1
|
Liu C, Guo H, Shi C, Sun H. BMP signaling in the development and regeneration of tooth roots: from mechanisms to applications. Front Cell Dev Biol 2023; 11:1272201. [PMID: 37779895 PMCID: PMC10540449 DOI: 10.3389/fcell.2023.1272201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Short root anomaly (SRA), along with caries, periodontitis, and trauma, can cause tooth loss, affecting the physical and mental health of patients. Dental implants have become widely utilized for tooth restoration; however, they exhibit certain limitations compared to natural tooth roots. Tissue engineering-mediated root regeneration offers a strategy to sustain a tooth with a physiologically more natural function by regenerating the bioengineered tooth root (bio-root) based on the bionic principle. While the process of tooth root development has been reported in previous studies, the specific molecular mechanisms remain unclear. The Bone Morphogenetic Proteins (BMPs) family is an essential factor regulating cellular activities and is involved in almost all tissue development. Recent studies have focused on exploring the mechanism of BMP signaling in tooth root development by using transgenic animal models and developing better tissue engineering strategies for bio-root regeneration. This article reviews the unique roles of BMP signaling in tooth root development and regeneration.
Collapse
Affiliation(s)
- Cangwei Liu
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Hao Guo
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Ce Shi
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Hongchen Sun
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
2
|
BMP Signaling Pathway in Dentin Development and Diseases. Cells 2022; 11:cells11142216. [PMID: 35883659 PMCID: PMC9317121 DOI: 10.3390/cells11142216] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/27/2022] Open
Abstract
BMP signaling plays an important role in dentin development. BMPs and antagonists regulate odontoblast differentiation and downstream gene expression via canonical Smad and non-canonical Smad signaling pathways. The interaction of BMPs with their receptors leads to the formation of complexes and the transduction of signals to the canonical Smad signaling pathway (for example, BMP ligands, receptors, and Smads) and the non-canonical Smad signaling pathway (for example, MAPKs, p38, Erk, JNK, and PI3K/Akt) to regulate dental mesenchymal stem cell/progenitor proliferation and differentiation during dentin development and homeostasis. Both the canonical Smad and non-canonical Smad signaling pathways converge at transcription factors, such as Dlx3, Osx, Runx2, and others, to promote the differentiation of dental pulp mesenchymal cells into odontoblasts and downregulated gene expressions, such as those of DSPP and DMP1. Dysregulated BMP signaling causes a number of tooth disorders in humans. Mutation or knockout of BMP signaling-associated genes in mice results in dentin defects which enable a better understanding of the BMP signaling networks underlying odontoblast differentiation and dentin formation. This review summarizes the recent advances in our understanding of BMP signaling in odontoblast differentiation and dentin formation. It includes discussion of the expression of BMPs, their receptors, and the implicated downstream genes during dentinogenesis. In addition, the structures of BMPs, BMP receptors, antagonists, and dysregulation of BMP signaling pathways associated with dentin defects are described.
Collapse
|
3
|
Antebi YE, Linton JM, Klumpe H, Bintu B, Gong M, Su C, McCardell R, Elowitz MB. Combinatorial Signal Perception in the BMP Pathway. Cell 2017; 170:1184-1196.e24. [PMID: 28886385 DOI: 10.1016/j.cell.2017.08.015] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/26/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022]
Abstract
The bone morphogenetic protein (BMP) signaling pathway comprises multiple ligands and receptors that interact promiscuously with one another and typically appear in combinations. This feature is often explained in terms of redundancy and regulatory flexibility, but it has remained unclear what signal-processing capabilities it provides. Here, we show that the BMP pathway processes multi-ligand inputs using a specific repertoire of computations, including ratiometric sensing, balance detection, and imbalance detection. These computations operate on the relative levels of different ligands and can arise directly from competitive receptor-ligand interactions. Furthermore, cells can select different computations to perform on the same ligand combination through expression of alternative sets of receptor variants. These results provide a direct signal-processing role for promiscuous receptor-ligand interactions and establish operational principles for quantitatively controlling cells with BMP ligands. Similar principles could apply to other promiscuous signaling pathways.
Collapse
Affiliation(s)
- Yaron E Antebi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - James M Linton
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Heidi Klumpe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bogdan Bintu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mengsha Gong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christina Su
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Reed McCardell
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute and Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
4
|
Prime S, Pring M, Davies M, Paterson I. TGF-β Signal Transduction in Oro-facial Health and Non-malignant Disease (Part I). ACTA ACUST UNITED AC 2016; 15:324-36. [DOI: 10.1177/154411130401500602] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transforming growth factor-beta (TGF-β) family of cytokines consists of multi-functional polypeptides that regulate a variety of cell processes, including proliferation, differentiation, apoptosis, extracellular matrix elaboration, angiogenesis, and immune suppression, among others. In so doing, TGF-β plays a key role in the control of cell behavior in both health and disease. In this report, we review what is known about the mechanisms of activation of the peptide, together with details of TGF-β signal transduction pathways. This review summarizes the evidence implicating TGF-β in normal physiological processes of the craniofacial complex—such as palatogenesis, tooth formation, wound healing, and scarring—and then evaluates its role in non-malignant disease processes such as scleroderma, submucous fibrosis, periodontal disease, and lichen planus.
Collapse
Affiliation(s)
- S.S. Prime
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - M. Pring
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - M. Davies
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - I.C. Paterson
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| |
Collapse
|
5
|
The biological function of type I receptors of bone morphogenetic protein in bone. Bone Res 2016; 4:16005. [PMID: 27088043 PMCID: PMC4820739 DOI: 10.1038/boneres.2016.5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/04/2016] [Accepted: 02/20/2016] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) have multiple roles in skeletal development, homeostasis and regeneration. BMPs signal via type I and type II serine/threonine kinase receptors (BMPRI and BMPRII). In recent decades, genetic studies in humans and mice have demonstrated that perturbations in BMP signaling via BMPRI resulted in various diseases in bone, cartilage, and muscles. In this review, we focus on all three types of BMPRI, which consist of activin-like kinase 2 (ALK2, also called type IA activin receptor), activin-like kinase 3 (ALK3, also called BMPRIA), and activin-like kinase 6 (ALK6, also called BMPRIB). The research areas covered include the current progress regarding the roles of these receptors during myogenesis, chondrogenesis, and osteogenesis. Understanding the physiological and pathological functions of these receptors at the cellular and molecular levels will advance drug development and tissue regeneration for treating musculoskeletal diseases and bone defects in the future.
Collapse
|
6
|
Wu L, Wang F, Donly KJ, Wan C, Luo D, Harris SE, MacDougall M, Chen S. Establishment of Immortalized Mouse Bmp2 Knock-Out Dental Papilla Mesenchymal Cells Necessary for Study of Odontoblastic Differentiation and Odontogenesis. J Cell Physiol 2015; 230:2588-95. [PMID: 26037045 DOI: 10.1002/jcp.25061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 05/29/2015] [Indexed: 12/17/2022]
Abstract
Bmp2 is essential for dentin formation. Bmp2 cKO mice exhibited similar phenotype to dentinogenesis imperfecta, showing dental pulp exposure, hypomineralized dentin, and delayed odontoblast differentiation. As it is relatively difficult to obtain lot of primary Bmp2 cKO dental papilla mesenchymal cells and to maintain a long-term culture of these primary cells, availability of immortalized deleted Bmp2 dental papilla mesenchymal cells is critical for studying the underlying mechanism of Bmp2 signal in odontogenesis. In this study, our goal was to generate an immortalized deleted Bmp2 dental papilla mesenchymal (iBmp2(ko/ko)dp) cell line by introducing Cre recombinase and green fluorescent protein (GFP) into the immortalized mouse floxed Bmp2 dental papilla mesenchymal (iBmp2(fx/fx)dp) cells. iBmp2(ko/ko)dp cells were confirmed by GFP and PCR. The deleted Bmp2 cells exhibited slow cell proliferation rate and cell growth was arrested in G2 phase. Expression of tooth-related marker genes and cell differentiation were decreased in the deleted cells. Importantly, extracellular matrix remodeling was impaired in the iBmp2(ko/ko)dp cells as reflected by the decreased Mmp-9 expression. In addition, with exogenous Bmp2 induction, these cell differentiation and mineralization were rescued as well as extracellular matrix remodeling was enhanced. Therefore, we for the first time described establishment of iBmp(ko/ko) cells that are useful for study of mechanisms in regulating dental papilla mesenchymal cell lineages.
Collapse
Affiliation(s)
- Lian Wu
- Department of Developmental Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas.,State Key Laboratory of Military Stomatology, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi-an, China
| | - Feng Wang
- Department of Developmental Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Anatomy, Histology and Embryology, Basic Medical College, Fujian Medical University, Fuzhou, China
| | - Kevin J Donly
- Department of Developmental Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Chunyan Wan
- Department of Developmental Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Daoshu Luo
- Department of Developmental Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Stephen E Harris
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Mary MacDougall
- Department of Oral/Maxillofacial Surgery, University of Alabama at Birmingham, School of Dentistry, Birmingham, Alabama
| | - Shuo Chen
- Department of Developmental Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
7
|
Choi KS, Lee C, Maatouk DM, Harfe BD. Bmp2, Bmp4 and Bmp7 are co-required in the mouse AER for normal digit patterning but not limb outgrowth. PLoS One 2012; 7:e37826. [PMID: 22662233 PMCID: PMC3360612 DOI: 10.1371/journal.pone.0037826] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/25/2012] [Indexed: 01/12/2023] Open
Abstract
Outgrowth and patterning of the vertebrate limb requires a functional apical ectodermal ridge (AER). The AER is a thickening of ectodermal tissue located at the distal end of the limb bud. Loss of this structure, either through genetic or physical manipulations results in truncation of the limb. A number of genes, including Bmps, are expressed in the AER. Previously, it was shown that removal of the BMP receptor Bmpr1a specifically from the AER resulted in complete loss of hindlimbs suggesting that Bmp signaling in the AER is required for limb outgrowth. In this report, we genetically removed the three known AER-expressed Bmp ligands, Bmp2, Bmp4 and Bmp7 from the AER of the limb bud using floxed conditional alleles and the Msx2-cre allele. Surprisingly, only defects in digit patterning and not limb outgrowth were observed. In triple mutants, the anterior and posterior AER was present but loss of the central region of the AER was observed. These data suggest that Bmp ligands expressed in the AER are not required for limb outgrowth but instead play an essential role in maintaining the AER and patterning vertebrate digits.
Collapse
Affiliation(s)
- Kyung-Suk Choi
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Chanmi Lee
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Danielle M. Maatouk
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Brian D. Harfe
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
8
|
Yang W, Harris MA, Cui Y, Mishina Y, Harris SE, Gluhak-Heinrich J. Bmp2 is required for odontoblast differentiation and pulp vasculogenesis. J Dent Res 2011; 91:58-64. [PMID: 21984706 DOI: 10.1177/0022034511424409] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Using the Bmp2 floxed/3.6Col1a1-Cre (Bmp2-cKO(od)) mouse model, we have observed severe defects in odontogenesis and dentin formation with the removal of the Bmp2 gene in early-polarizing odontoblasts. The odontoblasts in the Bmp2-cKO(od) do not mature properly and fail to form proper dentin with normal dentinal tubules and activate terminal differentiation, as reflected by decreased Osterix, Col1a1, and Dspp expression. There is less dentin, and the dentin is hypomineralized and patchy. We also describe an indirect effect of the Bmp2 gene in odontoblasts on formation of the vascular bed and associated pericytes in the pulp. This vascular niche and numbers of CD146+ pericytes are likely controlled by odontogenic and Bmp2-dependent VegfA production in odontoblasts. The complex roles of Bmp2, postulated to be both direct and indirect, lead to permanent defects in the teeth throughout life, and result in teeth with low quantities of dentin and dentin of poor quality.
Collapse
Affiliation(s)
- W Yang
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | |
Collapse
|
9
|
Bigham AS, Shadkhast M, Bigham Sadegh A, Shafiei Z, Lakzian A, Khalegi MR. Evaluation of osteoinduction properties of the demineralized bovine foetal growth plate powder as a new xenogenic biomaterial in rat. Res Vet Sci 2011; 91:306-10. [PMID: 21216415 DOI: 10.1016/j.rvsc.2010.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 10/21/2010] [Accepted: 12/04/2010] [Indexed: 11/18/2022]
Abstract
The aim of this study was evaluation of osteoinductive properties of demineralized bovine foetal growth plate in submuscular transplantation (ectopic osteoinduction) as a new xenogenic biomaterial in rat model. Demineralized bovine foetal growth plate was ectopically implanted in 18 male Sprague-Dawley rats. In 18 of the animals under aseptic conditions two submuscular pouches were created between external and internal oblique abdominal muscles in the two flanks: the right was left empty (sham) and the left was filled with 20mg of demineralized bovine foetal growth plate powder. Radiographs were taken in 2, 4 and 6 weeks after the surgery, then six animals were pharmacologically euthanized after 2, 4 and 6 weeks for histopathological evaluation. Results showed: (1) osteoinductivity of xenogenic demineralized bovine foetal growth plate powder, and (2) earlier mineralization of ectopically implanted demineralized bovine foetal growth plate in the submuscular implanted area. Our results show that submuscular implantation of xenogenic demineralized bovine foetal growth plate has osteoinductive properties in a rat model.
Collapse
Affiliation(s)
- A S Bigham
- Department of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.
| | | | | | | | | | | |
Collapse
|
10
|
Caviedes-Bucheli J, Canales-Sánchez P, Castrillón-Sarria N, Jovel-Garcia J, Alvarez-Vásquez J, Rivero C, Azuero-Holguín MM, Diaz E, Munoz HR. Expression of insulin-like growth factor-1 and proliferating cell nuclear antigen in human pulp cells of teeth with complete and incomplete root development. Int Endod J 2009; 42:686-93. [PMID: 19467045 DOI: 10.1111/j.1365-2591.2009.01568.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM To quantify the expression of insulin-like growth factor-1 (IGF-1) and proliferating cell nuclear antigen (PCNA) in human pulp cells of teeth with complete or incomplete root development, to support the specific role of IGF-1 in cell proliferation during tooth development and pulp reparative processes. METHODOLOGY Twenty six pulp samples were obtained from freshly extracted human third molars, equally divided in two groups according to root development stage (complete or incomplete root development). All samples were processed and immunostained to determine the expression of IGF-1 and PCNA in pulp cells. Sections were observed with a light microscope at 80x and morphometric analyses were performed to calculate the area of PCNA and IGF-1 immunostaining using digital image software. Mann-Whitney's test was used to determine statistically significant differences between groups (P < 0.05) for each peptide and the co-expression of both. RESULTS Expression of IGF-1 and PCNA was observed in all human pulp samples with a statistically significant higher expression in cells of pulps having complete root development (P = 0.0009). CONCLUSION Insulin-like growth factor-1 and PCNA are expressed in human pulp cells, with a significant greater expression in pulp cells of teeth having complete root development.
Collapse
Affiliation(s)
- J Caviedes-Bucheli
- Postgraduate Endodontic Department, School of Dentistry, Pontificia Universidad Javeriana, Bogota, Colombia.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Shi W, Chang C, Nie S, Xie S, Wan M, Cao X. Endofin acts as a Smad anchor for receptor activation in BMP signaling. J Cell Sci 2007; 120:1216-24. [PMID: 17356069 DOI: 10.1242/jcs.03400] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Signaling through receptors of the transforming growth factor beta (TGFbeta) superfamily is mediated by cytoplasmic Smad proteins. It has been demonstrated that Smad anchor for receptor activation (SARA) facilitates TGFbeta and activin/nodal signaling by recruiting and presenting Smad2/3 to the receptor complex. SARA does not bind Smad1 and hence does not enhance bone morphogenetic protein (BMP) signaling. Here we report for the first time that the endosome-associated FYVE-domain protein endofin acts as a Smad anchor for receptor activation in BMP signaling. We demonstrate that endofin binds Smad1 preferentially and enhances Smad1 phosphorylation and nuclear localization upon BMP stimulation. Silencing of endofin by RNAi resulted in a reduction in BMP-dependent Smad1 phosphorylation. Moreover, disruption of the membrane-anchoring FYVE motif by point mutation led to a reduction of BMP-responsive gene expression in cell culture and Xenopus ectodermal explants. Furthermore, we demonstrate that endofin contains a protein-phosphatase-binding motif, which functions to negatively modulate BMP signals through receptor dephosphorylation. Taken together, our results suggest that endofin plays an important role in both positive and negative feedback regulation of the BMP signaling pathway.
Collapse
Affiliation(s)
- Weibin Shi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
12
|
Singhatanadgit W, Salih V, Olsen I. Up-regulation of bone morphogenetic protein receptor IB by growth factors enhances BMP-2-induced human bone cell functions. J Cell Physiol 2007; 209:912-22. [PMID: 17001689 DOI: 10.1002/jcp.20799] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bone morphogenetic proteins (BMP) stimulate osteoblast differentiation by signal transduction via three BMP receptors (BMPR-IA, -IB, and -II). Several growth factors, including transforming growth factor-beta1 (TGF-beta1), fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor-AB (PDGF-AB), have also been shown to play an important part in osteogenesis. The mechanism underlying these activities is unclear, but these growth factors could modulate the BMP/BMPR pathway by up-regulating BMPR expression, thereby enhancing the osteogenic responses of bone cells to the BMP. In this study we have therefore examined the effects of TGF-beta1, FGF-2, and PDGF-AB on BMPR expression and BMP-2-mediated osteoblast functions in primary human bone cells. The results showed that although the ligand BMP-2 and growth factors had little effect on BMPR-IA and -II transcript expression, they significantly up-regulated BMPR-IB mRNA specifically. However, only the growth factors, but not the ligand BMP-2, increased the surface expression of the BMPR-IB antigen, which was found to be due to a differential effect of BMP-2 and the growth factors on the Smurf1/Smad6-induced breakdown process. Pre-incubation of the cells with the growth factors significantly augmented BMP-2-induced Smad1/5/8 phosphorylation, and Dlx5 expression ALP activity, compared with that of cells treated with BMP-2 alone. When cells were transfected with siRNA targeting BMPR-IB, the growth factors neither up-regulated BMPR-IB transcript expression nor enhanced BMP-2-induced Smad1/5/8 phosphorylation, Dlx5 expression and ALP activity. The results indicate that increased BMPR-IB by TGF-beta1, FGF-2, and PDGF-AB significantly enhances BMP-2-induced osteogenic functions in vitro, suggesting that they might positively modulate bone formation by up-regulating BMPR-IB in vivo.
Collapse
Affiliation(s)
- Weerachai Singhatanadgit
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, 256 Gray's Inn Road, London, United Kingdom
| | | | | |
Collapse
|
13
|
Edwards PC, Mason JM. Gene-enhanced tissue engineering for dental hard tissue regeneration: (2) dentin-pulp and periodontal regeneration. Head Face Med 2006; 2:16. [PMID: 16725030 PMCID: PMC1481630 DOI: 10.1186/1746-160x-2-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 05/25/2006] [Indexed: 01/09/2023] Open
Abstract
Potential applications for gene-based tissue engineering therapies in the oral and maxillofacial complex include the delivery of growth factors for periodontal regeneration, pulp capping/dentin regeneration, and bone grafting of large osseous defects in dental and craniofacial reconstruction. Part 1 reviewed the principals of gene-enhanced tissue engineering and the techniques of introducing DNA into cells. This manuscript will review recent advances in gene-based therapies for dental hard tissue regeneration, specifically as it pertains to dentin regeneration/pulp capping and periodontal regeneration.
Collapse
Affiliation(s)
- Paul C Edwards
- Creighton University School of Dentistry, Omaha, NE, USA
| | - James M Mason
- NorthShore- Long Island JewishFeinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
14
|
Nadiri A, Kuchler-Bopp S, Perrin-Schmitt F, Lesot H. Expression patterns of BMPRs in the developing mouse molar. Cell Tissue Res 2006; 324:33-40. [PMID: 16432712 DOI: 10.1007/s00441-005-0120-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 11/04/2005] [Indexed: 11/30/2022]
Abstract
During development, Bone Morphogenetic Proteins (BMPs) can induce apoptosis, cell growth or differentiation. These different effects are mediated by dimers of two types of BMP-receptors (BMPRs). To identify the responding cells during tooth development and search for possible tissue-or stage-specificities in the receptors involved, the distribution patterns of BMPR-IA, -IB and -II were investigated in the mouse molar, from bud to bell stage. At the bud stage, BMP-2 was suggested to be involved in the formation of an epithelial signaling center, the primary enamel knot (PEK), while BMP-4 would mediate the condensation of the mesenchyme. Immunostaining showed the presence of BMPR-IA and -II in the epithelium instead of BMPR-IB and -II in the mesenchyme. At the cap stage, BMPR-IB was detected in the epithelium but not BMPR-II, suggesting the existence of another type II receptor to form a functional dimer. At the late cap stage in the epithelium, BMP-4, BMPR-IA and -II were restricted to the internal part of the PEK and the stalk: two apoptotic areas. The three proteins were detected in the mesenchyme, showing a strong staining where cusps were about to form. At the late bell stage, BMP-2 or -4 may induce cell differentiation. BMPR-IB and -II were detected in odontoblasts instead of BMPR-IA and -II in ameloblasts. These results provide the first evidence of multiple type I and type II BMP-receptors, expressed in the dental epithelium and mesenchyme at different stages of development, to signal different cellular activities in a time- and tissue-specific way.
Collapse
Affiliation(s)
- A Nadiri
- INSERM UMR S595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, 67085, Strasbourg, France.
| | | | | | | |
Collapse
|
15
|
Osyczka AM, Diefenderfer DL, Bhargave G, Leboy PS. Different effects of BMP-2 on marrow stromal cells from human and rat bone. Cells Tissues Organs 2004; 176:109-19. [PMID: 14745240 PMCID: PMC1463182 DOI: 10.1159/000075032] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) promote the differentiation of osteoprogenitor cells, and also induce osteogenesis in bone marrow stromal cells (MSC) from rats and mice. However, compared to results with animal models, BMPs are relatively inefficient in inducing human MSC to undergo osteogenesis, and are much less effective in promoting bone formation in human clinical trials. Previous studies indicated that, while human MSC respond to dexamethasone with elevated levels of the osteoblast marker alkaline phosphatase, most isolates of human MSC fail to show alkaline phosphatase induction in response to BMP-2, BMP-4, or BMP-7. Several other genes known to be induced by BMPs are appropriately regulated; thus, human MSC are capable of some BMP-activated signaling. Analysis of the BMP receptors ALK-3 and ALK-6 indicated that, although ALK-6 mRNA was not expressed in human MSC, overexpressing a constitutively active ALK-6 receptor did not induce elevated alkaline phosphatase. Real-time RT-PCR was used to investigate expression of several osteoblast-related transcription factors in MSC after 6 days' exposure to BMP2 or dexamethasone. Msx-2, a transcription factor that has been reported to inhibit differentiation of osteoprogenitor cells, showed 10-fold elevation in BMP-2-treated human MSC, but not in BMP-2-treated rat MSC. Overexpression of Msx-2 in human and rat MSC, however, did not alter alkaline phosphatase levels, which suggests that absence of BMP-stimulated alkaline phosphatase was not caused by the BMP-2-induced increase in Msx-2. Although Runx2 isoforms have been implicated in control of osteoblast differentiation, levels of this transcription factor were unaffected by BMP treatment. Expression of the FKHR transcription factor, which has been reported to regulate alkaline phosphatase transcription in mouse cells, showed a modest increase in response to BMP-2, but a much greater increase in dexamethasone-treated cells. We propose that BMP regulation of the bone/liver/kidney alkaline phosphatase gene is indirect, requiring expression of new transcription factor(s) that behave differently in rodent and human MSC.
Collapse
Affiliation(s)
- Anna M Osyczka
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pa., USA
| | | | | | | |
Collapse
|
16
|
Viallet J, Garcia A, Weydert A. Protein phosphatase 2A as a new target for morphogenetic studies in the chick limb. Biochimie 2004; 85:753-62. [PMID: 14585542 DOI: 10.1016/j.biochi.2003.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The family of ser/thr protein phosphatases 2A (PP2A) is a major regulator of cell proliferation and cell death and is critically involved in the maintenance of homeostasis. In order to analyse the importance of PP2A proteins in apoptotic and developmental processes, this review focuses on previous studies concerning the role of PP2A in morphogenesis. We first analyse wing formation in Drosophila, a model for invertebrates, then chick limb bud, a model for vertebrates. We also present a pioneer experiment to illustrate the potential relevance of PP2A studies in BMP signalling during chicken development and we finally discuss the BMP downstream signalling pathways.
Collapse
Affiliation(s)
- Jean Viallet
- Faculté de Médecine, LEDAC UMR 5538 Institut Albert Bonniot, Rond Point de la Chantourne, 38706 La Tronche cedex, France
| | | | | |
Collapse
|
17
|
Hatakeyama Y, Tuan RS, Shum L. Distinct functions of BMP4 and GDF5 in the regulation of chondrogenesis. J Cell Biochem 2004; 91:1204-17. [PMID: 15048875 DOI: 10.1002/jcb.20019] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bone morphogenetic protein 4 (BMP4) and growth/differentiation factor 5 (GDF5) are closely related protein family members and regulate early cartilage patterning and differentiation. In this study, we compared the functional outcome of their actions systematically at various stages of chondrogenesis in mouse embryonic limb bud mesenchyme grown in micromass cultures. Overall, both growth factors enhanced cartilage growth and differentiation in these cultures. Uniquely, BMP4 not only accelerated the formation and maturation of cartilaginous nodules, but also induced internodular mesenchymal cells to express cartilage differentiation markers. On the other hand, GDF5 increased the number of prechondrogenic mesenchymal cell condensation and cartilaginous nodules, without altering the overall pattern of differentiation. In addition, GDF5 caused a more sustained elevated expression level of Sox9 relative to that associated with BMP4. BMP4 accelerated chondrocyte maturation throughout the cultures and sustained an elevated level of Col10 expression, whereas GDF5 caused a transient increase in Col10 expression. Taken together, we conclude that BMP4 is instructive to chondrogenesis and induces mesenchymal cells toward the chondrogenic lineage. Furthermore, BMP4 accelerates the progression of cartilage differentiation to maturation. GDF5 enhances cartilage formation by promoting chondroprogenitor cell aggregation, and amplifying the responses of cartilage differentiation markers. These differences may serve to fine-tune the normal cartilage differentiation program, and can be exploited for the molecular manipulation in biomimetics.
Collapse
Affiliation(s)
- Yuji Hatakeyama
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland 20892-6402, USA
| | | | | |
Collapse
|
18
|
Takebe J, Champagne CM, Offenbacher S, Ishibashi K, Cooper LF. Titanium surface topography alters cell shape and modulates bone morphogenetic protein 2 expression in the J774A.1 macrophage cell line. J Biomed Mater Res A 2003; 64:207-16. [PMID: 12522806 DOI: 10.1002/jbm.a.10275] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Macrophage cytokine expression significantly affects wound healing. Macrophage secretion of transforming growth factor beta 1 (TGFbeta1) and bone morphogenetic proteins (BMP) may affect osteogenesis at endosseous implant surfaces. The aim of this investigation was to determine the effect of commercially pure titanium (cpTi) substrate topography on adherent macrophage osteogenic and osteoinductive cytokine expression. J774A.1 murine macrophage cell adhesion was examined by scanning electron microscopy, 0-72 h following plating onto polished, machined, and grit-blasted cpTi surfaces. TGFbeta1 and BMP-2 gene expression by adherent macrophages was determined by the reverse transcription polymerase chain reaction. Macrophage adhesion increased with time on all surfaces and spreading increased with increasing surface roughness (polished < machined < grit-blasted). BMP-2 expression was not evident for cells adherent to polished cpTi at 24 h. In contrast, BMP-2 expression occurred at 24 h in cells adherent to machined and grit-blasted cpTi. BMP-2 expression was evident on all surfaces at 72 h and was greatest in grit-blasted titanium adherent cells. Increasing concentrations of cytochalasin B (0-50 microM) inhibited macrophage spreading and reduced BMP-2 mRNA expression, suggesting a relationship between cell shape and BMP-2 expression. This was further characterized using anti-beta1 and anti-beta3 integrin antibodies. The anti-beta1 integrin antibodies inhibited adherent macrophage BMP-2 mRNA expression. Anti-beta3 integrin antibody treatment only modestly reduced BMP-2 mRNA expression. Endosseous implant surface topography induced changes in macrophage shape that were associated with changes in BMP-2 expression in J774A.1 mouse macrophage cell line. This first demonstration of BMP-2 expression by cpTi adherent macrophages suggests that the macrophage may contribute surface-specific osteoinductive signals during bone formation at implanted alloplastic surfaces.
Collapse
Affiliation(s)
- J Takebe
- Dental Research Center, University of North Carolina School of Dentistry, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
19
|
Zhao S, Chen Q, Hung FC, Overbeek PA. BMP signaling is required for development of the ciliary body. Development 2002; 129:4435-42. [PMID: 12223402 DOI: 10.1242/dev.129.19.4435] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ciliary body in the eye secretes aqueous humor and glycoproteins of the vitreous body and maintains the intraocular pressure. The ciliary muscle controls the shape of the lens through the ciliary zonules to focus the image onto the retina. During embryonic development, the ciliary epithelium is derived from the optic vesicle, but the molecular signals that control morphogenesis of the ciliary body are unknown. We report that lens-specific expression of a transgenic protein, Noggin, can block BMP signaling in the mouse eye and result in failure in formation of the ciliary processes. Co-expression of transgenic BMP7 restores normal development of the ciliary epithelium. Ectopic expression of Noggin also promotes differentiation of retinal ganglion cells. These results indicate that BMP signaling is required for development of the ciliary body and may also play a role in regulation of neuronal differentiation in the developing eye.
Collapse
Affiliation(s)
- Shulei Zhao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
20
|
Tabata MJ, Fujii T, Liu JG, Ohmori T, Abe M, Wakisaka S, Iwamoto M, Kurisu K. Bone morphogenetic protein 4 is involved in cusp formation in molar tooth germ of mice. Eur J Oral Sci 2002; 110:114-20. [PMID: 12013553 DOI: 10.1034/j.1600-0722.2002.11194.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to clarify the role of BMP4 in the development of the tooth crown, we employed the antisense technique on molar tooth germs removed from the mandibles of embryonic 13.5-d-old mice. In the tooth germ explants incubated for 14 d with antisense oligodeoxynucleotide (AS-ODN) against Bmp4 (a) cusps were not formed, whereas dentin matrix was secreted in the whole region of the crown, (b) inner enamel epithelial (IEE) cells remained in the undifferentiated state in the occlusal region of the crown, though they differentiated in the proximal region (lateral surface region of tooth crown), and (c) insufficient growth of the dental papilla was observed. A 5-bromo-2'-deoxyuridine (BrdU) uptake experiment showed that, although a site-specific proliferation of IEE cells occurred in the occlusal region in the control explants, it was not found in the AS-ODN-treated explants. In the proximal region, however, the proliferation of IEE cells was detected evenly in all explants treated with or without AS-ODNs. These results suggest that AS-ODN against Bmp4 inhibited the differentiation and the site-specific proliferation of IEE cells in the occlusal region of molar tooth germs, resulting in the suppression of cusp formation. Our data thus suggest that BMP4 is involved in cusp formation and differentiation of ameloblasts in the occlusal region of molars.
Collapse
Affiliation(s)
- Makoto J Tabata
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Suita, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Shum L, Nuckolls G. The life cycle of chondrocytes in the developing skeleton. ARTHRITIS RESEARCH 2002; 4:94-106. [PMID: 11879545 PMCID: PMC128921 DOI: 10.1186/ar396] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2001] [Revised: 09/14/2001] [Accepted: 09/19/2001] [Indexed: 11/21/2022]
Abstract
Cartilage serves multiple functions in the developing embryo and in postnatal life. Genetic mutations affecting cartilage development are relatively common and lead to skeletal malformations, dysfunction or increased susceptibility to disease or injury. Characterization of these mutations and investigation of the molecular pathways in which these genes function have contributed to an understanding of the mechanisms regulating skeletal patterning, chondrogenesis, endochondral ossification and joint formation. Extracellular growth and differentiation factors including bone morphogenetic proteins, fibroblast growth factors, parathyroid hormone-related peptide, extracellular matrix components, and members of the hedgehog and Wnt families provide important signals for the regulation of cell proliferation, differentiation and apoptosis. Transduction of these signals within the developing mesenchymal cells and chondrocytes results in changes in gene expression mediated by transcription factors including Smads, Msx2, Sox9, signal transducer and activator of transcription (STAT), and core-binding factor alpha 1. Further investigation of the interactions of these signaling pathways will contribute to an understanding of cartilage growth and development, and will allow for the development of strategies for the early detection, prevention and treatment of diseases and disorders affecting the skeleton.
Collapse
Affiliation(s)
- Lillian Shum
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Glen Nuckolls
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Lu MM, Yang H, Zhang L, Shu W, Blair DG, Morrisey EE. The bone morphogenic protein antagonist gremlin regulates proximal-distal patterning of the lung. Dev Dyn 2001; 222:667-80. [PMID: 11748835 DOI: 10.1002/dvdy.1231] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The proximal-distal patterning of lung epithelium involves a complex series of signaling and transcriptional events resulting in the programmed differentiation of highly specialized cells for gas exchange and surfactant protein expression essential for postnatal lung function. The BMP signaling pathway has been shown to regulate cellular differentiation in the lung as well as other tissues. In this report, we show that the can family of related BMP antagonists, including gremlin, cer-1, PRDC, and Dan are expressed in the lung during embryonic development with gremlin expression observed in the proximal airway epithelium. The role of gremlin in lung development was explored by overexpressing it in the distal lung epithelium of transgenic mice using the human SP-C promoter. SP-C/gremlin transgenic mice exhibited a disruption of the proximal-distal patterning found in the airways of the mammalian lung. Expanded expression of the proximal epithelial cell markers CC10 and HFH-4 (Foxj1) was observed in the distal regions of transgenic lungs. Furthermore, smooth muscle alpha-actin expression was observed surrounding the distal airways of SP-C/gremlin mice, indicating a proximalization of distal lung tubules. These data suggest that gremlin plays an important role in lung morphogenesis by regulating the proximal-distal patterning of the lung during development.
Collapse
Affiliation(s)
- M M Lu
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
23
|
Payne TL, Skobe Z, Yelick PC. Regulation of tooth development by the novel type I TGFbeta family member receptor Alk8. J Dent Res 2001; 80:1968-73. [PMID: 11759004 DOI: 10.1177/00220345010800110401] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We have recently identified, in zebrafish, a novel type I receptor of the TGFbeta family, alk8, that participates in Bmp signaling pathways to mediate early dorsoventral patterning of neurectodermal and mesendodermal tissues. Since Bmps play significant roles in tooth specification, initiation, and differentiation, we hypothesized that alk8 may play a role in directing the Bmp-mediated epithelial mesenchymal cell interactions regulating tooth development. Immunohistochemical analysis demonstrates that Alk8 is expressed in developing zebrafish and mouse teeth. Examination of tooth development in zebrafish with disrupted alk8 signaling revealed specific defects in tooth development. Ectopic expression of constitutively active Alk8 results in the formation of elongated tooth structures, while expression of dominant-negative Alk8 results in arrested tooth development at the bud stage. These results are consistent with the established requirements for Bmp signaling in tooth development and demonstrate that Alk8 is a key regulator of tooth development.
Collapse
Affiliation(s)
- T L Payne
- The Forsyth Institute, Department of Cytokine Biology, Boston, MA 02115, USA
| | | | | |
Collapse
|
24
|
Lesot H, Lisi S, Peterkova R, Peterka M, Mitolo V, Ruch JV. Epigenetic signals during odontoblast differentiation. Adv Dent Res 2001; 15:8-13. [PMID: 12640731 DOI: 10.1177/08959374010150012001] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Odontoblast terminal differentiation occurs according to a tooth-specific pattern and implies both temporospatially regulated epigenetic signaling and the expression of specific competence. Differentiation of odontoblasts (withdrawal from the cell cycle, cytological polarization, and secretion of predentin/dentin) is controlled by the inner dental epithelium, and the basement membrane (BM) plays a major role both as a substrate and as a reservoir of paracrine molecules. Cytological differentiation implies changes in the organization of the cytoskeleton and is controlled by cytoskeleton-plasma membrane-extracellular matrix interactions. Fibronectin is re-distributed during odontoblast polarization and interacts with cell-surface molecules. A non-integrin 165-kDa fibronectin-binding protein, transiently expressed by odontoblasts, is involved in microfilament reorganization. Growth factors (TGF beta 1, 2, 3/BMP2, 4, and 6), expressed in tooth germs, signal differentiation. Systemically derived molecules (IGF1) may also intervene. IGF1 stimulates cytological but not functional differentiation of odontoblasts: The two events can thus be separated. Immobilized TGF beta 1 (combined with heparin) induced odontoblast differentiation. Only immobilized TGF beta 1 and 3 or a combination of FGF1 and TGF beta 1 stimulated the differentiation of functional odontoblasts over extended areas and allowed for maintenance of gradients of differentiation. Presentation of active molecules in vitro appeared to be of major importance; the BM should fulfill this role in vivo by immobilizing and spatially presenting TGF beta s. Attempts are being made to investigate the mechanisms which spatially control the initiation of odontoblast differentiation and those which regulate its propagation. Analysis of molar development suggested that odontoblast differentiation and crown morphogenesis are interdependent, although the possibility of co-regulation requires further investigation.
Collapse
Affiliation(s)
- H Lesot
- INSERM U424, Institut de Biologie Médicale, Faculté de Médecine, II, rue Humann, 67085 Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
25
|
Sasai Y. Regulation of neural determination by evolutionarily conserved signals: anti-BMP factors and what next? Curr Opin Neurobiol 2001; 11:22-6. [PMID: 11179868 DOI: 10.1016/s0959-4388(00)00169-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The evolutionary conservation of Chordin/bone morphogenetic protein (BMP) signaling supports the hypothesis of dorsal-ventral axis inversion of vertebrates and invertebrates, and implies that the invention of a central nervous system occurred only once during animal evolution. This hypothesis is further strengthened by recent findings of the conservation of downstream genes and modifier genes of neural induction. On the other hand, in contrast with such gross conservation, recent data suggest that the requirement for some signals in neural determination may differ even within the vertebrate subphylum.
Collapse
Affiliation(s)
- Y Sasai
- Department of Medical Embryology and Neurobiology, Institute for Frontier Medical Sciences, Kyoto University, Sakyo, Kyoto 606-8507, Japan.
| |
Collapse
|