1
|
Wang H, Liu F, Wu X, Zhu G, Tang Z, Qu W, Zhao Q, Huang R, Tian M, Fang Y, Jiang X, Tao C, Gao J, Liu W, Zhou J, Fan J, Wu D, Shi Y. Cancer-associated fibroblasts contributed to hepatocellular carcinoma recurrence and metastasis via CD36-mediated fatty-acid metabolic reprogramming. Exp Cell Res 2024; 435:113947. [PMID: 38301989 DOI: 10.1016/j.yexcr.2024.113947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are the main components in the tumor microenvironment. Tumors activate fibroblasts from quiescent state into activated state by secreting cytokines, and activated CAFs may in turn promote tumor progression and metastasis. Therefore, studies targeting CAFs could enrich the therapeutic options for tumor treatment. In this study, we demonstrate that the content of lipid droplets and the expression of autophagosomes were higher in CAFs than in peri-tumor fibroblasts (PTFs), which was inhibited by 5-(tetradecyloxy)-2-furoic acid(TOFA). The expression of CD36 in CAFs was higher than that in PTFs at both mRNA and protein levels. Inhibition of CD36 activity using either the CD36 inhibitor SSO or siRNA had a significant negative impact on the proliferation and migration abilities of CAFs, which was associated with reduced levels of relevant activated genes (α-SMA, FAP, Vimentin) and cytokines (IL-6, TGF-β and VEGF-α). SSO also inhibited HCC growth and tumorigenesis in nude mice orthotopically implanted with CAFs and HCC cells. Our data further show that CD36+CAFs affected the expression of PD-1 in CTLs leading to CTL exhaustion, and that patients with high CD36 expression in CAFs were correlated with shorter overall survival (OS). Together, our data demonstrate that CAFs were active in lipid metabolism with increased lipid content and lipophagy activity. CD36 may play a key role in the regulation of the biological behaviors of CAFs, which may influence the proliferation and migration of tumor cells by reprograming the lipid metabolism in tumor cells. Thus, CD36 could be an effective therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Han Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Department of General Surgery, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Fangming Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Xiaoling Wu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Guiqi Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Zheng Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Weifeng Qu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Qianfu Zhao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Run Huang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengxin Tian
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Fang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Xifei Jiang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenyang Tao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Weiren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China.
| | - Duojiao Wu
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yinghong Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Liao Y, Li R, Pei J, Zhang J, Chen B, Dong H, Feng X, Zhang H, Shang Y, Sui L, Kong Y. Melatonin suppresses tumor proliferation and metastasis by targeting GATA2 in endometrial cancer. J Pineal Res 2024; 76:e12918. [PMID: 37814536 DOI: 10.1111/jpi.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023]
Abstract
Endometrial cancer (EC) is a reproductive system disease that occurs in perimenopausal and postmenopausal women. However, its etiology is unclear. Melatonin (MT) has been identified as a therapeutic agent for EC; however, its exact mechanism remains unclear. In the present study, we determined that GATA-binding protein 2 (GATA2) is expressed at low levels in EC and regulated by MT. MT upregulates the expression of GATA2 through MT receptor 1A (MTNR1A), whereas GATA2 can promote the expression of MTNR1A by binding to its promoter region. In addition, in vivo and in vitro experiments showed that MT inhibited the proliferation and metastasis of EC cells by upregulating GATA2 expression. The protein kinase B (AKT) pathway was also affected. In conclusion, these findings suggest that MT and GATA2 play significant roles in EC development.
Collapse
Affiliation(s)
- Yangyou Liao
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ruiling Li
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jingyuan Pei
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Juan Zhang
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Bo Chen
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Haojie Dong
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaoyu Feng
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hongshuo Zhang
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yuhong Shang
- Department of Gynecology, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Linlin Sui
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ying Kong
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Yehya A, Ghamlouche F, Zahwe A, Zeid Y, Wakimian K, Mukherji D, Abou-Kheir W. Drug resistance in metastatic castration-resistant prostate cancer: an update on the status quo. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:667-690. [PMID: 36176747 PMCID: PMC9511807 DOI: 10.20517/cdr.2022.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022]
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related morbidity and mortality in men globally. Despite improvements in the diagnosis and treatment of PCa, a significant proportion of patients with high-risk localized disease and all patients with advanced disease at diagnosis will experience progression to metastatic castration-resistant prostate cancer (mCRPC). Multiple drugs are now approved as the standard of care treatments for patients with mCRPC that have been shown to prolong survival. Although the majority of patients will respond initially, primary and secondary resistance to these therapies make mCRPC an incurable disease. Several molecular mechanisms underlie the development of mCRPC, with the androgen receptor (AR) axis being the main driver as well as the key drug target. Understanding resistance mechanisms is crucial for discovering novel therapeutic strategies to delay or reverse the progression of the disease. In this review, we address the diverse mechanisms of drug resistance in mCRPC. In addition, we shed light on emerging targeted therapies currently being tested in clinical trials with promising potential to overcome mCRPC-drug resistance.
Collapse
Affiliation(s)
- Amani Yehya
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- Equally contributing authors
| | - Fatima Ghamlouche
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- Equally contributing authors
| | - Amin Zahwe
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- Equally contributing authors
| | - Yousef Zeid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Kevork Wakimian
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Deborah Mukherji
- Division of Hematology/Oncology, Faculty of Medicine, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
8
|
Zhao X, Liu Z, Shen J, Yong L, Xia Y, Bian M. microRNA-196a Overexpression Inhibits Apoptosis in Hemin-Induced K562 Cells. DNA Cell Biol 2020; 39:235-243. [PMID: 31913716 DOI: 10.1089/dna.2019.5061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
microRNAs (miRNAs) have a crucial role in erythropoiesis. However, the understanding of the apoptosis of erythroid lineage remains poorly understood. Hence, an additional examination is required. K562 cell lines can be differentiated into early erythrocytes by hemin and the model of early erythrocytes can be established, consequently. miR-196a has been proven to take part in antiapoptosis in many cell lines. However, the role of miR-196a associated with the apoptosis in hemin-induced K562 cells remains unclear. To study the potential function of miR-196a involved in the common progenitor of erythroblasts, miR-196a mimics and microRNA-small hairpin negative control (miRNA-ShNC) were transfected into hemin-induced K562 cells with lentiviruses. After that, the viability of the transfected hemin-induced K562 cells was tested by CCK-8 assay, and the alteration of cell cycle and apoptosis rate were detected by flow cytometry. Furthermore, bioinformatics and dual-luciferase report system verified that p27kip1 is a target gene of miR-196a. Additionally, the expression of some proteins associated with cell cycle and apoptosis was tested by Western blotting assays. It was found that after overexpressing miR-196a, the proliferation of hemin-induced K562 cells was promoted while the apoptosis inhibited. Furthermore, miR-196a combines with the 3'UTR of p27kip1 directly. Additionally, the relationship between miR-196a and the protein level of p27kip1 is negative. After restoring the expression of p27kip1, the growth rate of hemin-induced K562 cells was not as high as before and the inhibition of apoptosis was alleviated. The present study validates that miR-196a overexpression inhibits apoptosis in hemin-induced K562 cells through downregulating p27kip1.
Collapse
Affiliation(s)
- Xingyun Zhao
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenfei Liu
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jijia Shen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Hefei, China
| | - Liang Yong
- Institute and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanyuan Xia
- Medical Genetics Center, Anhui Women and Child Health Care Hospital, Hefei, China
| | - Maohong Bian
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|