1
|
Inoue K, Nakamura Y, Caughey B, Zheng-Lin B, Ueno M, Furukawa M, Kawamoto Y, Itoh S, Umemoto K, Sudo K, Satoh T, Mizuno N, Kajiwara T, Fujisawa T, Bando H, Yoshino T, Strickler JH, Morizane C, Bekaii-Saab T, Ikeda M. Clinicomolecular Profile and Efficacy of Human Epidermal Growth Factor Receptor 2 (HER2)-Targeted Therapy for HER2-Amplified Advanced Biliary Tract Cancer. JCO Precis Oncol 2025; 9:e2400718. [PMID: 40209139 PMCID: PMC12005869 DOI: 10.1200/po-24-00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/17/2024] [Accepted: 02/19/2025] [Indexed: 04/12/2025] Open
Abstract
PURPOSE This study aimed to investigate the clinicomolecular profiles and the efficacy of human epidermal growth factor receptor 2 (HER2)-targeted therapy in HER2-amplified biliary tract cancer (BTC). METHODS This study was an international collaboration that used combined data from the prospective SCRUM-Japan GOZILA and MONSTAR-SCREEN in Japan and retrospective reviews in the United States; patients with advanced BTC who had received systemic therapy were included. The clinicomolecular profiles were evaluated in an exploratory cohort, whereas the efficacy of HER2-targeted therapy was assessed in a biomarker-selected cohort. RESULTS Of the 439 patients in the exploratory cohort, 43 (10%) had HER2 amplification. The frequencies of coalterations were higher in patients with HER2 amplification versus patients without HER2 amplification including HER2 mutations (26% v 5%, P < .001), TP53 mutations (84% v 61%, P = .003), and BRAF amplification (9% v 2%, P = .030). There were no KRAS mutations identified in patients with HER2-amplified BTC. No significant difference in overall survival (OS) was observed between patients with and without HER2 amplification (median, 17.7 v 16.9 months; hazard ratio [HR], 0.95 [95% CI, 0.65 to 1.40]). Of the 60 patients with HER2-amplified BTC in the biomarker-selected cohort (43 from Japan and 17 from the United States), the OS was significantly longer in 29 patients who received HER2-targeted therapy than in those who did not receive HER2-targeted therapy (median, 24.3 v 12.1 months; HR, 0.39 [95% CI, 0.23 to 0.82]). Multivariate analysis identified HER2-targeted therapy as an independent prognostic factor for OS (HR, 0.29 [95% CI, 0.14 to 0.58]; P < .001). CONCLUSION HER2 amplification was found in 10% of advanced BTC and was not identified as an independent prognostic factor for OS. Patients with HER2-amplified BTC derive significant benefit from HER2-targeted therapy.
Collapse
Affiliation(s)
- Kanae Inoue
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshiaki Nakamura
- Translational Research Support Office, Division of Drug and Diagnostic Development Promotion, Department for the Promotion of Drug and Diagnostic Development, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Bennett Caughey
- Division of Hematology/Oncology, Massachusetts General Hospital, Boston, MA
| | - Binbin Zheng-Lin
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ
| | - Makoto Ueno
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| | - Masayuki Furukawa
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Yasuyuki Kawamoto
- Division of Cancer Center, Hokkaido University Hospital, Sapporo, Japan
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kumiko Umemoto
- Department of Clinical Oncology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Kentaro Sudo
- Department of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | - Taroh Satoh
- Center for Cancer Genomics and Precision Medicine, Osaka University Hospital, Osaka, Japan
| | - Nobumasa Mizuno
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Takeshi Kajiwara
- Department of Gastrointestinal Medical Oncology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan
| | - Takao Fujisawa
- Translational Research Support Office, Division of Drug and Diagnostic Development Promotion, Department for the Promotion of Drug and Diagnostic Development, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideaki Bando
- Translational Research Support Office, Division of Drug and Diagnostic Development Promotion, Department for the Promotion of Drug and Diagnostic Development, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | | | - Chigusa Morizane
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | | | - Masafumi Ikeda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
2
|
Glushko T, Costello J, Chima R, McGettigan M, Kim R, Jeong D, Qayyum A. Molecular signatures of intrahepatic cholangiocarcinoma: role in targeted therapy selection. Eur J Radiol 2025; 187:112056. [PMID: 40222184 DOI: 10.1016/j.ejrad.2025.112056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 02/08/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025]
Abstract
Cholangiocarcinoma is a highly lethal disease with a 5-year overall survival rate of 7-20%. A minority of patients present with resectable disease, and relapse rates remain high. Emerging data from next generation sequencing analysis have identified various actionable mutations which drive the different disease courses opening door to precision medicine and targeted therapies. This review focuses on the clinical significance of genetic alterations as well as the role of systemic therapies, immunotherapy and targeted therapies for intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Tetiana Glushko
- Moffitt Cancer Center, Department of Radiology, 2902 USF Magnolia Drive, Tampa, FL 33612, United States.
| | - James Costello
- Moffitt Cancer Center, Department of Radiology, 2902 USF Magnolia Drive, Tampa, FL 33612, United States
| | - Ranjit Chima
- Moffitt Cancer Center, Department of Radiology, 2902 USF Magnolia Drive, Tampa, FL 33612, United States
| | - Melissa McGettigan
- Moffitt Cancer Center, Department of Radiology, 2902 USF Magnolia Drive, Tampa, FL 33612, United States
| | - Richard Kim
- Moffitt Cancer Center, Department of Radiology, 2902 USF Magnolia Drive, Tampa, FL 33612, United States
| | - Daniel Jeong
- Moffitt Cancer Center, Department of Radiology, 2902 USF Magnolia Drive, Tampa, FL 33612, United States
| | - Aliya Qayyum
- Moffitt Cancer Center, Department of Radiology, 2902 USF Magnolia Drive, Tampa, FL 33612, United States
| |
Collapse
|
3
|
Bharti J, Gogu P, Pandey SK, Verma A, Yadav JP, Singh AK, Kumar P, Dwivedi AR, Pathak P. BRAF V600E in cancer: Exploring structural complexities, mutation profiles, and pathway dysregulation. Exp Cell Res 2025; 446:114440. [PMID: 39961465 DOI: 10.1016/j.yexcr.2025.114440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/14/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
BRAF, a fundamental component of cellular signaling pathways regulating growth and survival, is frequently mutated in cancer development. Among entire BRAF mutations, the V600E substitution stands out as a dominant alteration in various malignancies, including melanoma, colorectal cancer, and thyroid cancer. Understanding the structural differences between wild-type BRAF and BRAFV600E is crucial for elucidating the molecular mechanisms underpinnings tumorigenesis and identifying dysregulation associated with the same. V600E mutation results in a constitutively active kinase domain, leading to dysregulated downstream signaling independent of extracellular stimuli. This sustained activation promotes cell proliferation, survival, angiogenesis, and hallmark features of the cancer cells. The study describes three distinct classes of BRAF mutations where Class 1 mutations predominantly involve point mutations within the BRAF gene, while Class 2 encompasses in-frame insertions and deletions, and Class 3 comprises gene fusions with large-scale chromosomal rearrangements. Further, we have discussed dysregulated pathways associated with mutation of BRAFV600E, which includes MAPK/ERK, PI3K/AKT/mTOR, TP53, DNA damage response, and WNT/β-Catenin from schematic representation. In the current review, we have shown how these dysregulated pathways play pivotal roles in tumorigenesis, tumor progression in BRAF-mutant cancers and highlighted the critical role of BRAF dysregulation in cancer development followed by its therapeutic implications of targeting dysregulated pathways in BRAF-driven malignancies.
Collapse
Affiliation(s)
- Jayhind Bharti
- Drug Discovery Laboratory, School of Pharmacy, GITAM (Deemed to be) University, Hyderabad Campus, 502329, India
| | - Priyadharshini Gogu
- Drug Discovery Laboratory, School of Pharmacy, GITAM (Deemed to be) University, Hyderabad Campus, 502329, India
| | | | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India; School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Jagat Pal Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Ankit Kumar Singh
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India; Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Ashish Ranjan Dwivedi
- Drug Discovery Laboratory, School of Pharmacy, GITAM (Deemed to be) University, Hyderabad Campus, 502329, India.
| | - Prateek Pathak
- Drug Discovery Laboratory, School of Pharmacy, GITAM (Deemed to be) University, Hyderabad Campus, 502329, India.
| |
Collapse
|
4
|
Gilbert TM, Randle L, Quinn M, McGreevy O, O'leary L, Young R, Diaz-Neito R, Jones RP, Greenhalf B, Goldring C, Fenwick S, Malik H, Palmer DH. Molecular biology of cholangiocarcinoma and its implications for targeted therapy in patient management. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2025; 51:108352. [PMID: 38653586 DOI: 10.1016/j.ejso.2024.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Cholangiocarcinoma (CCA) remains a devastating malignancy and a significant challenge to treat. The majority of CCA patients are diagnosed at an advanced stage, making the disease incurable in most cases. The advent of high-throughput genetic sequencing has significantly improved our understanding of the molecular biology underpinning cancer. The identification of 'druggable' genetic aberrations and the development of novel targeted therapies against them is opening up new treatment strategies. Currently, 3 targeted therapies are approved for use in CCA; Ivosidenib in patients with IDH1 mutations and Infigratinib/Pemigatinib in those with FGFR2 fusions. As our understanding of the biology underpinning CCA continues to improve it is highly likely that additional targeted therapies will become available in the near future. This is important, as it is thought up to 40 % of CCA patients harbour a potentially actionable mutation. In this review we provide an overview of the molecular pathogenesis of CCA and highlight currently available and potential future targeted treatments.
Collapse
Affiliation(s)
- T M Gilbert
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK; Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK.
| | - L Randle
- Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK
| | - M Quinn
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK
| | - O McGreevy
- Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK
| | - L O'leary
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK
| | - R Young
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK; Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK
| | - R Diaz-Neito
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK
| | - R P Jones
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK; Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK
| | - B Greenhalf
- Liverpool Experimental Cancer Medicines Centre, University of Liverpool, Liverpool, UK
| | - C Goldring
- Department of Pharmacology and Therapeutics, Institute of Systems Integrative and Molecular Biology, University of Liverpool, Liverpool, UK
| | - S Fenwick
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK
| | - H Malik
- Hepatobiliary Surgery, Liverpool University Hospitals NHS FT, Liverpool, UK
| | - D H Palmer
- Clatterbridge Cancer Centre, Liverpool, UK; Liverpool Experimental Cancer Medicines Centre, University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Zhan T, Betge J, Schulte N, Dreikhausen L, Hirth M, Li M, Weidner P, Leipertz A, Teufel A, Ebert MP. Digestive cancers: mechanisms, therapeutics and management. Signal Transduct Target Ther 2025; 10:24. [PMID: 39809756 PMCID: PMC11733248 DOI: 10.1038/s41392-024-02097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/20/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Cancers of the digestive system are major contributors to global cancer-associated morbidity and mortality, accounting for 35% of annual cases of cancer deaths. The etiologies, molecular features, and therapeutic management of these cancer entities are highly heterogeneous and complex. Over the last decade, genomic and functional studies have provided unprecedented insights into the biology of digestive cancers, identifying genetic drivers of tumor progression and key interaction points of tumor cells with the immune system. This knowledge is continuously translated into novel treatment concepts and targets, which are dynamically reshaping the therapeutic landscape of these tumors. In this review, we provide a concise overview of the etiology and molecular pathology of the six most common cancers of the digestive system, including esophageal, gastric, biliary tract, pancreatic, hepatocellular, and colorectal cancers. We comprehensively describe the current stage-dependent pharmacological management of these malignancies, including chemo-, targeted, and immunotherapy. For each cancer entity, we provide an overview of recent therapeutic advancements and research progress. Finally, we describe how novel insights into tumor heterogeneity and immune evasion deepen our understanding of therapy resistance and provide an outlook on innovative therapeutic strategies that will shape the future management of digestive cancers, including CAR-T cell therapy, novel antibody-drug conjugates and targeted therapies.
Collapse
Affiliation(s)
- Tianzuo Zhan
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Johannes Betge
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadine Schulte
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena Dreikhausen
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Hirth
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Moying Li
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philip Weidner
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Antonia Leipertz
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Teufel
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- DKFZ Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany.
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
6
|
Kehmann L, Jördens M, Loosen SH, Luedde T, Roderburg C, Leyh C. Evolving therapeutic landscape of advanced biliary tract cancer: from chemotherapy to molecular targets. ESMO Open 2024; 9:103706. [PMID: 39366294 PMCID: PMC11489061 DOI: 10.1016/j.esmoop.2024.103706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 10/06/2024] Open
Abstract
Biliary tract cancer, the second most common type of liver cancer, remains a therapeutic challenge due to its late diagnosis and poor prognosis. In recent years, it has become evident that classical chemotherapy might not be the optimal treatment for patients with biliary tract cancer, especially after failure of first-line therapy. Finding new treatment options and strategies to improve the survival of these patients is therefore crucial. With the rise and increasing availability of genetic testing in patients with tumor, novel treatment approaches targeting specific genetic alterations have recently been proposed and have demonstrated their safety and efficacy in numerous clinical trials. In this review, we will first consider chemotherapy options and the new possibility of combining chemotherapy with immune checkpoint inhibitors in first-line treatment. We will then provide an overview of genomic alterations and their potential for targeted therapy especially in second-line therapy. In addition to the most common alterations such as isocitrate dehydrogenase 1 or 2 (IDH1/2) mutations, fibroblast growth factor receptor 2 (FGFR2) fusions, and alterations, we will also discuss less frequently encountered alterations such as BRAF V600E mutation and neurotrophic tyrosine kinase receptor gene (NTRK) fusion. We highlight the importance of molecular profiling in guiding therapeutic decisions and emphasize the need for continued research to optimize and expand targeted treatment strategies for this aggressive malignancy.
Collapse
Affiliation(s)
- L Kehmann
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum, Charité University Medicine Berlin, Berlin, Germany; Servier Deutschland GmbH, München, Germany
| | - M Jördens
- Clinic of Gastroenterology, Hepatology & Infectious Diseases, Medical Faculty and University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - S H Loosen
- Clinic of Gastroenterology, Hepatology & Infectious Diseases, Medical Faculty and University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - T Luedde
- Clinic of Gastroenterology, Hepatology & Infectious Diseases, Medical Faculty and University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - C Roderburg
- Clinic of Gastroenterology, Hepatology & Infectious Diseases, Medical Faculty and University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - C Leyh
- Clinic of Gastroenterology, Hepatology & Infectious Diseases, Medical Faculty and University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany.
| |
Collapse
|
7
|
Hossain MA. Targeting the RAS upstream and downstream signaling pathway for cancer treatment. Eur J Pharmacol 2024; 979:176727. [PMID: 38866361 DOI: 10.1016/j.ejphar.2024.176727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Cancer often involves the overactivation of RAS/RAF/MEK/ERK (MAPK) and PI3K-Akt-mTOR pathways due to mutations in genes like RAS, RAF, PTEN, and PIK3CA. Various strategies are employed to address the overactivation of these pathways, among which targeted therapy emerges as a promising approach. Directly targeting specific proteins, leads to encouraging results in cancer treatment. For instance, RTK inhibitors such as imatinib and afatinib selectively target these receptors, hindering ligand binding and reducing signaling initiation. These inhibitors have shown potent efficacy against Non-Small Cell Lung Cancer. Other inhibitors, like lonafarnib targeting Farnesyltransferase and GGTI 2418 targeting geranylgeranyl Transferase, disrupt post-translational modifications of proteins. Additionally, inhibition of proteins like SOS, SH2 domain, and Ras demonstrate promising anti-tumor activity both in vivo and in vitro. Targeting downstream components with RAF inhibitors such as vemurafenib, dabrafenib, and sorafenib, along with MEK inhibitors like trametinib and binimetinib, has shown promising outcomes in treating cancers with BRAF-V600E mutations, including myeloma, colorectal, and thyroid cancers. Furthermore, inhibitors of PI3K (e.g., apitolisib, copanlisib), AKT (e.g., ipatasertib, perifosine), and mTOR (e.g., sirolimus, temsirolimus) exhibit promising efficacy against various cancers such as Invasive Breast Cancer, Lymphoma, Neoplasms, and Hematological malignancies. This review offers an overview of small molecule inhibitors targeting specific proteins within the RAS upstream and downstream signaling pathways in cancer.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
8
|
Li Y, Kang J, Zhang X. How to incorporate new agents into precise medicine for cholangiocarcinoma? Am J Cancer Res 2024; 14:2570-2583. [PMID: 38859865 PMCID: PMC11162663 DOI: 10.62347/nfdl2398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
Cholangiocarcinoma, a rare and aggressive form of cancer originating from the bile ducts in the liver, poses a significant challenge for treatment. However, the emergence of precision medicine has brought newfound hope for more effective therapies. Several precision medicine approaches have demonstrated promise in the treatment of cholangiocarcinoma. One such approach is targeted therapy, which involves utilizing drugs that specifically target the genetic mutations or alterations present in the tumor cells. In the case of cholangiocarcinoma, mutations in the IDH1 and IDH2 genes are frequently observed. Immunotherapy is another precision medicine approach being explored for the treatment of cholangiocarcinoma. Immune checkpoint inhibitors like pembrolizumab and nivolumab can be used to bolster the body's immune response against cancer cells. While the response to immunotherapy can vary among individuals, studies have shown promising results, particularly in patients with high levels of tumor-infiltrating lymphocytes or microsatellite instability. Moreover, molecular profiling of cholangiocarcinoma tumors can play a crucial role in identifying potential targets for precision medicine. Through advanced next-generation sequencing techniques, specific gene alterations or dysregulations in pathways can be identified, potentially guiding treatment decisions. This personalized approach enables tailored treatment plans based on the unique genetic characteristics of each patient's tumor. In conclusion, the advent of precision medicine has opened up new avenues for the treatment of cholangiocarcinoma. Targeted therapy and immunotherapy have exhibited promising results, and further molecular profiling is expected to uncover additional therapeutic options. Such advancements represent a significant step forward in the quest to enhance outcomes for individuals affected by cholangiocarcinoma.
Collapse
Affiliation(s)
- Yifan Li
- Department of Hepatobiliary, Pancreatic and Gastrointestinal Surgery, Shanxi Province Carcinoma Hospital, Shanxi Hospital Affiliated to Carcinoma Hospital, Chinese Academy of Medical Sciences, Carcinoma Hospital Affiliated to Shanxi Medical UniversityTaiyuan 030013, Shanxi, PR China
| | - Juying Kang
- Department of Information, Shanxi Province Carcinoma Hospital, Shanxi Hospital Affiliated to Carcinoma Hospital, Chinese Academy of Medical Sciences, Carcinoma Hospital Affiliated to Shanxi Medical UniversityTaiyuan 030013, Shanxi, PR China
| | - Xiaojuan Zhang
- Department of Radiology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuan 030013, Shanxi, PR China
| |
Collapse
|
9
|
Mahipal A, Storandt MH, Teslow EA, Jaeger E, Stoppler MC, Jin Z, Chakrabarti S. Frequency of Common and Uncommon BRAF Alterations among Colorectal and Non-Colorectal Gastrointestinal Malignancies. Cancers (Basel) 2024; 16:1823. [PMID: 38791902 PMCID: PMC11119877 DOI: 10.3390/cancers16101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The predictive and prognostic role of BRAF alterations has been evaluated in colorectal cancer (CRC); however, BRAF alterations have not been fully characterized in non-CRC gastrointestinal (GI) malignancies. In the present study, we report the frequency and spectrum of BRAF alterations among patients with non-CRC GI malignancies. METHODS Patients with CRC and non-CRC GI malignancies who underwent somatic tumor profiling via a tissue-based or liquid-based assay were included in this study. Gain-of-function BRAF alterations were defined as pathogenic/likely pathogenic somatic short variants (SVs), copy number amplifications ≥8, or fusions (RNA or DNA). RESULTS Among 51,560 patients with somatic profiling, 40% had CRC and 60% had non-CRC GI malignancies. BRAF GOF alterations were seen more frequently in CRC (8.9%) compared to non-CRC GI malignancies (2.2%) (p < 0.001). Non-CRC GI malignancies with the highest prevalence of BRAF GOF alterations were bile duct cancers (4.1%) and small intestine cancers (4.0%). Among BRAF GOF alterations, class II (28% vs. 6.8%, p < 0.001) and class III (23% vs. 14%, p < 0.001) were more common in non-CRC GI malignancies. Among class II alterations, rates of BRAF amplifications (3.1% vs. 0.3%, p < 0.001) and BRAF fusions (12% vs. 2.2%, p < 0.001) were higher in non-CRC GI malignancies compared to CRC. CONCLUSIONS Non-CRC GI malignancies demonstrate a distinct BRAF alteration profile compared to CRC, with a higher frequency of class II and III mutations, and more specifically, a higher incidence of BRAF fusions. Future studies should evaluate clinical implications for the management of non-CRC GI patients with BRAF alterations, especially BRAF fusions.
Collapse
Affiliation(s)
- Amit Mahipal
- Department of Medical Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | | | - Emily A. Teslow
- Tempus AI, Chicago, IL 60654, USA; (E.A.T.); (E.J.); (M.C.S.)
| | - Ellen Jaeger
- Tempus AI, Chicago, IL 60654, USA; (E.A.T.); (E.J.); (M.C.S.)
| | | | - Zhaohui Jin
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Sakti Chakrabarti
- Department of Medical Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
10
|
Taghizadeh H, Dong Y, Gruenberger T, Prager GW. Perioperative and palliative systemic treatments for biliary tract cancer. Ther Adv Med Oncol 2024; 16:17588359241230756. [PMID: 38559612 PMCID: PMC10981863 DOI: 10.1177/17588359241230756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/18/2024] [Indexed: 04/04/2024] Open
Abstract
Due to the fact biliary tract cancer (BTC) is often diagnosed at an advanced stage, thus, not eligible for resection, and due to the aggressive tumor biology, it is considered as one of the cancer types with the worst prognosis. Advances in diagnosis, surgical techniques, and molecular characterization have led to an improvement of the prognosis of BTC patients, recently. Although neoadjuvant therapy is expected to improve surgical outcomes by reducing tumor size, its routine is not well established. The application of neoadjuvant therapy in locally advanced disease may be indicated, the routine use of systemic therapy prior to surgery for cholangiocarcinoma patients with an upfront resectable disease is less well established, but discussed and performed in selected cases. In advanced disease, only combination chemotherapy regimens have been demonstrated to achieve disease control in untreated patients. Molecular profiling of the tumor has demonstrated that many BTC might bear actionable targets, which might be addressed by biological treatments, thus improving the prognosis of the patients. Furthermore, the addition of the immunotherapy to standard chemotherapy might improve the prognosis in a subset of patients. This review seeks to give a comprehensive overview about the role of neoadjuvant as well as palliative systemic treatment approaches and an outlook about novel systemic treatment concept in BTC.
Collapse
Affiliation(s)
- Hossein Taghizadeh
- Division of Oncology, Department of Internal Medicine I, University Hospital St. Pölten, St. Pölten, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
- Karl Landsteiner Institute for Oncology and Nephrology, St. Pölten, Austria
- Medical University of Vienna, Center for Cancer Research, Vienna, Austria
- Medical University of Vienna, Department of Medicine I, Vienna, Austria
| | - Yawen Dong
- Department of Surgery, HPB Center, Health Network Vienna, Clinic Favoriten, Vienna, Austria
| | - Thomas Gruenberger
- Department of Surgery, HPB Center, Health Network Vienna, Clinic Favoriten, Vienna, Austria
| | - Gerald W. Prager
- Department of Medicine I, Medical University of Vienna, Comprehensive Cancer Center Vienna, Spitalgasse 23, Vienna AT1090, Austria
| |
Collapse
|
11
|
Pavlidis ET, Galanis IN, Pavlidis TE. New trends in diagnosis and management of gallbladder carcinoma. World J Gastrointest Oncol 2024; 16:13-29. [PMID: 38292841 PMCID: PMC10824116 DOI: 10.4251/wjgo.v16.i1.13] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Gallbladder (GB) carcinoma, although relatively rare, is the most common biliary tree cholangiocarcinoma with aggressiveness and poor prognosis. It is closely associated with cholelithiasis and long-standing large (> 3 cm) gallstones in up to 90% of cases. The other main predisposing factors for GB carcinoma include molecular factors such as mutated genes, GB wall calcification (porcelain) or mainly mucosal microcalcifications, and GB polyps ≥ 1 cm in size. Diagnosis is made by ultrasound, computed tomography (CT), and, more precisely, magnetic resonance imaging (MRI). Preoperative staging is of great importance in decision-making regarding therapeutic management. Preoperative staging is based on MRI findings, the leading technique for liver metastasis imaging, enhanced three-phase CT angiography, or magnetic resonance angiography for major vessel assessment. It is also necessary to use positron emission tomography (PET)-CT or 18F-FDG PET-MRI to more accurately detect metastases and any other occult deposits with active metabolic uptake. Staging laparoscopy may detect dissemination not otherwise found in 20%-28.6% of cases. Multimodality treatment is needed, including surgical resection, targeted therapy by biological agents according to molecular testing gene mapping, chemotherapy, radiation therapy, and immunotherapy. It is of great importance to understand the updated guidelines and current treatment options. The extent of surgical intervention depends on the disease stage, ranging from simple cholecystectomy (T1a) to extended resections and including extended cholecystectomy (T1b), with wide lymph node resection in every case or IV-V segmentectomy (T2), hepatic trisegmentectomy or major hepatectomy accompanied by hepaticojejunostomy Roux-Y, and adjacent organ resection if necessary (T3). Laparoscopic or robotic surgery shows fewer postoperative complications and equivalent oncological outcomes when compared to open surgery, but much attention must be paid to avoiding injuries. In addition to surgery, novel targeted treatment along with immunotherapy and recent improvements in radiotherapy and chemotherapy (neoadjuvant-adjuvant capecitabine, cisplatin, gemcitabine) have yielded promising results even in inoperable cases calling for palliation (T4). Thus, individualized treatment must be applied.
Collapse
Affiliation(s)
- Efstathios T Pavlidis
- 2nd Propedeutic Department of Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Ioannis N Galanis
- 2nd Propedeutic Department of Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Theodoros E Pavlidis
- 2nd Propedeutic Department of Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| |
Collapse
|
12
|
Ghosh I, Dey Ghosh R, Mukhopadhyay S. Identification of genes associated with gall bladder cell carcinogenesis: Implications in targeted therapy of gall bladder cancer. World J Gastrointest Oncol 2023; 15:2053-2063. [PMID: 38173427 PMCID: PMC10758643 DOI: 10.4251/wjgo.v15.i12.2053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/11/2023] [Accepted: 11/10/2023] [Indexed: 12/14/2023] Open
Abstract
Gall bladder cancer (GBC) is becoming a very devastating form of hepatobiliary cancer in India. Every year new cases of GBC are quite high in India. Despite recent advanced multimodality treatment options, the survival of GBC patients is very low. If the disease is diagnosed at the advanced stage (with local nodal metastasis or distant metastasis) or surgical resection is inoperable, the prognosis of those patients is very poor. So, perspectives of targeted therapy are being taken. Targeted therapy includes hormone therapy, proteasome inhibitors, signal transduction and apoptosis inhibitors, angiogenesis inhibitors, and immunotherapeutic agents. One such signal transduction inhibitor is the specific short interfering RNA (siRNA) or short hairpin RNA (shRNA). For developing siRNA-mediated therapy shRNA, although several preclinical studies to evaluate the efficacy of these key molecules have been performed using gall bladder cells, many more clinical trials are required. To date, many such genes have been identified. This review will discuss the recently identified genes associated with GBC and those that have implications in its treatment by siRNA or shRNA.
Collapse
Affiliation(s)
- Ishita Ghosh
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata 700094, India
| | - Ruma Dey Ghosh
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata 700094, India
| | - Soma Mukhopadhyay
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata 700094, India
| |
Collapse
|
13
|
Merath K, Tiwari A, Parikh AA, Pawlik TM. Molecular targeted and systemic therapy for intrahepatic cholangiocarcinoma: a multi-disciplinary approach. Future Oncol 2023; 19:2607-2621. [PMID: 38108100 DOI: 10.2217/fon-2023-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Most patients with intrahepatic cholangiocarcinoma (ICC) are diagnosed with advanced disease. For individuals with resectable tumors, R0 resection with lymphadenectomy is the best potentially curative-intent treatment. After resection, adjuvant therapy with capecitabine is the current standard of care. For patients with unresectable or distant metastatic disease, doublet chemotherapy with gemcitabine and cisplatin is the most utilized first-line regimen, but recent studies using triplet regimens and even the addition of immunotherapy have begun to shift the paradigm of systemic therapy. Molecular therapies have recently received US FDA approval for second-line treatment for patients harboring actionable genomic alterations. This review focuses on the multidisciplinary approach to the treatment of ICC with an emphasis on molecular targeted and systemic therapy.
Collapse
Affiliation(s)
- Katiuscha Merath
- Division of Surgical Oncology, University of Texas Health Science Center San Antonio MD Anderson Cancer Center, San Antonio, TX, USA
| | - Ankur Tiwari
- Division of Surgical Oncology, University of Texas Health Science Center San Antonio MD Anderson Cancer Center, San Antonio, TX, USA
| | - Alexander A Parikh
- Division of Surgical Oncology, University of Texas Health Science Center San Antonio MD Anderson Cancer Center, San Antonio, TX, USA
| | - Timothy M Pawlik
- Division of Surgical Oncology, The Ohio State University Wexner Medical Center & James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Mitiushkina NV, Tiurin VI, Anuskina AA, Bordovskaya NA, Shestakova AD, Martianov AS, Bubnov MG, Shishkina AS, Semina MV, Romanko AA, Kuligina ES, Imyanitov EN. Molecular Analysis of Biliary Tract Cancers with the Custom 3' RACE-Based NGS Panel. Diagnostics (Basel) 2023; 13:3168. [PMID: 37891989 PMCID: PMC10605186 DOI: 10.3390/diagnostics13203168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
The technique 3' rapid amplification of cDNA ends (3' RACE) allows for detection of translocations with unknown gene partners located at the 3' end of the chimeric transcript. We composed a 3' RACE-based RNA sequencing panel for the analysis of FGFR1-4 gene rearrangements, detection of activating mutations located within FGFR1-4, IDH1/2, ERBB2 (HER2), KRAS, NRAS, BRAF, and PIK3CA genes, and measurement of the expression of ERBB2, PD-L1, and FGFR1-4 transcripts. This NGS panel was utilized for the molecular profiling of 168 biliary tract carcinomas (BTCs), including 83 intrahepatic cholangiocarcinomas (iCCAs), 44 extrahepatic cholangiocarcinomas (eCCAs), and 41 gallbladder adenocarcinomas (GBAs). The NGS failure rate was 3/168 (1.8%). iCCAs, but not other categories of BTCs, were characterized by frequent FGFR2 alterations (17/82, 20.7%) and IDH1/2 mutations (23/82, 28%). Other potentially druggable events included ERBB2 amplifications or mutations (7/165, 4.2% of all successfully analyzed BTCs) and BRAF p.V600E mutations (3/165, 1.8%). In addition to NGS, we analyzed microsatellite instability (MSI) using the standard five markers and revealed this event in 3/158 (1.9%) BTCs. There were no instances of ALK, ROS1, RET, and NTRK1-3 gene rearrangements or MET exon 14 skipping mutations. Parallel analysis of 47 iCCA samples with the Illumina TruSight Tumor 170 kit confirmed good performance of our NGS panel. In conclusion, targeted RNA sequencing coupled with the 3' RACE technology is an efficient tool for the molecular diagnostics of BTCs.
Collapse
Affiliation(s)
- Natalia V. Mitiushkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
| | - Vladislav I. Tiurin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
| | - Aleksandra A. Anuskina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
| | - Natalia A. Bordovskaya
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
| | - Anna D. Shestakova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
| | - Aleksandr S. Martianov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Mikhail G. Bubnov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
| | - Anna S. Shishkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
| | - Maria V. Semina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
| | - Aleksandr A. Romanko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
| | - Ekaterina S. Kuligina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St. Petersburg, Russia
| |
Collapse
|
15
|
Guo H, Zhi Y, Wang K, Li N, Yu D, Ji Z, Chen B. Establishment of two oxaliplatin-resistant gallbladder cancer cell lines and comprehensive analysis of dysregulated genes. Open Med (Wars) 2023; 18:20230690. [PMID: 37786776 PMCID: PMC10541806 DOI: 10.1515/med-2023-0690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 10/04/2023] Open
Abstract
Acquired resistance to chemotherapeutic drugs in gallbladder cancer (GBC) results in therapy failure. This study is aimed to establish oxaliplatin (OXA)-resistant GBC cell lines and uncover their gene expression profiles. First, two OXA-resistant GBC cell lines (GBC-SD/OXA and SGC996/OXA) were established by gradually increasing the drug concentration, and the resistance index was 4-5. The two resistant cell lines showed slower proliferation and higher stemness, colony formation, and migration abilities. Epithelial mesenchymal transformation and increased levels of P-glycoprotein were also detected. Next RNA-sequence analysis identified 4,675 dysregulated genes (DGs) in resistant cells, and most of the 12 randomly selected DGs were verified to be consistent with the sequence results. Kyoto Encyclopedia of Genes and Genomes analysis indicated that several DGs were involved in resistance- and phenotype-related pathways, of which the activations of PD-L1 and ERK1/2 were both verified in resistant cell lines. In conclusion, this study is the first to report the gene expression profile of OXA-resistant GBC cells and provides a useful database for target development.
Collapse
Affiliation(s)
- Haijun Guo
- Department of Emergency Surgery, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai201318, China
| | - Yunqing Zhi
- Department of Assisted Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai201204, China
| | - Kaijing Wang
- Department of Hepatobiliary Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, China
| | - Na Li
- Department of Nursing, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, China
| | - Danlei Yu
- Department of Nursing, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200120, China
| | - Zhonghua Ji
- Department of Anesthesia, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai200120, China
| | - Bo Chen
- Department of Hepatobiliary Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai200120, China
| |
Collapse
|
16
|
Valery M, Vasseur D, Fachinetti F, Boilève A, Smolenschi C, Tarabay A, Antoun L, Perret A, Fuerea A, Pudlarz T, Boige V, Hollebecque A, Ducreux M. Targetable Molecular Alterations in the Treatment of Biliary Tract Cancers: An Overview of the Available Treatments. Cancers (Basel) 2023; 15:4446. [PMID: 37760415 PMCID: PMC10526255 DOI: 10.3390/cancers15184446] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Biliary tract cancers (BTCs) are rare tumours, most often diagnosed at an unresectable stage, associated with poor prognosis, with a 5-year survival rate not exceeding 10%. Only first- and second-line treatments are well codified with the combination of cisplatin-gemcitabine chemotherapy and immunotherapy followed by 5-FU and oxaliplatin chemotherapy, respectively. Many studies have shown that BTC, and more particularly intrahepatic cholangiocarcinoma (iCCA), have a high rate of targetable somatic alteration. To date, the FDA has approved several drugs. Ivosidenib targeting IDH1 mutations, as well as futibatinib and pemigatinib targeting FGFR2 fusions, are approved for pre-treated advanced CCA. The combination of dabrafenib and trametinib are approved for BRAFV600E mutated advanced tumours, NTRK inhibitors entrectinib and larotrectinib for tumours bearing NTRK fusion and prembrolizumab for MSI-H advanced tumours, involving a small percentage of BTC in these three settings. Several other potentially targetable alterations are found in BTC, such as HER2 mutations or amplifications or KRASG12C mutations and mutations in genes involved in DNA repair mechanisms. This review aims to clarify the specific diagnostic modalities for gene alterations and to summarize the results of the main trials and developments underway for the management of advanced BTC with targetable alterations.
Collapse
Affiliation(s)
- Marine Valery
- Medical Oncology Department, Gustave Roussy, F-94805 Villejuif, France; (A.B.); (C.S.); (A.T.); (L.A.); (A.P.); (A.F.); (T.P.); (V.B.); (A.H.); (M.D.)
| | - Damien Vasseur
- Medical Biology and Pathology Department, Gustave Roussy, F-94805 Villejuif, France;
| | - Francesco Fachinetti
- Dana-Farber Institute, Lowe Center for Thoracic Oncology, Boston, MA 02215, USA;
| | - Alice Boilève
- Medical Oncology Department, Gustave Roussy, F-94805 Villejuif, France; (A.B.); (C.S.); (A.T.); (L.A.); (A.P.); (A.F.); (T.P.); (V.B.); (A.H.); (M.D.)
- Université Paris-Saclay, Gustave Roussy, Inserm Unité Dynamique des Cellules Tumorales, F-94805 Villejuif, France
| | - Cristina Smolenschi
- Medical Oncology Department, Gustave Roussy, F-94805 Villejuif, France; (A.B.); (C.S.); (A.T.); (L.A.); (A.P.); (A.F.); (T.P.); (V.B.); (A.H.); (M.D.)
- Département d’Innovation Thérapeutique, Gustave Roussy, F-94805 Villejuif, France
| | - Anthony Tarabay
- Medical Oncology Department, Gustave Roussy, F-94805 Villejuif, France; (A.B.); (C.S.); (A.T.); (L.A.); (A.P.); (A.F.); (T.P.); (V.B.); (A.H.); (M.D.)
| | - Leony Antoun
- Medical Oncology Department, Gustave Roussy, F-94805 Villejuif, France; (A.B.); (C.S.); (A.T.); (L.A.); (A.P.); (A.F.); (T.P.); (V.B.); (A.H.); (M.D.)
| | - Audrey Perret
- Medical Oncology Department, Gustave Roussy, F-94805 Villejuif, France; (A.B.); (C.S.); (A.T.); (L.A.); (A.P.); (A.F.); (T.P.); (V.B.); (A.H.); (M.D.)
| | - Alina Fuerea
- Medical Oncology Department, Gustave Roussy, F-94805 Villejuif, France; (A.B.); (C.S.); (A.T.); (L.A.); (A.P.); (A.F.); (T.P.); (V.B.); (A.H.); (M.D.)
| | - Thomas Pudlarz
- Medical Oncology Department, Gustave Roussy, F-94805 Villejuif, France; (A.B.); (C.S.); (A.T.); (L.A.); (A.P.); (A.F.); (T.P.); (V.B.); (A.H.); (M.D.)
| | - Valérie Boige
- Medical Oncology Department, Gustave Roussy, F-94805 Villejuif, France; (A.B.); (C.S.); (A.T.); (L.A.); (A.P.); (A.F.); (T.P.); (V.B.); (A.H.); (M.D.)
| | - Antoine Hollebecque
- Medical Oncology Department, Gustave Roussy, F-94805 Villejuif, France; (A.B.); (C.S.); (A.T.); (L.A.); (A.P.); (A.F.); (T.P.); (V.B.); (A.H.); (M.D.)
- Département d’Innovation Thérapeutique, Gustave Roussy, F-94805 Villejuif, France
| | - Michel Ducreux
- Medical Oncology Department, Gustave Roussy, F-94805 Villejuif, France; (A.B.); (C.S.); (A.T.); (L.A.); (A.P.); (A.F.); (T.P.); (V.B.); (A.H.); (M.D.)
- Université Paris-Saclay, Gustave Roussy, Inserm Unité Dynamique des Cellules Tumorales, F-94805 Villejuif, France
| |
Collapse
|
17
|
Skouteris N, Papageorgiou G, Fioretzaki R, Charalampakis N, Schizas D, Kykalos S, Tolia M. Immune checkpoint inhibitors and combinations with other agents in cholangiocarcinoma. Immunotherapy 2023; 15:487-502. [PMID: 36876442 DOI: 10.2217/imt-2022-0225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Cholangiocarcinoma consists of a heterogeneous group of malignancies with generally poor prognoses. Immunotherapy has emerged in the treatment landscape of many tumors, offering survival benefits, but data regarding the use of immunotherapy for cholangiocarcinoma remain vague. In this review, the authors analyze differences in the tumor microenvironment and various immune escape mechanisms and discuss available immunotherapy combinations with other agents among completed and ongoing clinical trials, such as chemotherapy, targeted agents, antiangiogenic drugs, local ablative therapies, cancer vaccines, adoptive cell therapy and PARP and TGF-β inhibitors. Ongoing research to identify appropriate biomarkers is warranted.
Collapse
Affiliation(s)
- Nikolaos Skouteris
- Department of Medical Oncology, Metaxa Cancer Hospital of Piraeus, Piraeus, 185 37, Greece
| | - Georgios Papageorgiou
- Department of Medical Oncology, Metaxa Cancer Hospital of Piraeus, Piraeus, 185 37, Greece
| | - Rodanthi Fioretzaki
- Department of Medical Oncology, Metaxa Cancer Hospital of Piraeus, Piraeus, 185 37, Greece
| | - Nikolaos Charalampakis
- Department of Medical Oncology, Metaxa Cancer Hospital of Piraeus, Piraeus, 185 37, Greece
| | - Dimitrios Schizas
- First Department of Surgery, National & Kapodistrian University of Athens, Laikon General Hospital, Athens, 115 27, Greece
| | - Stylianos Kykalos
- Second Propedeutic Department of Surgery, National & Kapodistrian University of Athens, Laikon General Hospital, Athens, 115 27, Greece
| | - Maria Tolia
- Department of Radiation Oncology, University Hospital of Crete, Voutes, Heraklion, Crete, 71110, Greece
| |
Collapse
|
18
|
Ohaegbulam KC, Koethe Y, Fung A, Mayo SC, Grossberg AJ, Chen EY, Sharzehi K, Kardosh A, Farsad K, Rocha FG, Thomas CR, Nabavizadeh N. The multidisciplinary management of cholangiocarcinoma. Cancer 2023; 129:184-214. [PMID: 36382577 DOI: 10.1002/cncr.34541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022]
Abstract
Cholangiocarcinoma is a lethal malignancy of the biliary epithelium that can arise anywhere along the biliary tract. Surgical resection confers the greatest likelihood of long-term survivability. However, its insidious onset, difficult diagnostics, and resultant advanced presentation render the majority of patients unresectable, highlighting the importance of early detection with novel biomarkers. Developing liver-directed therapies and emerging targeted therapeutics may offer improved survivability for patients with unresectable or advanced disease. In this article, the authors review the current multidisciplinary standards of care in resectable and unresectable cholangiocarcinoma, with an emphasis on novel biomarkers for early detection and nonsurgical locoregional therapy options.
Collapse
Affiliation(s)
- Kim C Ohaegbulam
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Yilun Koethe
- Department of Interventional Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Alice Fung
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Skye C Mayo
- Department of Surgical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Aaron J Grossberg
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Emerson Y Chen
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Kaveh Sharzehi
- Division of Gastroenterology and Hepatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Adel Kardosh
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Khashayar Farsad
- Department of Interventional Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Flavio G Rocha
- Department of Surgical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Charles R Thomas
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA.,Department of Radiation Oncology, Dartmouth School of Medicine, Hanover, New Hampshire, USA
| | - Nima Nabavizadeh
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
19
|
Mutations de l'ADN dans les cholangiocarcinomes : cibler IDH1 et autres mutations. Bull Cancer 2022; 109:11S21-11S27. [DOI: 10.1016/s0007-4551(22)00465-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Genomic architecture of FGFR2 fusions in cholangiocarcinoma and its implication for molecular testing. Br J Cancer 2022; 127:1540-1549. [PMID: 35871236 PMCID: PMC9553883 DOI: 10.1038/s41416-022-01908-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 12/16/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is a primary malignancy of the biliary tract with a dismal prognosis. Recently, several actionable genetic aberrations were identified with significant enrichment in intrahepatic CCA, including FGFR2 gene fusions with a prevalence of 10–15%. Recent clinical data demonstrate that these fusions are druggable in a second-line setting in advanced/metastatic disease and the efficacy in earlier lines of therapy is being evaluated in ongoing clinical trials. This scenario warrants standardised molecular profiling of these tumours. Methods A detailed analysis of the original genetic data from the FIGHT-202 trial, on which the approval of Pemigatinib was based, was conducted. Results Comparing different detection approaches and displaying representative cases, we described the genetic landscape and architecture of FGFR2 fusions in iCCA and show biological and technical aspects to be considered for their detection. We elaborated parameters, including a suggestion for annotation, that should be stated in a molecular diagnostic FGFR2 report to allow a complete understanding of the analysis performed and the information provided. Conclusion This study provides a detailed presentation and dissection of the technical and biological aspects regarding FGFR2 fusion detection, which aims to support molecular pathologists, pathologists and clinicians in diagnostics, reporting of the results and decision-making.
Collapse
|
21
|
Normanno N, Martinelli E, Melisi D, Pinto C, Rimassa L, Santini D, Scarpa A. Role of molecular genetics in the clinical management of cholangiocarcinoma. ESMO Open 2022; 7:100505. [PMID: 35696744 PMCID: PMC9198375 DOI: 10.1016/j.esmoop.2022.100505] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/13/2022] Open
Abstract
The incidence of cholangiocarcinoma (CCA) has steadily increased during the past 20 years, and mortality is increasing. The majority of patients with CCA have advanced or metastatic disease at diagnosis, and treatment options for unresectable disease are limited, resulting in poor prognosis. However, recent identification of targetable genomic alterations has expanded treatment options for eligible patients. Given the importance of early and accurate diagnosis in optimizing patient outcomes, this review discusses best practices in CCA diagnosis, with a focus on categorizing molecular genetics and available targeted therapies. Imaging and staging of CCAs are discussed, as well as recommended biopsy collection techniques, and molecular and genomic profiling methodologies, which have become increasingly important as molecular biomarker data accumulate. Approved agents targeting actionable genomic alterations specifically in patients with CCA include ivosidenib for tumors harboring IDH1 mutations, and infigratinib and pemigatinib for those with FGFR2 fusions. Other agents currently under development in this indication have shown promising results, which are presented here.
Collapse
Affiliation(s)
- N Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale-IRCCS, Naples, Italy.
| | - E Martinelli
- Medical Oncology, Department of Precision Medicine, Università della Campania 'L. Vanvitelli', Naples, Italy
| | - D Melisi
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy; Digestive Molecular Clinical Oncology Research Unit, University of Verona, Policlinico B.B. Rossi, Verona, Italy
| | - C Pinto
- Medical Oncology Unit, Comprehensive Cancer Centre, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - L Rimassa
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - D Santini
- Medical Oncology, University Campus Bio-Medico, Rome, Italy
| | - A Scarpa
- ARC-Net Research Centre and Section of Pathology, Department of Diagnostics and Public Health, University of Verona, Policlinico G.B. Rossi, Verona, Italy
| |
Collapse
|
22
|
Intrahepatic Cholangiocarcinoma: A Summative Review of Biomarkers and Targeted Therapies. Cancers (Basel) 2021; 13:cancers13205169. [PMID: 34680318 PMCID: PMC8533913 DOI: 10.3390/cancers13205169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary Intrahepatic cholangiocarcinoma is the second most common primary liver malignancy. Among patients with operable disease, surgical resection is the cornerstone of therapy. Among the majority of patients who present with advanced disease treatment, systemic or targeted therapy is indicated. Recent advancements have provided more novel therapeutic approaches to a subset of patients with intrahepatic cholangiocarcinoma. Abstract Although rare, intrahepatic cholangiocarcinoma (ICC) is the second most common primary hepatic malignancy and the incidence of ICC has increased 14% per year in recent decades. Treatment of ICC remains difficult as most people present with advanced disease not amenable to curative-intent surgical resection. Even among patients with operable disease, margin-negative surgical resection can be difficult to achieve and the incidence of recurrence remains high. As such, there has been considerable interest in systemic chemotherapy and targeted therapy for ICC. Over the last decade, the understanding of the molecular and genetic foundations of ICC has reshaped treatment approaches and strategies. Next-generation sequencing has revealed that most ICC tumors have at least one targetable mutation. These advancements have led to multiple clinical trials to examine the safety and efficacy of novel therapeutics that target tumor-specific molecular and genetic aberrations. While these advancements have demonstrated survival benefit in early phase clinical trials, continued investigation in randomized larger-scale trials is needed to further define the potential clinical impact of such therapy.
Collapse
|
23
|
Abstract
Although rare, intrahepatic cholangiocarcinoma (ICC) is the second most common primary hepatic malignancy and the incidence of ICC has increased 14% per year in recent decades. Treatment of ICC remains difficult as most people present with advanced disease not amenable to curative-intent surgical resection. Even among patients with operable disease, margin-negative surgical resection can be difficult to achieve and the incidence of recurrence remains high. As such, there has been considerable interest in systemic chemotherapy and targeted therapy for ICC. Over the last decade, the understanding of the molecular and genetic foundations of ICC has reshaped treatment approaches and strategies. Next-generation sequencing has revealed that most ICC tumors have at least one targetable mutation. These advancements have led to multiple clinical trials to examine the safety and efficacy of novel therapeutics that target tumor-specific molecular and genetic aberrations. While these advancements have demonstrated survival benefit in early phase clinical trials, continued investigation in randomized larger-scale trials is needed to further define the potential clinical impact of such therapy.
Collapse
|