1
|
Wang T, Liu J, Luo Y, Yu B, Kong X, Zheng P, Huang Z, Mao X, Yu J, Luo J, Yan H, He J. Combined effects of host genetics and diet on porcine intestinal fungi and their pathogenic genes. Front Microbiol 2023; 14:1192288. [PMID: 37822749 PMCID: PMC10563851 DOI: 10.3389/fmicb.2023.1192288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
As research on gut microbes progresses, it becomes increasingly clear that a small family of microbiota--fungi, plays a crucial role in animal health. However, little is known about the fungal composition in the pig intestine, especially after a dietary fiber diet and hybrid genetics, and the changes in host pathogenicity-associated genes they carry. The purpose of this study is to investigate the effects of diet and genetics on the diversity and structure of porcine intestinal fungi and to describe, for the first time, the host pathogenicity-related genes carried by porcine intestinal fungi. Samples of colonic contents were collected for metagenomic analysis using a 3 × 2 parsing design, where three pig breeds (Taoyuan, Duroc, and crossbred Xiangcun) were fed high or low fiber diets (n = 10). In all samples, we identified a total of 281 identifiable fungal genera, with Ascomycota and Microsporidia being the most abundant fungi. Compared to Duroc pigs, Taoyuan and Xiangcun pigs had higher fungal richness. Interestingly, the fiber diet significantly reduced the abundance of the pathogenic fungus Mucor and significantly increased the abundance of the fiber digestion-associated fungus Neocallimastix. Pathogenic fungi exert their pathogenicity through the genes they carry that are associated with host pathogenicity. Therefore, we obtained 839 pathogenicity genes carried by the spectrum of fungi in the pig intestine by comparing the PHI-base database. Our results showed that fungi in the colon of Taoyuan pigs carried the highest abundance of different classes of host pathogenicity-related genes, and the lowest in Duroc pigs. Specifically, Taoyuan pigs carried high abundance of animal pathogenicity-related genes (CaTUP1, CPAR2_106400, CaCDC35, Tfp1, CaMNT2), and CaTUP1 was the key gene for Candida pathogenicity. The intestinal fungal composition of crossbred Xiangcun pigs and the abundance of host pathogenicity-associated genes they carried exhibited a mixture of characteristics of Taoyuan and Duroc pigs. In conclusion, our results provide the first comprehensive report on the effects of dietary fiber and genetics on the composition of intestinal fungi and the host-associated pathogenicity genes they carry in pigs. These findings provide a reference for subsequent pig breeding and development of anti-pathogenic fungal drugs.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Jiahao Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Xiangfeng Kong
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, China
| |
Collapse
|
2
|
Rasche BL, Tucker SM, Linder K, Harrison TM, Negrão Watanabe TT. Case Report: Pulmonary Conidiobolomycosis in a Vietnamese Pot-Bellied Pig. Front Vet Sci 2022; 8:799641. [PMID: 34988143 PMCID: PMC8720767 DOI: 10.3389/fvets.2021.799641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
An adult castrated male Vietnamese pot-bellied pig had a 1-week history of acute dyspnea and lethargy. Minimal diagnostic testing was authorized by the owner, resulting in treatment with a third-generation cephalosporin and a non-steroidal anti-inflammatory drug. Partial improvement was observed after a week; however, the pig died 2 weeks after the initial onset of clinical signs. Macroscopically, ~90% of the left lung was effaced by large masses with a caseonecrotic center. Histologic examination revealed eosinophilic granulomas with myriad, intralesional, negatively staining hyphae highlighted by "sleeves" of hypereosinophilic material (Splendore-Hoeppli material). Infection with an oomycete or "zygomycete" (i.e., organisms of the order Entomophthorales or Mucorales) was initially considered. Pan-fungal PCR and sequencing performed on formalin-fixed, paraffin-embedded lung tissue identified Conidiobolus spp., consistent with a diagnosis of primary pulmonary conidiobolomycosis. There are only a few reports of infections with Conidiobolus spp. (and other members of the order Entomophthorales) in swine. Unlike humans and other animal species, conidiobolomycosis in pigs presents more commonly as a primary pulmonary disease rather than rhinofacial or nasopharyngeal disease.
Collapse
Affiliation(s)
- Brittany L Rasche
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Samuel M Tucker
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Keith Linder
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Tara M Harrison
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Tatiane Terumi Negrão Watanabe
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
3
|
MYCOTIC PNEUMONIA AND ENCEPHALITIS IN SOUTHERN PUDU ( PUDU PUDA). J Zoo Wildl Med 2021; 52:379-388. [PMID: 33827202 DOI: 10.1638/2019-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2020] [Indexed: 11/21/2022] Open
Abstract
This case series describes six confirmed cases of mycotic encephalitis and/or mycotic pneumonia in southern pudu (Pudu puda). One case involved a 10.5-yr-old intact female that presented with an inability to stand, eventually progressing to grand mal seizures. Magnetic resonance imaging showed a lesion within the cerebellar vermis with edema causing cerebellar herniation. The animal was euthanized based on a grave prognosis. Gross and histologic examination revealed primary central nervous system phaeohyphomycosis. Curvularia spicifera was sequenced from the cerebellar tissue. This is the first time this fungus has been reported as a primary central nervous system infection in an artiodactyl species. The remaining five cases occurred in neonates between 17 and 67 days old. Clinical signs varied widely, including facial swelling, weakness, posterior paresis, and sudden death. Antifungal therapy was initiated in three neonatal animals but was unsuccessful in each case. All neonates had active mycotic pneumonia caused by Aspergillus fumigatus or Mucor spp. at time of death; four of these animals also had disseminated disease that caused mycotic encephalitis. This case series indicates that fungal disease should be included in the differential diagnosis list of any pudu presenting for neurologic or respiratory clinical signs.
Collapse
|