1
|
Veronesi F, Zielli SO, Brogini S, Artioli E, Arceri A, Mazzotti A, Faldini C, Giavaresi G. Scaffolds for Osteochondral Lesions of the Talus: Systematic Review and Meta-Analysis of the Last Ten Years Literature. Bioengineering (Basel) 2024; 11:970. [PMID: 39451345 PMCID: PMC11505056 DOI: 10.3390/bioengineering11100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Scaffolds are widely used devices for the treatment of osteochondral lesions of the talus (OCLT), aimed at enhancing mechanical stability and fostering chondrogenic differentiation. A systematic review and meta-analysis were performed to evaluate the safety, and clinical and radiological results of scaffolds for OCLT management. On 2 January 2024, a search was performed in four databases (PubMed, Embase, Web of Science, and Scopus), according to PRISMA guidelines. The risk of bias in the included studies was also evaluated. Thirty clinical studies were included in the qualitative analysis: 12 retrospective case series, 3 retrospective comparative studies, 9 prospective case series, 1 prospective comparative study, and 1 Randomized Controlled Trial (RCT). Natural scaffolds, such as bilayer collagen (COLL)I/III and hyaluronic scaffolds, were the most employed. Only minor adverse events were observed, even if more serious complications were shown, especially after medial malleolar osteotomy. An overall clinical and radiological improvement was observed after a mean of 36.3 months of follow-up. Patient age and Body Mass Index (BMI), lesion size, and location were correlated with the clinical outcomes, while meta-analysis revealed significant improvement in clinical scores with hyaluronic scaffolds compared to microfracture alone. This study highlights the safety and positive clinical outcomes associated with the use of scaffolds for OCLT. In the few available comparative studies, scaffolds have also demonstrated superior clinical outcomes compared to microfractures alone. Nevertheless, the analysis has shown the limitations of the current literature, characterized by an overall low quality and scarcity of RCTs.
Collapse
Affiliation(s)
- Francesca Veronesi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy; (F.V.); (S.B.); (G.G.)
| | - Simone Ottavio Zielli
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Putti 1, 40136 Bologna, Italy; (E.A.); (A.A.); (A.M.); (C.F.)
| | - Silvia Brogini
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy; (F.V.); (S.B.); (G.G.)
| | - Elena Artioli
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Putti 1, 40136 Bologna, Italy; (E.A.); (A.A.); (A.M.); (C.F.)
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Alberto Arceri
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Putti 1, 40136 Bologna, Italy; (E.A.); (A.A.); (A.M.); (C.F.)
| | - Antonio Mazzotti
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Putti 1, 40136 Bologna, Italy; (E.A.); (A.A.); (A.M.); (C.F.)
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Cesare Faldini
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Putti 1, 40136 Bologna, Italy; (E.A.); (A.A.); (A.M.); (C.F.)
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy; (F.V.); (S.B.); (G.G.)
| |
Collapse
|
2
|
Hollander JJ, Dahmen J, Emanuel KS, Stufkens SA, Kennedy JG, Kerkhoffs GM. The Frequency and Severity of Complications in Surgical Treatment of Osteochondral Lesions of the Talus: A Systematic Review and Meta-Analysis of 6,962 Lesions. Cartilage 2023; 14:180-197. [PMID: 37144397 PMCID: PMC10416205 DOI: 10.1177/19476035231154746] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 05/06/2023] Open
Abstract
OBJECTIVE The primary aim was to determine and compare the complication rate of different surgical treatment options for osteochondral lesions of the talus (OLTs). The secondary aim was to analyze and compare the severity and types of complications. DESIGN A literature search was performed in MEDLINE (PubMed), EMBASE (Ovid), and the Cochrane Library. Methodological quality was assessed using the Methodological Index for Non-Randomized Studies (MINORS). Primary outcome was the complication rate per surgical treatment option. Secondary outcomes included the severity (using the Modified Clavien-Dindo-Sink Complication Classification System for Orthopedic Surgery) and types of complications. The primary outcome, the severity, and the sub-analyses were analyzed using a random effects model. A moderator test for subgroup-analysis was used to determine differences. The types of complications were presented as rates. RESULTS In all, 178 articles from the literature search were included for analysis, comprising 6,962 OLTs with a pooled mean age of 35.5 years and follow-up of 46.3 months. Methodological quality was fair. The overall complication rate was 5% (4%-6%; treatment group effect, P = 0.0015). Analysis resulted in rates from 3% (2%-4%) for matrix-assisted bone marrow stimulation to 15% (5%-35%) for metal implants. Nerve injury was the most observed complication. CONCLUSIONS In 1 out of 20 patients treated surgically for an OLT, a complication occurs. Metal implants have a significantly higher complication rate compared with other treatment modalities. No life-threatening complications were reported.
Collapse
Affiliation(s)
- Julian J. Hollander
- Department of Orthopaedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Academic Center for Evidence Based Sports Medicine, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports, International Olympic Committee Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jari Dahmen
- Department of Orthopaedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Academic Center for Evidence Based Sports Medicine, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports, International Olympic Committee Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Kaj S. Emanuel
- Department of Orthopaedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Academic Center for Evidence Based Sports Medicine, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports, International Olympic Committee Research Center, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Orthopedic Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Sjoerd A.S. Stufkens
- Department of Orthopaedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Academic Center for Evidence Based Sports Medicine, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports, International Olympic Committee Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - John G. Kennedy
- Department of Orthopedic Surgery, NYU Langone Health, New York, NY, USA
| | - Gino M.M.J. Kerkhoffs
- Department of Orthopaedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Academic Center for Evidence Based Sports Medicine, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports, International Olympic Committee Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Seow D, Ubillus HA, Azam MT, Mercer N, Yasui Y, Hui J, Pearce CJ, Kennedy JG. Limited evidence of adjuvant biologics with bone marrow stimulation for the treatment of osteochondral lesion of the talus: a systematic review. Knee Surg Sports Traumatol Arthrosc 2022; 30:4238-4249. [PMID: 36029315 DOI: 10.1007/s00167-022-07130-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE To evaluate the complication rates, continuous functional outcome scores, and return to play data following bone marrow stimulation (BMS) versus biologics ± BMS for the treatment of osteochondral lesion of the talus (OLT). METHODS A systematic review was performed. The PubMed and Embase databases were searched using specific search terms and eligibility criteria according to the PRISMA guidelines. The level of evidence was assessed using published criteria by The Journal of Bone & Joint Surgery, and the quality of evidence using the Modified Coleman Methodology Score. Continuous variables were presented as mean ± standard deviation and categorical variables as frequencies (percentages). RESULTS BMS versus BMS + hyaluronic acid (HA): no complications in either treatment arm were reported. The mean American Orthopaedic Foot and Ankle Society score was 43.5 to 67.3 points and 44.0 to 72.4 points, respectively. The mean 10 mm Visual Analogue Scale pain score was 7.7 to 3.8 points and 7.5 to 2.5 points, respectively. BMS versus BMS + concentrated bone marrow aspirate (CBMA): the pooled overall complication rate was 17/64 (26.6%) versus 11/71 (15.5%), respectively (non-significant). The pool revision rate was 15/64 (23.4%) versus 6/71 (8.5%), respectively (p = 0.016). There has been a notable poor reporting of complication rates for the use of ADSC and PRP as adjuvant biological therapies to BMS for the treatment of OLT. CONCLUSION There was an overall limited comparative clinical evidence of adjuvant biologics with BMS versus BMS alone for the treatment of OLT. BMS + HA and BMS + CBMA can provide superior outcomes, albeit the currently limited evidence. Further studies are warranted to establish the true clinical superiority of the various biologics ± BMS versus BMS alone. These studies must also compare the various biologics against one another to determine, if any, the optimal biologic for OLT. Clinicians should counsel patients accordingly on these findings as required. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- Dexter Seow
- NYU Langone Health, NYU Langone Orthopedic Hospital, New York, New York, USA
- National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hugo A Ubillus
- NYU Langone Health, NYU Langone Orthopedic Hospital, New York, New York, USA
| | - Mohammad T Azam
- NYU Langone Health, NYU Langone Orthopedic Hospital, New York, New York, USA
| | - Nathaniel Mercer
- NYU Langone Health, NYU Langone Orthopedic Hospital, New York, New York, USA
| | - Youichi Yasui
- Department of Orthopaedic Surgery, School of Medicine, Teikyo University, Tokyo, Japan
| | - James Hui
- National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christopher J Pearce
- National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - John G Kennedy
- NYU Langone Health, NYU Langone Orthopedic Hospital, New York, New York, USA.
| |
Collapse
|
4
|
Marín Fermín T, Macchiarola L, Zampeli F, Maskalo G, Olory B, Papakostas E, Murawski CD, Hogan MV, Kennedy JG, D'Hooghe P. Osteochondral lesions of the talar dome in the athlete: what evidence leads to which treatment. JOURNAL OF CARTILAGE & JOINT PRESERVATION 2022; 2:100065. [DOI: 10.1016/j.jcjp.2022.100065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Hembree WC, Gallagher BW, Guyton GP. What's New in Foot and Ankle Surgery. J Bone Joint Surg Am 2022; 104:857-863. [PMID: 35316249 DOI: 10.2106/jbjs.21.01562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Walter C Hembree
- Department of Orthopaedic Surgery, MedStar Union Memorial Hospital, Baltimore, Maryland
| | | | | |
Collapse
|
6
|
Li Z, Cao H, Xu Y, Li X, Han X, Fan Y, Jiang Q, Sun Y, Zhang X. Bioinspired polysaccharide hybrid hydrogel promoted recruitment and chondrogenic differentiation of bone marrow mesenchymal stem cells. Carbohydr Polym 2021; 267:118224. [PMID: 34119177 DOI: 10.1016/j.carbpol.2021.118224] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 01/05/2023]
Abstract
Cartilage regeneration by biomimetic cartilage matrix with synchronously recruited stem cells was one of ideal strategies. Inspired by catechol for proteins adhesion, dopamine modified polysaccharide hybrid hydrogel (HD-C) was prepared by integrating collagen I (Col I) and hyaluronic acid derivatives (HA-DN) with sulfhydryl modified polysaccharide hybrid hydrogel (HS-C) as control. Because of double-crosslinking architecture, HD-C hydrogel was endowed with a more compact pore structure, higher mechanical properties and water retention ability in comparison with those of HS-C hydrogel. Meanwhile, it significantly promoted the proliferation and spread of rabbit bone marrow stem cells (rBMSCs), and accelerated cartilaginous matrix secretion. RT-PCR results also verified higher related gene expression of chondrogenesis (Sox 9, Agg and Col II). Moreover, HD-C hydrogel could enhance the enrichment and migration of rBMSCs in vitro by potential functional protein adsorption mechanisms, and this phenomenon was further confirmed by more rBMSCs migration in short-term joint implantation experiments in vivo.
Collapse
Affiliation(s)
- Zhulian Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Hongfu Cao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Yang Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Xing Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - XiaoWen Han
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| | - Qing Jiang
- College of Materials Science and Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China.
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China; College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
| |
Collapse
|