1
|
Ernest HB, Tell LA, Bishop CA, González AM, Lumsdaine ER. Illuminating the Mysteries of the Smallest Birds: Hummingbird Population Health, Disease Ecology, and Genomics. Annu Rev Anim Biosci 2024; 12:161-185. [PMID: 38358836 DOI: 10.1146/annurev-animal-021022-044308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Hummingbirds share biologically distinctive traits: sustained hovering flight, the smallest bird body size, and high metabolic rates fueled partially by nectar feeding that provides pollination to plant species. Being insectivorous and sometimes serving as prey to larger birds, they fulfill additional important ecological roles. Hummingbird species evolved and radiated into nearly every habitat in the Americas, with a core of species diversity in South America. Population declines of some of their species are increasing their risk of extinction. Threats to population health and genetic diversity are just beginning to be identified, including diseases and hazards caused by humans. We review the disciplines of population health, disease ecology, and genomics as they relate to hummingbirds. We appraise knowledge gaps, causes of morbidity and mortality including disease, and threats to population viability. Finally, we highlight areas of research need and provide ideas for future studies aimed at facilitating hummingbird conservation.
Collapse
Affiliation(s)
- Holly B Ernest
- Department of Veterinary Sciences, University of Wyoming, Laramie, Wyoming, USA;
- School of Veterinary Medicine, University of California, Davis, California, USA; ,
| | - Lisa A Tell
- School of Veterinary Medicine, University of California, Davis, California, USA; ,
| | - Christine A Bishop
- Environment and Climate Change Canada, Delta, British Columbia, Canada; ,
| | - Ana M González
- Environment and Climate Change Canada, Delta, British Columbia, Canada; ,
| | - Emily R Lumsdaine
- School of Veterinary Medicine, University of California, Davis, California, USA; ,
| |
Collapse
|
2
|
Mei X, Wang X, Huang W, Zhu J, Liu K, Wang X, Cai W, He R. A novel polycaprolactone/polypyrrole/β-cyclodextrin electrochemical flexible sensor for dinotefuran pesticide detection. Food Chem 2024; 434:137194. [PMID: 37738813 DOI: 10.1016/j.foodchem.2023.137194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 09/24/2023]
Abstract
The monitoring and the rapid quantification of pesticides and their residues are becoming increasingly important in the field of food safety. Herein, the polycaprolactone/polypyrrole/β-cyclodextrin (PCL/PPy/β-CD) flexible sensor was developed for the electrochemical determination of new neonicotinoid insecticide Dinotefuran (DNF). The morphology, structure, and hydrophilicity of PCL/PPy/β-CD sensor probes were characterized by SEM, FTIR spectroscopy and static contact angle test. Under optimum conditions, the fabricated PCL/PPy/β-CD sensor exhibited excellent electrochemical sensing performance for DNF with a low detection limit of 0.05 μM in the linear concentration range from 0.2 μM to 50 μM and high sensitivity 14.07 μA·μM-1·cm-2, which attributed to the two-stage porous structure, good electron transfer rate and the adsorption effect. The PCL/PPy/β-CD sensor also showed reproducibility (RSD = 4.76%), stability, and high selectivity towards DNF. In addition, a real samples investigation in rice with recoveries of 96.67 % ∼ 103.65 % implied the good application potential of PCL/PPy/β-CD in DNF monitoring.
Collapse
Affiliation(s)
- Xinliang Mei
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), UNIST-NUIST Research Center of Environment and Energy, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Joyson Safety Systems (Huzhou) Co., Ltd., Huzhou, Zhejiang 313103, PR China
| | - Xingyu Wang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Wenshuai Huang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Jiaxing Zhu
- Heilongjiang North Tools Co., Ltd., Mudanjiang, Heilongjiang 157013, PR China
| | - Kecheng Liu
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Xingsheng Wang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Wei Cai
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), UNIST-NUIST Research Center of Environment and Energy, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Ruiyin He
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China.
| |
Collapse
|
3
|
Benoit-Biancamano MO. Special section on honey bee health and disease. J Vet Diagn Invest 2023; 35:595-596. [PMID: 37815222 PMCID: PMC10621535 DOI: 10.1177/10406387231202959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Affiliation(s)
- Marie-Odile Benoit-Biancamano
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Centre de diagnostic vétérinaire de l’Université de Montréal (CDVUM), Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
4
|
Zhang J, Liu J, Wang Y, Wang Y, Yang R, Zhou X. Simultaneous determination of ten neonicotinoid insecticides and a metabolite in human whole blood by QuEChERS coupled with UPLC-Q Exactive orbitrap high-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1222:123689. [PMID: 37059012 DOI: 10.1016/j.jchromb.2023.123689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Since neonicotinoid insecticides are now the most extensively used insecticides worldwide, there are increasing cases of neonicotinoid poisoning. A rapid and sensitive method was developed for the determination of ten neonicotinoid insecticides and a metabolite 6-chloronicotinic acid in human whole blood. The types and amounts of extraction solvent, salting-out agent, and adsorbent in the QuEChERS method were optimized by comparing the absolute recoveries of 11 analytes. The separation was performed on an Agilent EC18 column with the gradient elution with 0.1% formic acid in water and acetonitrile as the mobile phase. The quantification was achieved by Q Exactive orbitrap high-resolution mass spectrometry under parallel reaction monitoring scan mode. The 11 analytes showed good linearity with R2 ≥ 0.9950, LODs ranging from 0.01 μg/L to 0.30 μg/L, and LOQs from 0.05 μg/L to 1.00 μg/L. The recoveries ranged from 78.3% to 119.9% at low, medium, and high spiked concentrations of blank blood, with matrix effects ranging from 80.9% to 117.8%, inter-day RSDs from 0.7% to 6.7%, and intra-day RSDs from 2.7% to 9.8%. The method was furthermore applied to a real case of neonicotinoid insecticide poisoning to demonstrate its feasibility. The proposed method is suitable for the rapid screening of neonicotinoid insecticides in poisoned human blood in the field of forensic science, as well as monitoring of neonicotinoid insecticide residues in humans in the field of environmental safety, compensating for a lack of studies on neonicotinoid insecticide determination in biological samples.
Collapse
|
5
|
Etterson MA, Paulukonis EA, Purucker ST. Using Pop-GUIDE to Assess the Applicability of MCnest for Relative Risk of Pesticides to Hummingbirds. ECOLOGIES 2023; 4:171-194. [PMID: 39234598 PMCID: PMC11373374 DOI: 10.3390/ecologies4010013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Hummingbirds are charismatic fauna that provide important pollination services, including in the continental US, where 15 species regularly breed. Compared to other birds in North America, hummingbirds (family Trochilidae) have a unique exposure route to pesticides because they forage on nectar. Therefore, hummingbirds may be exposed to systemic pesticides borne in nectar. They also may be particularly vulnerable to pesticide exposure due to their small size and extreme metabolic demands. We review relevant factors including hummingbird life history, nectar residue uptake, and avian bioenergetic considerations with the goal of clearly identifying and articulating the specific modeling challenges that must be overcome to develop and/or adapt existing modeling approaches. To help evaluate these factors, we developed a dataset for ruby-throated hummingbirds (Archilochus colubris) and other avian species potentially exposed to pesticides. We used the systemic neonicotinoid pesticide imidacloprid as an illustration and compared results to five other common current use pesticides. We use the structure of Pop-GUIDE to provide a conceptual modeling framework for implementation of MCnest and to compile parameter values and relevant algorithms to predict the effects of pesticide exposure on avian pollinators. Conservative screening assessments suggest the potential for adverse effects from imidacloprid, as do more refined assessments, though many important limitations and uncertainties remain. Our review found many areas in which current USEPA avian models must be improved in order to conduct a full higher-tier risk assessment for avian pollinators exposed to neonicotinoid insecticides, including addition of models suitable for soil and seed treatments within the MCnest environment, ability to include empirical residue data in both nectar and invertebrates rather than relying on existing nomograms, expansion of MCnest to a full annual cycle, and increased representation of spatial heterogeneity. Although this work focuses on hummingbirds, the methods and recommendations may apply more widely to other vertebrate pollinators.
Collapse
Affiliation(s)
- Matthew A Etterson
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Elizabeth A Paulukonis
- Oak Ridge Institute for Science and Education, 109 TW Alexander Dr, Durham, NC 27709, USA
| | - S Thomas Purucker
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr, Durham, NC 27709, USA
| |
Collapse
|
6
|
Graves EE, Meese RJ, Holyoak M. Neonicotinoid exposure in Tricolored Blackbirds (Agelaius tricolor). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15392-15399. [PMID: 36169821 PMCID: PMC9516497 DOI: 10.1007/s11356-022-23290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
There is increasing awareness of the negative ecological and environmental effects of widespread use of pesticides on the landscape. Spillover or drift of pesticides from agricultural areas has been shown to impact species health, reproduction, and trophic dynamics through both direct and indirect mechanisms. Neonicotinoid insecticides are associated with observed declines of insectivorous and grassland birds, and these environmental pollutants are a significant conservation concern for many species that have experienced past or current population declines. Due to the high efficacy of these modern insecticides in depressing local insect populations, insectivorous birds can be negatively impacted by a pesticide-mediated reduction in food supply. Neonicotinoids may act synergistically with other stressors, such as habitat loss, to exacerbate threats to species or population viability. The Tricolored Blackbird is an insectivorous grassland bird of conservation concern in California, USA. Due to the high association of this species with agricultural habitats, we sought to quantify the amount of neonicotinoid residues in Tricolored Blackbird carcasses as a first step in assessing how this species may be impacted by pesticides. Out of 85 salvaged carcasses sampled (N = 24 adults, N = 3 fledglings, and N = 58 nestlings), only two contained detectable levels of target compounds. These were an adult and one nestling that contained clothianidin residue (40 ppb and 7 ppb, respectively); both of these birds were salvaged from breeding colonies associated with dairy farms in Kern County, California. We suggest that further work is needed to assess neonicotinoid exposure of Tricolored Blackbirds in dairy-associated breeding colonies.
Collapse
Affiliation(s)
- Emily E Graves
- Environmental Science & Policy Department, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Robert J Meese
- Environmental Science & Policy Department, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Marcel Holyoak
- Environmental Science & Policy Department, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
7
|
Jiménez-Jiménez S, Amariei G, Boltes K, García MÁ, Marina ML. Stereoselective separation of sulfoxaflor by electrokinetic chromatography and applications to stability and ecotoxicological studies. J Chromatogr A 2021; 1654:462450. [PMID: 34399142 DOI: 10.1016/j.chroma.2021.462450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 01/16/2023]
Abstract
An Electrokinetic Chromatography method was developed for the stereoselective analysis of sulfoxaflor, a novel sulfoximine agrochemical with two chiral centers. A screening with fourteen negatively charged CDs was performed and Succinyl-β-CD (Succ-β-CD) was selected. A 15 mM concentration of this CD in a 100 mM borate buffer (pH 9.0), using an applied voltage of 20 kV and a temperature of 15 °C made possible the baseline separation of the four stereoisomers of sulfoxaflor in 13.8 min. The evaluation of the linearity, accuracy, precision, LODs and LOQs of the method developed showed its performance to be applied to the analysis of commercial agrochemical formulations, the evaluation of the stability of sulfoxaflor stereoisomers under biotic and abiotic conditions, and to predict, for the first time, sulfoxaflor toxicity (using real concentrations instead of nominal concentrations), on two non-target aquatic organisms, the freshwater plant, Spirodela polyrhiza, and the marine bacterium, Vibrio fischeri.
Collapse
Affiliation(s)
- Sara Jiménez-Jiménez
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - Georgiana Amariei
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - Karina Boltes
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain; Madrid Institute for Advanced Studies of Water (IMDEA Agua), Parque Científico Tecnológico, E-28805, Alcalá de Henares (Madrid), Spain
| | - María Ángeles García
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain; Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - María Luisa Marina
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain; Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain.
| |
Collapse
|
8
|
Pandit PS, Bandivadekar RR, Johnson CK, Mikoni N, Mah M, Purdin G, Ibarra E, Tom D, Daugherty A, Lipman MW, Woo K, Tell LA. Retrospective study on admission trends of Californian hummingbirds found in urban habitats (1991-2016). PeerJ 2021; 9:e11131. [PMID: 33954034 PMCID: PMC8051342 DOI: 10.7717/peerj.11131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/01/2021] [Indexed: 11/20/2022] Open
Abstract
Background Hummingbirds are frequently presented to California wildlife rehabilitation centers for medical care, accounting for approximately 5% of overall admissions. Age, sex, and reason for admission could impact hummingbird survivability, therefore identification of these factors could help maximize rehabilitation efforts. Methods Mixed-effects logistic regression models were used to identify specific threats to the survival of 6908 hummingbirds (1645 nestlings and 5263 non-nestlings) consisting of five species (Calypte anna, Calypte costa, Selasphorus rufus, Selasphorus sasin, Archilochus alexandri), found in urban settings, and admitted to California wildlife rehabilitation centers over 26 years. Results In total, 36% of birds survived and were transferred to flight cage facilities for further rehabilitation and/or release. Nestlings were more likely to be transferred and/or released compared to adult hummingbirds. After accounting for age, birds rescued in spring and summer were twice as likely to be released compared to birds rescued in the fall. A high number of nestlings were presented to the rehabilitation centers during spring, which coincides with the nesting season for hummingbirds in California, with the lowest number of nestlings presented in fall. Reasons for presentation to rehabilitation centers included several anthropogenic factors such as window collisions (9.6%) and interactions with domesticated animals (12.9%). Survival odds were lower if a hummingbird was rescued in a “torpor-like state” and were higher if rescued for “nest-related” reasons. Evaluation of treatment regimens administered at wildlife rehabilitation centers identified supportive care, including providing commercial nutrient-rich nectar plus solution, to significantly increase hummingbird survivability. Discussion Our results provide evidence of threats to hummingbirds in urban habitats, based on reasons for rescue and presentation to rehabilitation centers. Reasons for hummingbird admissions to three California wildlife rehabilitation centers were anthropogenic in nature (i.e., being associated with domestic animals, window collisions, and found inside a man-made structure) and constituted 25% of total admissions. There was a clear indication that supportive care, such as feeding a commercial nectar solution, and medical treatment significantly increased the odds of survival for rescued hummingbirds.
Collapse
Affiliation(s)
- Pranav S Pandit
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Ruta R Bandivadekar
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Christine K Johnson
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Nicole Mikoni
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Michelle Mah
- Department of Wildlife Fish and Conservation Biology, University of California, Davis, Davis, CA, USA
| | | | - Elaine Ibarra
- Santa Barbara Wildlife Care Network, Santa Barbara, CA, USA.,Wild Neighbors Database Project, Middletown, Middletown, CA, USA
| | | | | | - Max W Lipman
- Lindsay Wildlife Experience, Walnut Creek, CA, USA
| | - Krystal Woo
- Lindsay Wildlife Experience, Walnut Creek, CA, USA
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
9
|
Hrynko I, Łozowicka B, Kaczyński P. Development of precise micro analytical tool to identify potential insecticide hazards to bees in guttation fluid using LC-ESI-MS/MS. CHEMOSPHERE 2021; 263:128143. [PMID: 33297131 DOI: 10.1016/j.chemosphere.2020.128143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/09/2020] [Accepted: 08/24/2020] [Indexed: 05/14/2023]
Abstract
This paper illustrates the development of a miniaturized and precise analytical tool for biomonitoring of honey bee exposure to insecticides. This is the first work describing an analytical method for determination of very low concentrations of a wide range of insecticides in maize guttation fluid. Seed treatment with systemic insecticides or their foliar application causes the accumulation of compounds in the guttation liquid, which consists of excess water and compounds removed by plants and is a source of water for bees. A micro-QuEChERS protocol using 1 g of sample was used for analysis of over 140 insecticides belonging to 30 different chemical classes by LC-ESI-MS/MS. The determination of insecticides in guttation fluid is a difficult analytical task due to 1) the complexity of the sample matrix, 2) small amounts of test samples and 3) trace levels of analytes (often equal sublethal dose of insecticide for bees). An efficient sample treatment is proposed, involving 1 g of sample, extraction with 1% formic acid in acetonitrile, frozen, ultrasound-assisted, centrifugation and dispersive solid phase extraction with nano graphene oxide. Other tested sorbents: Fe3O4MNPs and two mixtures PSA/C18/GCB and Z-Sep did not give satisfactory parameters during sample purification. The graphene oxide proved to be the best, ensuring negligible matrix effects and analyte recoveries between 70% and 120% with relative standard deviations <20% for most of the compounds studied. The proposed method enables assessment of risk to honey bees resulting from exposure to guttation fluids containing toxic insecticides at very low concentrations.
Collapse
Affiliation(s)
- Izabela Hrynko
- Plant Protection Institute - National Research Institute, Food and Feed Safety Laboratory, Chelmonskiego 22, Bialystok, Poland.
| | - Bożena Łozowicka
- Plant Protection Institute - National Research Institute, Food and Feed Safety Laboratory, Chelmonskiego 22, Bialystok, Poland
| | - Piotr Kaczyński
- Plant Protection Institute - National Research Institute, Food and Feed Safety Laboratory, Chelmonskiego 22, Bialystok, Poland
| |
Collapse
|
10
|
Guo Z, Zhu Z, Huang S, Wang J. Non-targeted screening of pesticides for food analysis using liquid chromatography high-resolution mass spectrometry-a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1180-1201. [DOI: 10.1080/19440049.2020.1753890] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Zeqin Guo
- College of Bioengineering, Chongqing University, Chongqing, P. R. China
| | - Zhiguo Zhu
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, P.R. China
| | - Sheng Huang
- College of Bioengineering, Chongqing University, Chongqing, P. R. China
| | - Jianhua Wang
- College of Bioengineering, Chongqing University, Chongqing, P. R. China
| |
Collapse
|
11
|
Graves EE, Jelks KA, Foley JE, Filigenzi MS, Poppenga RH, Ernest HB, Melnicoe R, Tell LA. Analysis of insecticide exposure in California hummingbirds using liquid chromatography-mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15458-15466. [PMID: 30941712 DOI: 10.1007/s11356-019-04903-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
External feather rinses and homogenized whole-carcass tissue matrix from two hummingbird species found in California (Calypte anna and Archilochus alexandri) were analyzed for the presence of nine insecticides commonly used in urban settings. Using a liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analytical method, samples were quantitatively tested for the following neonicotinoids: dinotefuran, nitenpyram, thiamethoxam, acetamiprid, thiacloprid, clothianidin, imidacloprid, and sulfoxaflor. This analytical method was also used to qualitatively screen for the presence of approximately 150 other pesticides, drugs, and natural products. Feather rinsates from both hummingbird species had detectable concentrations of carbamate and neonicotinoid classes of insecticides. Combined results of the rinsate and homogenized samples (n = 64 individual hummingbirds) showed that 44 individuals (68.75%) were positive for one to four target compounds. This study documented that hummingbirds found in California are exposed to insecticides. Furthermore, feather rinsates and carcass homogenates are matrices that can be used for assessing pesticide exposure in small bird species. The small body size of hummingbirds limits traditional sampling methods for tissues and whole blood to evaluate for pesticide exposure. Thus, utilization of this analytical method may facilitate future research on small-sized avian species, provide insight into pesticide exposure, and ultimately lead to improved conservation of hummingbirds.
Collapse
Affiliation(s)
- Emily E Graves
- Department of Environmental Science and Policy, University of California, Davis, CA, 95616, USA
| | - Karen A Jelks
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Janet E Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Michael S Filigenzi
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Robert H Poppenga
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Holly B Ernest
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, 82070, USA
| | - Richard Melnicoe
- Western Integrated Pest Management Center, Davis, CA, 95618, USA
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|