1
|
Montella M, Errico ME, Ronchi A, Zannini G, Donofrio V, Savarese G, Sirica R, Esposito F, Martino MD, Papparella A, Franco R, Chieffi P, Marino FZ. Analysis of microsatellite instability (MSI) in pediatric gonadal and extra-gonadal germ cell tumors. Intractable Rare Dis Res 2023; 12:191-197. [PMID: 37662626 PMCID: PMC10468407 DOI: 10.5582/irdr.2023.01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
Gonadal and extragonadal pediatric germ cell tumors (GCTs) are rare neoplasms with different clinical behavior. Although surgery and cisplatin-based chemotherapy are resolutive in most cases, some patients do not respond to chemotherapy and have a worse outcome. Microsatellite instability (MSI) was correlated to resistance to chemotherapy and sensitivity to immunotherapy in different neoplasms. A series of 21 pediatric GCTs were tested by immuno-histochemistry and PCR to evaluate MSI status. Next generation sequencing was applied to further evaluate cases with discordant results between immunohistochemistry and PCR. Twenty-one cases of pediatric GCT were included in the series. The mean age ranged between 1 and 10 years. Nine cases were gonadal GCTs and the remaining 12 were extra-gonadal GCTs. By immunohistochemistry, one case showed a deficit of Mismatch repair (MMR) proteins. This case was a 1-year-old children affected by gonadal yolk sac tumor. However, all cases resulted microsatellite stable (MSS) by PCR and NGS. MSI was not detected in our series of pediatric GCTs, as well as the data present in literature about adult patients with GCTs. Molecular techniques could have a role to confirm the MSI status in case of dMMR by immunohistochemistry.
Collapse
Affiliation(s)
- Marco Montella
- Pathology Unit, Department of Mental Health and Physic and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Elena Errico
- Pathology Unit Department of Pathology, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Andrea Ronchi
- Pathology Unit, Department of Mental Health and Physic and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppa Zannini
- Pathology Unit, Department of Mental Health and Physic and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vittoria Donofrio
- Pathology Unit Department of Pathology, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale srl, Casalnuovo, Naples, Italy
| | - Roberto Sirica
- AMES, Centro Polidiagnostico Strumentale srl, Casalnuovo, Naples, Italy
| | - Francesco Esposito
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Marco De Martino
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Alfonso Papparella
- Department of Child, Women, General and Specialized Surgery, University of Campania, Naples, Italy
| | - Renato Franco
- Pathology Unit, Department of Mental Health and Physic and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paolo Chieffi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Federica Zito Marino
- Pathology Unit, Department of Mental Health and Physic and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
2
|
Carsote M, Turturea IF, Turturea MR, Valea A, Nistor C, Gheorghisan-Galateanu AA. Pathogenic Insights into DNA Mismatch Repair (MMR) Genes-Proteins and Microsatellite Instability: Focus on Adrenocortical Carcinoma and Beyond. Diagnostics (Basel) 2023; 13:diagnostics13111867. [PMID: 37296718 DOI: 10.3390/diagnostics13111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
DNA damage repair pathways, including mismatch repair (MMR) genes, are prone to carcinoma development in certain patients. The assessment of the MMR system is widely recognized as part of strategies concerning solid tumors (defective MMR cancers), especially MMR proteins (through immunohistochemistry), and molecular assays for microsatellite instability (MSI). We aim to highlight the status of MMR genes-proteins (including MSI) in the relationship with ACC (adrenocortical carcinoma) according to current knowledge. This is a narrative review. We included PubMed-accessed, full-length English papers published between January 2012 and March 2023. We searched studies on ACC patients for whom MMR status was assessed, respectively subjects harboring MMR germline mutations, namely Lynch syndrome (LS), who were diagnosed with ACC. MMR system assessments in ACCs involve a low level of statistical evidence. Generally, there are two main types of endocrine insights: 1. the role of MMR status as a prognostic marker in different endocrine malignancies (including ACC)-which is the topic of the present work, and 2. establishing the indication of immune checkpoint inhibitors (ICPIs) in selective, mostly highly aggressive, non-responsive to standard care forms upon MMR evaluation (which belongs to the larger chapter of immunotherapy in ACCs). Our one-decade, sample-case study (which, to our knowledge, it is the most comprehensive of its kind) identified 11 original articles (from 1 patient to 634 subjects per study diagnosed with either ACC or LS). We identified four studies published in 2013 and 2020 and two in 2021, three cohorts and two retrospective studies (the publication from 2013 includes a retrospective and a cohort distinct section). Among these four studies, patients already confirmed to have LS (N = 643, respective 135) were found to be associated with ACC (N = 3, respective 2), resulting in a prevalence of 0.0046%, with a respective of 1.4% being confirmed (despite not having a large amount of similar data outside these two studies). Studies on ACC patients (N = 364, respective 36 pediatric individuals, and 94 subjects with ACC) showed that 13.7% had different MMR gene anomalies, with a respective of 8.57% (non-germline mutations), while 3.2% had MMR germline mutations (N = 3/94 cases). Two case series included one family, with a respective four persons with LS, and each article introduced one case with LS-ACC. Another five case reports (between 2018 and 2021) revealed an additional five subjects (one case per paper) diagnosed with LS and ACC (female to male ratio of 4 to 1; aged between 44 and 68). Interesting genetic testing involved children with TP53-positive ACC and further MMR anomalies or an MSH2 gene-positive subject with LS with a concurrent germline RET mutation. The first report of LS-ACC referred for PD-1 blockade was published in 2018. Nevertheless, the use of ICPI in ACCs (as similarly seen in metastatic pheochromocytoma) is still limited. Pan-cancer and multi-omics analysis in adults with ACC, in order to classify the candidates for immunotherapy, had heterogeneous results, and integrating an MMR system in this larger and challenging picture is still an open issue. Whether individuals diagnosed with LS should undergo surveillance for ACC has not yet been proven. An assessment of tumor-related MMR/MSI status in ACC might be helpful. Further algorithms for diagnostics and therapy, also taking into consideration innovative biomarkers as MMR-MSI, are necessary.
Collapse
Affiliation(s)
- Mara Carsote
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy & C.I. Parhon National Institute of Endocrinology, 011461 Bucharest, Romania
| | - Ionut Florin Turturea
- Department of Orthopedics and Traumatology, Cluj Emergency County Hospital, 400347 Cluj-Napoca, Romania
| | | | - Ana Valea
- Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy & Clinical County Hospital, 400347 Cluj-Napoca, Romania
| | - Claudiu Nistor
- Department 4-Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, Carol Davila University of Medicine and Pharmacy & Thoracic Surgery Department, Dr. Carol Davila Central Emergency University Military Hospital, 050474 Bucharest, Romania
| | - Ancuta-Augustina Gheorghisan-Galateanu
- Department of Molecular and Cellular Biology, and Histology, Carol Davila University of Medicine and Pharmacy & Department of Endocrinology, C.I. Parhon National Institute of Endocrinology, 011461 Bucharest, Romania
| |
Collapse
|
3
|
Faja F, Finocchi F, Carlini T, Rizzo F, Pallotti F, Spaziani M, Balercia G, Lenzi A, Paoli D, Lombardo F. PDE11A gene polymorphism in testicular cancer: sperm parameters and hormonal profile. J Endocrinol Invest 2021; 44:2273-2284. [PMID: 33661511 PMCID: PMC8421290 DOI: 10.1007/s40618-021-01534-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/11/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE Testicular germ cell tumours (TGCTs) is the most common malignancy among young adult males. The etiology is multifactorial and both environmental and genetic factors play an important role in the origin and development of TGCT. Genetic susceptibility may result from the interaction of multiple common and low-penetrance genetic variants and one of the main candidate genes is PDE11A. Many PDE11A polymorphisms were found responsible for a reduced PDE activity in TGCT patients, who often also display impaired hormone and sperm profile. The aim of this study was to investigate testicular function and PDE11A sequence in testicular cancer cases. METHODS Semen analysis was performed in 116 patients with unilateral and bilateral sporadic TGCTs and in 120 cancer-free controls. We also investigated hormone profile and PDE11A polymorphisms using peripheral blood samples. RESULTS Our data revealed that TGCT patients showed lower testosterone levels, higher gonadotropins levels and worse semen quality than controls, although the mean and the medians of sperm parameters are within the reference limits. PDE11A sequencing detected ten polymorphisms not yet associated with TGCTs before. Among these, G223A in homozygosity and A288G in heterozygosity were significantly associated with a lower risk of testicular tumour and they displayed a positive correlation with total sperm number. CONCLUSIONS Our findings highlight the key role of PDE11A in testis and suggest the presence of an underlying complex and fine molecular mechanism which controls testis-specific gene expression and susceptibility to testicular cancer.
Collapse
Affiliation(s)
- F. Faja
- Laboratory of Seminology - “Loredana Gandini” Sperm Bank, Department of Experimental Medicine, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - F. Finocchi
- Laboratory of Seminology - “Loredana Gandini” Sperm Bank, Department of Experimental Medicine, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Umberto I Hospital, Polytechnic University of Marche, Ancona, Italy
| | - T. Carlini
- Laboratory of Seminology - “Loredana Gandini” Sperm Bank, Department of Experimental Medicine, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - F. Rizzo
- Laboratory of Seminology - “Loredana Gandini” Sperm Bank, Department of Experimental Medicine, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - F. Pallotti
- Laboratory of Seminology - “Loredana Gandini” Sperm Bank, Department of Experimental Medicine, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - M. Spaziani
- Hormone Laboratory, Department of Experimental Medicine - Medical Pathophysiology Section, “Sapienza” University of Rome, Rome, Italy
| | - G. Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Umberto I Hospital, Polytechnic University of Marche, Ancona, Italy
| | - A. Lenzi
- Laboratory of Seminology - “Loredana Gandini” Sperm Bank, Department of Experimental Medicine, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - D. Paoli
- Laboratory of Seminology - “Loredana Gandini” Sperm Bank, Department of Experimental Medicine, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - F. Lombardo
- Laboratory of Seminology - “Loredana Gandini” Sperm Bank, Department of Experimental Medicine, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
4
|
Lobo J, Alzamora MA, Guimarães R, Cantante M, Lopes P, Braga I, Maurício J, Jerónimo C, Henrique R. p53 and MDM2 expression in primary and metastatic testicular germ cell tumors: Association with clinical outcome. Andrology 2020; 8:1233-1242. [PMID: 32384200 DOI: 10.1111/andr.12814] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Testicular germ cell tumors (TGCTs) are highly sensitive to platinum-based chemotherapy, and wild-type p53 seems to play a pivotal role in this susceptibility. On the other hand, overexpression of MDM2 seems to entail treatment resistance and unfavorable prognosis. OBJECTIVES We aimed to describe p53 and MDM2 immunoexpression in a well-characterized cohort of primary and metastatic TGCTs and evaluate associations with clinicopathological and prognostic variables, including survival. MATERIALS AND METHODS 237 primary tumor samples and 12 metastases were evaluated for p53 and MDM2 immunoexpression using digital image analysis. Clinical records of all patients were reviewed for baseline clinical/pathologic characteristics and follow-up. RESULTS A significant positive correlation between p53 and MDM2 H-scores was found (rs = 0.590, P < .0001). Non-seminomas showed significantly higher expression levels of both p53 and MDM2 (P = .0002, P < .0001), which peaked in embryonal carcinomas and choriocarcinomas. Percentage of immunoexpressing cells and H-score were significantly higher in chemo-treated metastases compared with chemo-naïve primary tumors for MDM2 (P ≤ .0001 for both), but not for p53 (P = .919 and P = .703, respectively). Cases with higher MDM2 immunoexpression showed a statistically significant trend for association with poorer prognosis (P = .043). Relapse/progression-free survival at 12 months post-diagnosis was lower in the "MDM2-high" (≥P50) vs. the "MDM2-low" (<P50) expression groups. DISCUSSION AND CONCLUSION In TGCTs, MDM2 overexpression may indicate a more aggressive tumor phenotype, with propensity for therapy resistance and recurrence. If validated in larger multi-institutional studies with precise quantification, it may be envisioned as a useful predictive biomarker of poor response to cisplatin.
Collapse
Affiliation(s)
- João Lobo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Maria Ana Alzamora
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal
| | - Rita Guimarães
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal
| | - Mariana Cantante
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal
| | - Paula Lopes
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal
| | - Isaac Braga
- Department of Urology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal
| | - Joaquina Maurício
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
5
|
Sadigh S, Farahani SJ, Shah A, Vaughn D, Lal P. Differences in PD-L1-Expressing Macrophages and Immune Microenvironment in Testicular Germ Cell Tumors. Am J Clin Pathol 2020; 153:387-395. [PMID: 31802108 DOI: 10.1093/ajcp/aqz184] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To characterize the tumor microenvironment of testicular germ cell tumors (GCTs) using immunohistochemical markers. METHODS Seventy-seven orchiectomies, including 36 nonmetastatic (NM) seminomas, 15 metastatic (M) seminomas, 13 nonmetastatic nonseminomatous germ cell tumors (NSGCTs), and 13 metastatic NSGCTs, were studied with PD-1, PD-L1, FOXP3, CD68, CD163, and mismatch repair (MMR) immunohistochemistry. FOXP3+ and PD-1+ tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs) expressing CD68 and CD163 were enumerated. PDL-1 expression was evaluated on tumor cells and macrophages. RESULTS GCTs primarily express PD-L1 on TAMs, except choriocarcinoma, where true tumor cell positivity was noted. Seminomas reveal increased intratumoral PD-L1+ TAMs compared with NSGCTs (P < .05). Activated TILs are increased in NM-seminomas compared with M-seminomas (P < .05). All GCTs retained MMR expression. CONCLUSIONS Robust PD-L1+ TAMs are significantly expanded in seminomas compared with NSGCTs. Among all GCTs, only choriocarcinoma cells reveal true positivity for PD-L1. These findings expand the realm of potentially targeted treatments for GCTs.
Collapse
Affiliation(s)
- Sam Sadigh
- Department of Anatomic Pathology, Hospital of the University of Pennsylvania, Philadelphia
| | - Sahar J Farahani
- Department of Anatomic Pathology, Hospital of the University of Pennsylvania, Philadelphia
| | - Abhishek Shah
- Department of Anatomic Pathology, Hospital of the University of Pennsylvania, Philadelphia
| | - David Vaughn
- Department of Medical Oncology, Hospital of the University of Pennsylvania, Philadelphia
| | - Priti Lal
- Department of Anatomic Pathology, Hospital of the University of Pennsylvania, Philadelphia
| |
Collapse
|