence as a key molecule in the regulation of the circadian rhythm. Melatonin exerts its effect by binding to cytoplasmic and intra-nuclear receptors, and is able to regulate the expression of key mediators of different signaling pathways. This ability has led scholars to investigate the role of melatonin in reversing the process of carcinogenesis, a process in which many signaling pathways are involved, and regulating these pathways may be of clinical significance. In this review, the role of melatonin in regulating multiple signaling pathways with important roles in cancer progression is discussed, and evidence regarding the beneficence of targeting malignancies with this approach is presented.
Collapse
Affiliation(s)
- Ainaz Mihanfar
- grid.412763.50000 0004 0442 8645Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- grid.412888.f0000 0001 2174 8913Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bita Azizzadeh
- grid.449129.30000 0004 0611 9408Department of Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Majidinia
- grid.412763.50000 0004 0442 8645Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
9
|
Abdollahzade N, Mihanfar A, Majidinia M. Molecular mechanisms underlying ameliorative impact of melatonin against age-dependent chronic arsenic toxicity in rats' brains. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:1010-1024. [PMID: 35546266 DOI: 10.1002/jez.2603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Accumulation of random molecular damage such as oxidative DNA damage and inflammation is extremely found to be involved in the aging process. Due to extreme energy requirements and high lipid levels, the brain is more susceptible to oxidative damage during aging especially under exposure to toxic elements such as arsenic. Therefore, this study was aimed to evaluate the ameliorative effects of melatonin, as a neurohormone, on the arsenic-induced behavioral abnormalities, and the underlying mechanisms. Forty-eight rats, as young and old aged groups were exposed to 5.55 g/kg body weight arsenic for 4 weeks and then 10 mg/kg melatonin for 2 weeks. Our results showed that arsenic led to anxiety-like behavioral abnormalities in rats. Increased oxidative stress-induced damage to DNA, lipids and proteins, decreased potential of antioxidant defense system, induced apoptosis, elevated inflammation, and alteration in the histology of cortical region of brains are observed in the rats exposed to arsenic. These effects were more prominent in aged rats in comparison to young rats. Melatonin successfully attenuates arsenic induced adverse effects on the brain in both age groups. In conclusion, our study shows that melatonin has significant ameliorative impact on age-dependent cytotoxicity of arsenic in rats' brains.
Collapse
Affiliation(s)
- Naseh Abdollahzade
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ainaz Mihanfar
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
10
|
Targhazeh N, Hutt KJ, Winship AL, Reiter R, Yousefi B. Melatonin as an oncostatic agent: Review of the modulation of tumor microenvironment and overcoming multidrug resistance. Biochimie 2022; 202:71-84. [PMID: 36116742 DOI: 10.1016/j.biochi.2022.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022]
Abstract
Multi drug resistance (MDR) generally limits the efficacy of chemotherapy in cancer patients and can be categorized into primary or acquired resistance. Melatonin (MLT), a lipophilic hormone released from pineal gland, is a molecule with oncostatic effects. Here, we will briefly review the contribution of different microenvironmental components including fibroblasts, immune and inflammatory cells, stem cells and vascular endothelial cells in tumor initiation, progression and development. Then, the mechanisms by which MLT can potentially affect these elements and regulate drug resistance will be presented. Finally, we will explain how different studies have used novel strategies incorporating MLT to suppress cancer resistance against therapeutics.
Collapse
Affiliation(s)
- Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karla J Hutt
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Amy L Winship
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Russel Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA.
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Mirza-Aghazadeh-Attari M, Mihanfar A, Yousefi B, Majidinia M. Nanotechnology-based advances in the efficient delivery of melatonin. Cancer Cell Int 2022; 22:43. [PMID: 35093076 PMCID: PMC8800219 DOI: 10.1186/s12935-022-02472-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/16/2022] [Indexed: 01/09/2023] Open
Abstract
N-[2-(5-methoxy-1H-indol-3-yl) ethyl] or simply melatonin is a biogenic amine produced by pineal gland and recently recognized various other organs. Because of a broad range of biological function melatonin is considered as a therapeutic agent with high efficacy in the treatment of multiple disorders, such as cancer, degenerative disorders and immune disease. However, since melatonin can affect receptors on the cellular membrane, in the nucleus and can act as an anti-oxidant molecule, some unwanted effects may be observed after administration. Therefore, the entrapment of melatonin in biocompatible, biodegradable and safe nano-delivery systems can prevent its degradation in circulation; decrease its toxicity with increased half-life, enhanced pharmacokinetic profile leading to improved patient compliance. Because of this, nanoparticles have been used to deliver melatonin in multiple studies, and the present article aims to cumulatively illustrate their findings.
Collapse
Affiliation(s)
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Orjhans Street, Resalat Blvd, Urmia, Iran.
| |
Collapse
|
12
|
Patil VM, Gaurav A, Garg P, Masand N. Non-cancer to anti-cancer: investigation of human ether-a-go-go-related gene potassium channel inhibitors as potential therapeutics. J Egypt Natl Canc Inst 2021; 33:33. [PMID: 34746987 DOI: 10.1186/s43046-021-00091-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The expression of hERG K+ channels is observed in various cancer cells including epithelial, neuronal, leukemic, and connective tissue. The role of hERG potassium channels in regulating the growth and death of cancer cells include cell proliferation, survival, secretion of proangiogenic factors, invasiveness, and metastasis. METHODS In the reported study, an attempt has been made to investigate some non-cancer hERG blockers as potential cancer therapeutics using a computational drug repurposing strategy. Preliminary investigation for hERG blockers/non-blockers has identified 26 potential clinically approved compounds for further studies using molecular modeling. RESULTS The interactions at the binding pockets have been investigated along with the prioritization based on the binding score. Some of the identified potential hERG inhibitors, i.e., Bromocriptine, Darglitazone, and Troglitazone, have been investigated to derive the mechanism of cancer inhibition. CONCLUSIONS The proposed mechanism for anti-cancer properties via hERG blocking for some of the potential compounds is required to be explored using other experimental methodologies. The drug repurposing approach applied to investigate anti-cancer therapeutics may direct to provide a therapeutic solution to late-stage cancer and benefit a significant population of patients.
Collapse
Affiliation(s)
- Vaishali M Patil
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India.
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University, Jalan Menara Gading, Taman Connaught, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Priyanka Garg
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| |
Collapse
|
13
|
Mihanfar A, Yousefi B, Ghazizadeh Darband S, Sadighparvar S, Kaviani M, Majidinia M. Melatonin increases 5-flurouracil-mediated apoptosis of colorectal cancer cells through enhancing oxidative stress and downregulating survivin and XIAP. ACTA ACUST UNITED AC 2021; 11:253-261. [PMID: 34631487 PMCID: PMC8494259 DOI: 10.34172/bi.2021.36] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 05/28/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022]
Abstract
![]()
Introduction: Colorectal cancer (CRC) is one of the most lethal human malignancies with a global alarming rate of incidence. The development of resistance against common chemotherapeutics such as 5-fluorouracil (5-FU) remains a big burden for CRC therapy. Therefore, we investigated the effects of melatonin on the increasing 5-FU- mediated apoptosis and its underlying mechanism in SW-480 CRC cell line.
Methods: The effects of melatonin and 5- FU, alone or in combination, on cell proliferation were evaluated using an MTT assay. Further, Annexin-V Flow cytometry was used for determining the effects of melatonin and 5-FU on the apoptosis of SW-480 cell lines. The expression levels of Bax, Bcl-2, pro-caspase-3/activated caspase 3, X-linked inhibitor of apoptosis proteins (XIAP), and survivin were measured after 48 hours incubation with drugs. Cellular levels of reactive oxygen species (ROS), catalase, superoxide dismutase and glutathione peroxidase were also evaluated.
Results: Melatonin and 5-FU significantly decreased the cell proliferation of SW-480 cells. Combination of 5-FU with melatonin significantly decreased the IC50 value of 5-FU from 100 μM to 50 μM. Moreover, combination therapy increased intracellular levels of ROS and suppressed antioxidant enzymatic activities (P < 0.05). Treatment with either melatonin or 5-FU resulted in the induction of apoptosis in comparison to control (P > 0.05). XIAP and survivin expression levels potently decreased after combination treatment with melatonin and 5-FU (P < 0.05).
Conclusion: We demonstrated that melatonin exerts a reversing effect on the resistance to apoptosis by targeting oxidative stress, XIAP and survivin in CRC cells. Therefore, more studies need for better understanding of underlying mechanisms for beneficial effects of combination of melatonin and 5-FU.
Collapse
Affiliation(s)
- Ainaz Mihanfar
- Student Research Community, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
14
|
Chi T, Wang M, Wang X, Yang K, Xie F, Liao Z, Wei P. PPAR-γ Modulators as Current and Potential Cancer Treatments. Front Oncol 2021; 11:737776. [PMID: 34631571 PMCID: PMC8495261 DOI: 10.3389/fonc.2021.737776] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, cancer has become one of the leading causes of mortality. Peroxisome Proliferator-Activated Receptors (PPARs) is a family of critical sensors of lipids as well as regulators of diverse metabolic pathways. They are also equipped with the capability to promote eNOS activation, regulate immunity and inflammation response. Aside from the established properties, emerging discoveries are also made in PPAR's functions in the cancer field. All considerations are given, there exists great potential in PPAR modulators which may hold in the management of cancers. In particular, PPAR-γ, the most expressed subtype in adipose tissues with two isoforms of different tissue distribution, has been proven to be able to inhibit cell proliferation, induce cell cycle termination and apoptosis of multiple cancer cells, promote intercellular adhesion, and cripple the inflamed state of tumor microenvironment, both on transcriptional and protein level. However, despite the multi-functionalities, the safety of PPAR-γ modulators is still of clinical concern in terms of dosage, drug interactions, cancer types and stages, etc. This review aims to consolidate the functions of PPAR-γ, the current and potential applications of PPAR-γ modulators, and the challenges in applying PPAR-γ modulators to cancer treatment, in both laboratory and clinical settings. We sincerely hope to provide a comprehensive perspective on the prospect of PPAR-γ applicability in the field of cancer treatment.
Collapse
Affiliation(s)
- Tiange Chi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, China
| | - Mina Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Department of Acupuncture and Moxibustion, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xu Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ke Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Feiyu Xie
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Oncology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
15
|
Guo X, Qin M, Hong H, Xue X, Fang J, Jiang L, Kuang Y, Gao L. Circular RNA hsa_circ_0072309 inhibits the proliferation, invasion and migration of gastric cancer cells via inhibition of PI3K/AKT signaling by activating PPARγ/PTEN signaling. Mol Med Rep 2021; 23:349. [PMID: 33760104 PMCID: PMC7974328 DOI: 10.3892/mmr.2021.11988] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/11/2020] [Indexed: 01/17/2023] Open
Abstract
Gastric cancer (GC) is a common malignant tumor in the digestive system, which presents without specific symptoms. Circular RNAs (circRNAs) play important roles in tumor progression and cellular functions; however, the relationship between GC and hsa_circ_0072309 remains unclear. The aim of the present study was to investigate the molecular mechanisms of hsa_circ_0072309 and the role that hsa_circ_0072309 plays in proliferation, invasion and migration of GC cells. The expression of hsa_circ_0072309 was evaluated using reverse transcription-quantitative PCR. A series of functional experiments were performed to study the role that hsa_circ_0072309 has in survival and metastasis of GC cells. In the present study, hsa_circ_0072309 was downregulated in GC cell lines and its overexpression inhibited the proliferation, migration and invasion of GC cells. In addition, hsa_circ_0072309 overexpression induced activation of the peroxisome proliferator-activated receptor γ (PPARγ)/PTEN pathway and inhibition of PI3K/AKT signaling. Moreover, pioglitazone, a PPARγ agonist, strengthened the effects of abundant hsa_circ_0072309 on the proliferative, migratory and invasive capabilities of GC cells, while GW9662, a PPARγ antagonist, abolished the effects of hsa_circ_0072309 overexpression on cell proliferation, migration and invasion. The present findings suggested that hsa_circ_0072309 inhibited proliferation, invasion and migration of gastric cancer cells via the inhibition of PI3K/AKT signaling by activating the PPARγ/PTEN signaling pathway. Targeting hsa_circ_0072309 may be an innovative therapeutic strategy for the treatment of GC.
Collapse
Affiliation(s)
- Xingpo Guo
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Mingde Qin
- The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (The State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Han Hong
- Department of Hepato‑Pancreato‑Biliary Surgery, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| | - Xiaofeng Xue
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Jian Fang
- Department of General Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, Jiangsu 215600, P.R. China
| | - Linhua Jiang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Yuting Kuang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Ling Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
16
|
Schoepf AM, Salcher S, Obexer P, Gust R. Tackling resistance in chronic myeloid leukemia: Novel cell death modulators with improved efficacy. Eur J Med Chem 2021; 216:113285. [PMID: 33662676 DOI: 10.1016/j.ejmech.2021.113285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
The development of resistance poses a serious problem in the therapy of cancer due to the necessity of a multiple-drug and unlimited treatment of affected patients. In chronic myeloid leukemia (CML), the introduction of imatinib has revolutionized the therapy. The persistence of an untreatable cancer stem cell pool and other resistance-causing factors, however, also impede the cure of this malignancy. New therapeutic approaches are therefore essential to overcome current treatment drawbacks. In this regard, an intervention in the STAT5 signaling pathway can significantly improve drug response, as this central signaling node induces the formation of highly resistant CML cells. In the present study, we continued the design of efficient chemosensitizers derived from the partial PPARγ agonist telmisartan. The developed 2-carbonitriles or 2-carboxymethyl esters showed improved potency in sensitizing K562-resistant cells to imatinib treatment, even at concentrations, which are considered patient-relevant. At 5 μM, for instance, 2d sensitized the cells in such a manner that the resistance was fully overcome and the recovered efficacy of imatinib resulted in >76% cell death. Importantly, all compounds were non-cytotoxic per se. A transactivation experiment showed that only the carbonitriles are partial agonists of PPARγ, which does not seem to be involved in the mode of action. Yet, immunoassays revealed a suppression of the STAT5 phosphorylation status by co-application of the most active derivatives with imatinib. This mechanism consequently resulted in reduced cell proliferation and induction of cell death in resistant CML cells.
Collapse
Affiliation(s)
- Anna M Schoepf
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI - Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB - Centrum for Chemistry and Biomedicine, Innrain 80-82, 6020, Innsbruck, Austria; Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
| | - Stefan Salcher
- Tyrolean Cancer Research Institute, Innrain 66, 6020, Innsbruck, Austria; Department of Internal Medicine V, Medical University Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Petra Obexer
- Tyrolean Cancer Research Institute, Innrain 66, 6020, Innsbruck, Austria; Department of Pediatrics II, Medical University Innsbruck, Innrain 66, 6020, Innsbruck, Austria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI - Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB - Centrum for Chemistry and Biomedicine, Innrain 80-82, 6020, Innsbruck, Austria.
| |
Collapse
|
17
|
Mihanfar A, Darband SG, Sadighparvar S, Kaviani M, Mirza-Aghazadeh-Attari M, Yousefi B, Majidinia M. In vitro and in vivo anticancer effects of syringic acid on colorectal cancer: Possible mechanistic view. Chem Biol Interact 2021; 337:109337. [PMID: 33548266 DOI: 10.1016/j.cbi.2020.109337] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/31/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022]
Abstract
This study aimed to evaluate the in vitro effects of syringic acid on human colorectal cancer cells (SW-480) and the effect of orally administered syringic acid on in vivo models of colorectal cancer induced in rats by administration of 1,2-dimethylhydrazine (DMH). In vitro effects of syringic acid treatment on human colorectal cancer SW-480 cell lines were assessed by performing cell proliferation assay (MTT and Trypan Blue staining), apoptosis assays (TUNEL assay, Annexin-V/PI flowcytometry and lactate dehydrogenase release assay), measuring reactive oxygen species (ROS), antioxidant enzymes and DNA damage, and evaluating protein levels of proliferative genes, and autophagy markers. In vitro anti-cancer roles of syringic acid were studied in rats with DMH-induced colorectal cancer cells. The effect of orally administered syringic acid (50 mg/kg) on tumor growth and incidence was studied in four groups (n = 6) of animals injected with DMH and treated for 15 weeks. Syringic acid treatment resulted in a significant dose-dependent inhibition of cellular proliferation, induction of apoptosis through increasing cellular ROS and DNA damage levels, as well as downregulating major proliferative genes. In vivo, treatment of rats with syringic acid demonstrated a statistically significant tumor volume and incidence reduction when compared to the control. This is the first study demonstrating an in vivo growth inhibitory effect of orally administered syringic acid on colorectal tumors in rats.
Collapse
Affiliation(s)
- Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, NS, B4P 2R6, Canada
| | - Mohammad Mirza-Aghazadeh-Attari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
18
|
Abdollahzade N, Babri S, Majidinia M. Attenuation of chronic arsenic neurotoxicity via melatonin in male offspring of maternal rats exposed to arsenic during conception: Involvement of oxidative DNA damage and inflammatory signaling cascades. Life Sci 2020; 266:118876. [PMID: 33310035 DOI: 10.1016/j.lfs.2020.118876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/22/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
Prenatal exposure to arsenic is demonstrated to elevate the risk of brain damage and neurological disorders in the fetus, mainly due to its ability for crossing through the placental barriers. Increase in oxidative stress, inflammation, and DNA damage is main mechanisms of arsenic-induced neurotoxicity. Therefore, this study aimed to evaluate the neuroprotective effects of melatonin, as a potent anti-oxidant and anti-inflammatory agent against arsenic toxicity in the brains of male offspring rats. Pregnant mother rats were randomly assigned into four groups including group I, as control, group II received 10 mg/kg melatonin, group III received arsenic at 50 mg/kg, and group IV received melatonin and arsenic. After a two-month period, oxidative stress, DNA damage, inflammation and apoptosis were assessed in the male offspring rats. Exposure to arsenic significantly increased the pro-inflammatory and oxidative factors resulting in DNA damage and apoptosis in the brain tissues of offspring rats in comparison to controls (p < 0.05). Exogenous administration of melatonin showed a significant increase in the tissue levels of acetylcholine esterase, decrease in the lactate dehydrogenase and myeloperoxidase, when compared to arsenic group (p < 0.05). Melatonin also overcame the arsenic-induced oxidative stress and suppressed inflammation, DNA damage and apoptosis. Our results suggested that melatonin may be a promising neuro-protective agent and momentous therapy for the treatment of arsenic-toxicity in clinical conditions.
Collapse
Affiliation(s)
- Naseh Abdollahzade
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Babri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
19
|
Shi X, Valizadeh A, Mir SM, Asemi Z, Karimian A, Majidina M, Safa A, Yosefi B. miRNA-29a reverses P-glycoprotein-mediated drug resistance and inhibits proliferation via up-regulation of PTEN in colon cancer cells. Eur J Pharmacol 2020; 880:173138. [DOI: 10.1016/j.ejphar.2020.173138] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022]
|
20
|
Sadighparvar S, Darband SG, Yousefi B, Kaviani M, Ghaderi-Pakdel F, Mihanfar A, Babaei G, Mobaraki K, Majidinia M. Combination of quercetin and exercise training attenuates depression in rats with 1,2-dimethylhydrazine-induced colorectal cancer: Possible involvement of inflammation and BDNF signalling. Exp Physiol 2020; 105:1598-1609. [PMID: 32681548 DOI: 10.1113/ep088605] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the alleviative effects of the combination of exercise training and quercetin supplementation on colorectal cancer-related depression in rats with 1,2-dimethylhydrazine-induced colorectal cancer and what is the corresponding signalling pathway? What is the main finding and its importance? We showed that the combination of exercise training and quercetin supplementation resulted in a significant decrease in tumour incidence and improvement in depressive-like behaviours through modulation of the BDNF/TrKβ/β-catenin axis in the prefrontal cortex. ABSTRACT In addition to physical problems, depression is considered to be one of the most important challenges for patients with various types of cancers, particularly colorectal cancer. Inflammation and upregulation of brain neurotrophic factors are two major links between cancer and depression. In this study, we aimed to evaluate the alleviative effects of quercetin and exercise training on depressive-like behaviours in rats with 1,2-dimethylhydrazine (DMH)-induced colorectal cancer and to investigate the underlying mechanisms. Animals were assigned into the following five groups: (i) control group; (ii) DMH (20 mg kg-1 s.c., once a week for 10 weeks); (iii) DMH for 10 weeks, followed by quercetin (50 mg kg-1 p.o., once per week) for 12 weeks; (iv) DMH for 10 weeks, followed by exercise training for 12 weeks; and (v) DMH for 10 weeks, followed by quercetin and exercise training for 12 weeks. The DMH-treated rats showed an increase in depressive-like behaviours in both open field and forced swimming tests. Histopathological examination revealed neural damage and reduced Nissl bodies in the prefrontal cortex. In addition, administration of DMH increased inflammatory cytokines in the serum, prefrontal cortex and tumour tissues and decreased the expression levels of brain-derived neurotrophic factor (BDNF), tyrosine kinase β receptor (TrKβ) and β-catenin in the cortex. In contrast, treatment with quercetin and exercise training effectively alleviated all the above-mentioned DMH-associated behavioural, biochemical and histopathological alterations without changing its anti-tumour activity. Taken together, our results show that the combination of quercetin and exercise training exerts potent anti-tumour and anti-depressive effects through suppression of inflammation and upregulation of the BDNF/TrKβ/β-catenin axis in the prefrontal cortex.
Collapse
Affiliation(s)
- Shirin Sadighparvar
- Student Research Community, Urmia University of Medical Sciences, Urmia, Iran.,Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Ainaz Mihanfar
- Department of Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Ghader Babaei
- Department of Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Kazhal Mobaraki
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
21
|
Babaei-Kouchaki S, Babapour V, Panahi N, Badalzadeh R. Effect of troxerutin on oxidative stress and expression of genes regulating mitochondrial biogenesis in doxorubicin-induced myocardial injury in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1187-1195. [PMID: 31960154 DOI: 10.1007/s00210-020-01818-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022]
Abstract
Because of limitation of doxorubicin (DOX) clinical application in chemotherapy due to its cardiotoxicity, finding new strategies to reduce DOX challenge and improve patients' outcomes is crucial. Due to positive cardiovascular impacts of troxerutin (TXR), here we have investigated the effect of TXR on DOX-induced cardiotoxicity by evaluating the myocardial oxidative stress and expression of genes regulating mitochondrial biogenesis. Male Wistar rats (250-300 g) were randomly allocated into four groups: control, TXR, DOX, and TXR + DOX. Troxerutin (150 mg/kg) was orally administrated once a day through a gavage tube for 4 weeks before DOX challenge. The TXR-treated and time-matched control rats received intraperitoneal injection of DOX (20 mg/kg). Three days after DOX challenge, the left ventricular samples were obtained to determine the expression of genes regulating mitochondrial biogenesis via real-time PCR. Myocardial creatine kinase (CK-mB), oxidative stress markers, and mitochondrial function (generation of reactive oxygen species or ROS and ATP levels) were also evaluated using commercial kits and spectrophotometric and fluorometric methods. DOX administration significantly increased the levels of CK-mB, malondialdehyde (MDA), and mitochondrial ROS levels, while reduced the cellular ATP production and expression levels of SIRT-1, PGC-1α, and NRF-2 as well as superoxide dismutase, glutathione peroxidase, and catalase activity in comparison to control group (P < 0.05 to P < 0.01). Pretreatment of DOX-received rats with TXR significantly upregulated the expression of all biogenesis genes and antioxidant enzymes with non-significant effect on catalase activity, and significantly reduced CK-mB and MDA levels toward control values (P < 0.05 to P < 0.01). Mitochondrial ROS and ATP levels were also restored significantly by pretreatment with TXR (P < 0.05). The data suggested that preconditioning of rats with TXR had protective effect on DOX-induced cardiotoxicity through inducing antioxidative properties and restoring the mitochondrial function and the expression profiles of myocardial SIRT-1/PGC-1α/NRF-2 network.
Collapse
Affiliation(s)
- Sara Babaei-Kouchaki
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahab Babapour
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Negar Panahi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Reza Badalzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, and Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Mirza-Aghazadeh-Attari M, Reiter RJ, Rikhtegar R, Jalili J, Hajalioghli P, Mihanfar A, Majidinia M, Yousefi B. Melatonin: An atypical hormone with major functions in the regulation of angiogenesis. IUBMB Life 2020; 72:1560-1584. [PMID: 32329956 DOI: 10.1002/iub.2287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), a pleotropic molecule with a wide distribution, has received considerable attention in recent years, mostly because of its various major effects on tissues or cells since it has both receptor-dependent and receptor-independent actions over a wide range of concentrations. These biological and physiological functions of melatonin include regulation of circadian rhythms by modulating the expression of core oscillator genes, scavenging the reactive oxygen species and reactive nitrogen species, modulating the immune system and inflammatory response, and exerting cytoprotective and antiapoptotic effects. Given the multiple critical roles of melatonin, dysregulation of its production or any disruption in signaling through its receptors may have contributed in the development of a wide range of disorders including type 2 diabetes, aging, immune-mediated diseases, hypertension, and cancer. Herein, we focus on the modulatory effects of melatonin on angiogenesis and its implications as a therapeutic strategy in cancer and related diseases.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Reza Rikhtegar
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Jalili
- Radiology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hajalioghli
- Radiology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ainaz Mihanfar
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Bahrambeigi S, Molaparast M, Sohrabi F, Seifi L, Faraji A, Fani S, Shafiei-Irannejad V. Targeting PPAR ligands as possible approaches for metabolic reprogramming of T cells in cancer immunotherapy. Immunol Lett 2020; 220:32-37. [PMID: 31982460 DOI: 10.1016/j.imlet.2020.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/02/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022]
Abstract
Despite the prominent progress in understanding cancer immunosurveillance mechanisms, there are some types of problems which have been identified to hinder effective and successful immunotherapy of cancers. Such problems have been ascribed to the tumor abilities in the creation of a tolerant milieu that can impair immune responses against cancer cells. In the present study, we represent possible approaches for metabolic reprogramming of T cells in cancer immunotherapy to overcome tumor metabolic impositions on immune responses against cancer cells. Metabolic suppression of effector immune cells in tumor milieu is one of the important strategies recruited by tumor cells to escape from immunogenic cell death. We have investigated the metabolic reprogramming of T cells as a method and a possible new target for cancer immunotherapy. Synergic effects of PPAR ligands in immunotherapy of cancers on the metabolic reprogramming of T cells have been noticed by several studies as a new target of cancer immunotherapy. The current wealth of data like this promises a future scenario which the consideration of metabolic restriction in the tumor microenvironment and administration of therapeutic agents such as PPAR ligands to overcome metabolic restrictions on T cells (refreshing their functionality) may be effective and enhance the accountability and efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Saman Bahrambeigi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Molaparast
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Farahnaz Sohrabi
- Department of Clinical Biochemistry, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Lachin Seifi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Faraji
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Saba Fani
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
24
|
Abolghasemi M, Tehrani SS, Yousefi T, Karimian A, Mahmoodpoor A, Ghamari A, Jadidi-Niaragh F, Yousefi M, Kafil HS, Bastami M, Edalati M, Eyvazi S, Naghizadeh M, Targhazeh N, Mihanfar A, Yousefi B, Safa A, Majidinia M, Rameshknia V. Critical roles of long noncoding RNAs in breast cancer. J Cell Physiol 2020; 235:5059-5071. [PMID: 31951025 DOI: 10.1002/jcp.29442] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022]
Abstract
Breast cancer is a major clinical challenge that affects a wide range of the female population and heavily burdens the health system. In the past few decades, attempts have been made to understand the etiology of breast cancer, possible environmental risk factors, and the genetic predispositions, pathogenesis, and molecular aberrations involved in the process. Studies have shown that breast cancer is a heterogeneous entity; each subtype has its specific set of aberrations in different cell signaling pathways, such as Notch, Wnt/β-catenin, transforming growth factor-β, and mitogen-activated protein kinase pathways. One novel group of molecules that have been shown to be inducted in the regulation of multiple cell signaling pathways is the long noncoding RNAs (lncRNAs). These molecules have important implications in the regulation of multiple signaling pathways by interacting with various genes, affecting the transcription process, and finally, playing roles in posttranslational control of these genes. There is growing evidence that lncRNAs are involved in the process of breast cancer formation by effecting the aforementioned signaling pathways, and that this involvement can have significant diagnostic and prognostic values in clinical contexts. The present review aims to elicit the significance of lncRNAs in the regulation of cell signaling pathways, and the resulting changes in cell survival, proliferation, and invasion, which are the hallmarks of breast cancer.
Collapse
Affiliation(s)
- Maryam Abolghasemi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Sadra S Tehrani
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ata Mahmoodpoor
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Ghamari
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein S Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Edalati
- Department of Laboratory Sciences, Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Naghizadeh
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ainaz Mihanfar
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Rameshknia
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
25
|
Mrowka P, Glodkowska-Mrowka E. PPARγ Agonists in Combination Cancer Therapies. Curr Cancer Drug Targets 2019; 20:197-215. [PMID: 31814555 DOI: 10.2174/1568009619666191209102015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/03/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear receptor acting as a transcription factor involved in the regulation of energy metabolism, cell cycle, cell differentiation, and apoptosis. These unique properties constitute a strong therapeutic potential that place PPARγ agonists as one of the most interesting and widely studied anticancer molecules. Although PPARγ agonists exert significant, antiproliferative and tumoricidal activity in vitro, their anticancer efficacy in animal models is ambiguous, and their effectiveness in clinical trials in monotherapy is unsatisfactory. However, due to pleiotropic effects of PPARγ activation in normal and tumor cells, PPARγ ligands interact with many antitumor treatment modalities and synergistically potentiate their effectiveness. The most spectacular example is a combination of PPARγ ligands with tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML). In this setting, PPARγ activation sensitizes leukemic stem cells, resistant to any previous form of treatment, to targeted therapy. Thus, this combination is believed to be the first pharmacological therapy able to cure CML patients. Within the last decade, a significant body of data confirming the benefits of the addition of PPARγ ligands to various antitumor therapies, including chemotherapy, hormonotherapy, targeted therapy, and immunotherapy, has been published. Although the majority of these studies have been carried out in vitro or animal tumor models, a few successful attempts to introduce PPARγ ligands into anticancer therapy in humans have been recently made. In this review, we aim to summarize shines and shadows of targeting PPARγ in antitumor therapies.
Collapse
Affiliation(s)
- Piotr Mrowka
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Eliza Glodkowska-Mrowka
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland.,Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| |
Collapse
|
26
|
Ghazizadeh Darband S, Saboory E, Sadighparvar S, Kaviani M, Mobaraki K, Jabbari N, Majidinia M. The modulatory effects of exercise on the inflammatory and apoptotic markers in rats with 1,2-dimethylhydrazine-induced colorectal cancer. Can J Physiol Pharmacol 2019; 98:147-155. [PMID: 31614098 DOI: 10.1139/cjpp-2019-0329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study aimed to investigate the underlying mechanisms in anti-tumorigenesis effects of exercise through evaluation of inflammation and apoptosis. Twenty-four Wistar rats were divided into control, exercise, 1,2-dimethylhydrazine (DMH), and DMH + exercise. After a week, rats in the DMH group were given DMH twice a week for 2 weeks. Animals in the exercise groups performed exercise on a treadmill 5 days/week for 8 weeks. After 8 weeks of training, levels of COX-2, PCNA, Bax, Bcl-2, and procaspase-3/cleaved caspase-3 were assessed. Histological changes, number of aberrant crypt foci (ACF), and serum levels of TNF-α and IL-6 were also analyzed. ACF number was significantly decreased following the exercise program. Protein levels of COX-2 and PCNA and serum levels of IL-6 and TNF-α were significantly elevated in the rats receiving DMH and downregulated after performing the exercise program (P < 0.05). Exercise upregulated apoptosis, which was evident from the increased Bax/Bcl2 ratio, and enhanced the expression levels of activated caspase-3 as compared to the DMH group. The colonic architecture was improved in DMH + exercise. Exercise can effectively attenuate DMH-induced increase of inflammatory markers. Exercise induces apoptosis at the downstream of the inflammatory response. Therefore, exercise may play a role as a moderator of inflammation to exert protective effects against colon cancer.
Collapse
Affiliation(s)
| | - Ehsan Saboory
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Kazhal Mobaraki
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Nasrollah Jabbari
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
27
|
Valizadeh A, Majidinia M, Samadi-Kafil H, Yousefi M, Yousefi B. The roles of signaling pathways in liver repair and regeneration. J Cell Physiol 2019; 234:14966-14974. [PMID: 30770551 DOI: 10.1002/jcp.28336] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/23/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
The liver has remarkable regeneration potency that restores liver mass and sustains body hemostasis. Liver regeneration through signaling pathways following resection or moderate damages are well studied. Various cell signaling, growth factors, cytokines, receptors, and cell types implicated in liver regeneration undergo controlled hypertrophy and proliferation. Some aspects of liver regeneration have been discovered and many investigations have been carried out to identify its mechanisms. However, for optimizing liver regeneration more should be understood about mechanisms that control the growth of hepatocytes and other liver cell types in adults. The current paper deals with the possible applicability of liver regeneration signaling pathways as a target for therapeutic approaches and preventing various liver damages. Furthermore, the latest findings of spectrum-specific signaling pathway mechanisms that underlie liver regeneration are briefly described.
Collapse
Affiliation(s)
- Amir Valizadeh
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Samadi-Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Zhou X, Wu X, Chen B. Sorcin: a novel potential target in therapies of cancers. Cancer Manag Res 2019; 11:7327-7336. [PMID: 31496794 PMCID: PMC6689139 DOI: 10.2147/cmar.s208677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/05/2019] [Indexed: 12/14/2022] Open
Abstract
Soluble resistance-related calcium-binding protein (sorcin) is a member of the penta-EF-hand protein family. Sorcin is widely distributed in normal human tissues, such as the brain, heart, lymphocytes, kidneys, breast and skin. Findings suggest that sorcin is associated with the regulation of calcium homeostasis, cell cycle and vesicle trafficking. It has been reported that many types of non-neoplastic diseases such as diabetes, viral infection, infertility, and nervous system diseases were affected by the expression of sorcin. One of the main issues is the role of sorcin in neoplastic diseases. Research proved that sorcin can be found to overexpress in cells of several cancers, particularly in the case of multidrug-resistant cancers. Additionally, the researchers proposed that the expression of sorcin was significantly associated with the foundation of multidrug resistance (MDR). All the findings mentioned above emphasized the importance of studying sorcin. This review mainly includes the following aspects: functions of sorcin, role in non-neoplastic and neoplastic diseases, and research related to drugs. To sum up, sorcin is a potential novel target to be studied to deal with MDR.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Xue Wu
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
29
|
Di-(2-ethylhexyl)-phthalate induces apoptosis via the PPARγ/PTEN/AKT pathway in differentiated human embryonic stem cells. Food Chem Toxicol 2019; 131:110552. [PMID: 31163220 DOI: 10.1016/j.fct.2019.05.060] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 02/04/2023]
Abstract
[OBJECTIVE]: Di(2-ethylhexyl) phthalate (DEHP), a widely used plasticizer, may act as an endocrine disruptor and cause developmental toxicity. Differentiated human embryonic stem cells (hESCs) were used to investigate the underlying mechanism of the embryotoxicity induced by DEHP. [Materials and Methods] H9-hESCs were treated with DEHP at different concentrations for 10 days, and the cytotoxicity of DEHP on cell proliferation was determined using a cell-microelectronic sensing technique (Real-Time Cellular Analysis: RTCA). Based on the 50% inhibitory proliferation concentration (IC50), differentiated H9-hESCs were treated with DEHP at 0, 50, 100, and 200 μg/ml for 120 h, followed by measurement of its toxic effects on the transcriptome by mRNA microarray and QuantiGene Plex (QGP). Proteins were detected by the iTRAQ-based proteomics method and the proteins related to the PPARγ/PTEN/Akt pathways were measured by western blotting. The progression of the cell cycle and apoptosis were characterized using flow cytometry (FCM). In other experiments, hESCs were pre-treated with GW9662 (20 μM), a specific PPARγ inhibitor, for 30 min, followed by exposure to GW9662 (20 μM) and DEHP (200 μg/ml) for 120 h to observe the underlying mechanism of DEHP's embryotoxicity. [RESULTS]: DEHP inhibited H9-hESC cell proliferation in a dose-dependent manner, with an IC50 of 165.78 μg/ml. FCM results showed that DEHP could markedly induce cell cycle arrest and increase apoptosis. Gene microarray and QPG array analyses indicated that the peroxisome proliferator-activated receptor γ (PPARγ) was an apparent target for DEHP. We further demonstrated that DEHP could activate the PPARγ and upregulate the expression of PTEN downstream genes, and then play a negative role in the AKT signaling pathway. Cells pretreated with PPARγ inhibitor, GW9662, were shown to restore the effect of DEHP on the PPARγ/PTEN/AKT signaling pathway, and induce the recovery of cell cycle arrest and apoptosis. [CONCLUSION]: DEHP inhibited cell proliferation, promoted cell cycle arrest, and induced apoptosis through the PPARγ/PTEN/AKT signaling pathway in differentiated human embryonic stem cells. It suggested that DEHP exposure possibly cause reproductive or developmental toxicity in humans through the PPARγ signaling pathway.
Collapse
|
30
|
Abstract
Acute myeloid leukemia (AML) is a kind of malignant hematopoietic system disease characterized by abnormal proliferation, poor cell differentiation, and infiltration of bone marrow, peripheral blood, or other tissues. To date, the first-line treatment of AML is still based on daunorubicin and cytosine arabinoside or idarubicin and cytosine arabinoside regimen. However, the complete remission rate of AML is still not optimistic, especially in elderly patients, and the recurrence rate after complete remission is still high. The resistance of leukemia cells to chemotherapy drugs becomes the main obstacle in the treatment of AML. At present, the research on the mechanisms of drug resistance in AML is very active. This article will elaborate on the main mechanisms of drug resistance currently being studied, including drug resistance-related proteins and enzymes, gene alterations, micro RNAs, and signal pathways.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China,
| | - Yan Gu
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China,
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China,
| |
Collapse
|
31
|
Karimian A, Azizian K, Parsian H, Rafieian S, Shafiei‐Irannejad V, Kheyrollah M, Yousefi M, Majidinia M, Yousefi B. CRISPR/Cas9 technology as a potent molecular tool for gene therapy. J Cell Physiol 2019; 234:12267-12277. [PMID: 30697727 DOI: 10.1002/jcp.27972] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/19/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences Babol Iran
- Cancer & Immunology Research Center, Kurdistan University of Medical Sciences Sanandaj Iran
- Student Research Committee, Babol University of Medical Sciences Babol Iran
| | - Khalil Azizian
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Science Tabriz Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences Babol Iran
| | - Sona Rafieian
- Department of Oral and Maxillofacial Pathology School of Dentistry, Zanjan University of Medical Sciences Zanjan Iran
| | | | - Maryam Kheyrollah
- Department of Molecular Medicine National Institue of Genetic Engeneering and Biotechnology Tehran Iran
| | - Mehdi Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Maryam Majidinia
- Tumor Research Center, Urmia University of Medical Sciences Urmia Iran
| | - Bahman Yousefi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences Tehran Iran
- Department of Biochemistry and Clinical Laboratories Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| |
Collapse
|
32
|
53BP1: A key player of DNA damage response with critical functions in cancer. DNA Repair (Amst) 2019; 73:110-119. [DOI: 10.1016/j.dnarep.2018.11.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
|
33
|
Karimian A, Mir SM, Parsian H, Refieyan S, Mirza-Aghazadeh-Attari M, Yousefi B, Majidinia M. Crosstalk between Phosphoinositide 3-kinase/Akt signaling pathway with DNA damage response and oxidative stress in cancer. J Cell Biochem 2018; 120:10248-10272. [PMID: 30592328 DOI: 10.1002/jcb.28309] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/28/2018] [Indexed: 12/28/2022]
Abstract
The phosphatidylinositol 3-kinases (PI3K)/Akt signaling pathway is one of the well-characterized and most important signaling pathways activated in response to DNA damage. This review discusses the most recent discoveries on the involvement of PI3K/Akt signaling pathway in cancer development, as well as stimulation of some important signaling networks involved in the maintenance of cellular homeostasis upon DNA damage, with an exploration of how PI3K/Akt signaling pathway contributes to the regulation of modulators and effectors underlying DNA damage response, the intricate, protein-based signal transduction network, which decides between cell cycle arrest, DNA repair, and apoptosis, the elimination of irreparably damaged cells to maintain homeostasis. The review continues by looking at the interplay between cell cycle checkpoints, checking the repair of damage inflicted to the DNA before entering DNA replication to facilitate DNA synthesis, and PI3K/Akt signaling pathway. We then investigate the challenges the cells overcome to ameliorate damages induced by oxidative activities, for example, the recruitment of many pathways and factors to maintain integrity and hemostasis. Finally, the review provides a discussion of how cells use the PI3K/Akt signaling pathway to regulate the balance between these networks.
Collapse
Affiliation(s)
- Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Cancer & Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Sayed Mostafa Mir
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Cancer & Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sona Refieyan
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Mirza-Aghazadeh-Attari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
34
|
Ghasemi A, Khanzadeh T, Zadi Heydarabad M, Khorrami A, Jahanban Esfahlan A, Ghavipanjeh S, Gholipour Belverdi M, Darvishani Fikouhi S, Darbin A, Najafpour M, Azimi A. Evaluation of BAX and BCL-2 Gene Expression and Apoptosis Induction in Acute Lymphoblastic Leukemia Cell Line CCRFCEM after High- Dose Prednisolone Treatment. Asian Pac J Cancer Prev 2018; 19:2319-2323. [PMID: 30141309 PMCID: PMC6171400 DOI: 10.22034/apjcp.2018.19.8.2319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Objective: Glucocorticoids are one of the most important drugs in the treatment of acute lymphoblastic leukemia
for children. It is very important to response to glucocorticoid in the prognosis of these patients. Therefore, resistance
to treatment is a major problem in lymphoid leukemia cases. In, this study, CCRF-CEM cell line was selected as a
chemotherapy-resistant model. The aim of this study was to evaluate the effect of high dose prednisolone on induction
of apoptosis and changes in BAX and BCL-2 gene expression at different times. Methods: CCRF-CEM cell lines were
grown in standard conditions. Based on previous studies, a dose of 700 μM as subtoxic dose was selected. Changes in
gene expression of BAX and BCL-2 were evaluated by using real time PCR techniques. Also stained with annexin V
and the induction of apoptosis was assessed by FACS machine. Results: In this study it was found that prednisolone in
high doses at different times significantly increased the gene expression of BAX and on the other hand the amount of
BCL-2 expression was reduced. Cells that treated for 48 hours had more significant changes in gene expression. Based
on flowcytometry data, prednisolone can induce apoptosis in a time dependent manner on this cancerous resistant cell
line. Conclusions: Apoptosis induced by high-dose prednisolone in the CCRF-CEM cells, which is almost resistant,
and possibly mediated by reducing the expression of BCL-2 and BAX up-regulation.
Collapse
Affiliation(s)
- Amin Ghasemi
- Student Research Committee, Maragheh University of Medical Sciences, Maragheh, Iran.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Majidinia M, Darband SG, Kaviani M, Nabavi SM, Jahanban-Esfahlan R, Yousefi B. Cross-regulation between Notch signaling pathway and miRNA machinery in cancer. DNA Repair (Amst) 2018; 66-67:30-41. [PMID: 29723707 DOI: 10.1016/j.dnarep.2018.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
Abstract
Despite their simple structure, the Notch family of receptors regulates a wide-spectrum of key cellular processes including development, tissue patterning, cell-fate determination, proliferation, differentiation and, cell death. On the other hand, accumulating date pinpointed the role of non-coding microRNAs, namely miRNAs in cancer initiation/progression via regulating the expression of multiple oncogenes and tumor suppressor genes, as such the Notch signaling. It is now documented that these two partners are in one or in the opposite directions and rule together the cancer fate. Here, we review the current knowledge relevant to this tricky interplay between different miRNAs and components of Notch signaling pathway. Further, we discuss the implication of this crosstalk in cancer progression/regression in the context of cancer stem cells, tumor angiogenesis, metastasis and emergence of multi-drug resistance. Understanding the molecular cues and mechanisms that occur at the interface of miRNA and Notch signaling would open new avenues for development of novel and effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh Darband
- Danesh Pey Hadi Co., Health Technology Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rana Jahanban-Esfahlan
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
36
|
Azimi A, Majidinia M, Shafiei-Irannejad V, Jahanban-Esfahlan R, Ahmadi Y, Karimian A, Mir SM, Karami H, Yousefi B. Suppression of p53R2 gene expression with specific siRNA sensitizes HepG2 cells to doxorubicin. Gene 2018; 642:249-255. [DOI: 10.1016/j.gene.2017.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/25/2017] [Accepted: 11/02/2017] [Indexed: 01/04/2023]
|