1
|
Antona A, Leo G, Favero F, Varalda M, Venetucci J, Faletti S, Todaro M, Mazzucco E, Soligo E, Saglietti C, Stassi G, Manfredi M, Pelicci G, Corà D, Valente G, Capello D. Targeting lysine-specific demethylase 1 (KDM1A/LSD1) impairs colorectal cancer tumorigenesis by affecting cancer cells stemness, motility, and differentiation. Cell Death Discov 2023; 9:201. [PMID: 37385999 DOI: 10.1038/s41420-023-01502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
Among all cancers, colorectal cancer (CRC) is the 3rd most common and the 2nd leading cause of death worldwide. New therapeutic strategies are required to target cancer stem cells (CSCs), a subset of tumor cells highly resistant to present-day therapy and responsible for tumor relapse. CSCs display dynamic genetic and epigenetic alterations that allow quick adaptations to perturbations. Lysine-specific histone demethylase 1A (KDM1A also known as LSD1), a FAD-dependent H3K4me1/2 and H3K9me1/2 demethylase, was found to be upregulated in several tumors and associated with a poor prognosis due to its ability to maintain CSCs staminal features. Here, we explored the potential role of KDM1A targeting in CRC by characterizing the effect of KDM1A silencing in differentiated and CRC stem cells (CRC-SCs). In CRC samples, KDM1A overexpression was associated with a worse prognosis, confirming its role as an independent negative prognostic factor of CRC. Consistently, biological assays such as methylcellulose colony formation, invasion, and migration assays demonstrated a significantly decreased self-renewal potential, as well as migration and invasion potential upon KDM1A silencing. Our untargeted multi-omics approach (transcriptomic and proteomic) revealed the association of KDM1A silencing with CRC-SCs cytoskeletal and metabolism remodeling towards a differentiated phenotype, supporting the role of KDM1A in CRC cells stemness maintenance. Also, KDM1A silencing resulted in up-regulation of miR-506-3p, previously reported to play a tumor-suppressive role in CRC. Lastly, loss of KDM1A markedly reduced 53BP1 DNA repair foci, implying the involvement of KDM1A in the DNA damage response. Overall, our results indicate that KDM1A impacts CRC progression in several non-overlapping ways, and therefore it represents a promising epigenetic target to prevent tumor relapse.
Collapse
Affiliation(s)
- Annamaria Antona
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy.
| | - Giovanni Leo
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Francesco Favero
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, Department of Translational Medicine, Università del Piemonte Orientale, Corso Trieste 15/A, 28100, Novara, Italy
| | - Marco Varalda
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Jacopo Venetucci
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Stefania Faletti
- Department of Experimental Oncology, IRCCS, European Institute of Oncology, Via Adamello 16, 20139, Milano, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Eleonora Mazzucco
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Enrica Soligo
- Pathology Unit, Ospedale Sant'Andrea, Corso Mario Abbiate 21, 13100, Vercelli, Italy
| | - Chiara Saglietti
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences, Università di Palermo, Via del Vespro 131, 90127, Palermo, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, Department of Translational Medicine, Università del Piemonte Orientale, Corso Trieste 15/A, 28100, Novara, Italy
| | - Giuliana Pelicci
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Department of Experimental Oncology, IRCCS, European Institute of Oncology, Via Adamello 16, 20139, Milano, Italy
| | - Davide Corà
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, Department of Translational Medicine, Università del Piemonte Orientale, Corso Trieste 15/A, 28100, Novara, Italy
| | - Guido Valente
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Pathology Unit, Ospedale Sant'Andrea, Corso Mario Abbiate 21, 13100, Vercelli, Italy
| | - Daniela Capello
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| |
Collapse
|
2
|
Agboyibor C, Dong J, Effah CY, Drokow EK, Ampomah-Wireko M, Pervaiz W, Sangmor A, Ma X, Li J, Liu HM, Zhang P. Epigenetic compounds targeting pharmacological target lysine specific demethylase 1 and its impact on immunotherapy, chemotherapy and radiotherapy for treatment of tumor recurrence and resistance. Biomed Pharmacother 2023; 157:113934. [PMID: 36395607 DOI: 10.1016/j.biopha.2022.113934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022] Open
Abstract
It has been proven that metastatic recurrence and therapeutic resistance are linked. Due to the variability of individuals and tumors, as well as the tumor's versatility in avoiding therapies, therapy resistance is more difficult to treat. Therapy resistance has significantly restricted the clinical feasibility and efficacy of tumor therapy, despite the discovery of novel compounds and therapy combinations with increasing efficacy. In several tumors, lysine specific demethylase 1 (LSD1) has been associated to metastatic recurrence and therapeutic resistance. For researchers to better comprehend how LSD1-mediated tumor therapy resistance occurs and how to overcome it in various tumors, this study focused on the role of LSD1 in tumor recurrence and therapeutic resistance. The importance of therapeutically targeted LSD1 was also discussed. Most gene pathway signatures are related to LSD1 inhibitor sensitivity. However, some gene pathway signatures, especially in AML, negatively correlate with LSD1 inhibitor sensitivity, but targeting LSD1 makes the therapy-resistant tumor sensitive to physiological doses of conventional therapy. We propose that combining LSD1 inhibitor with traditional tumor therapy can help patients attain a complete response and prevent cancer relapse.
Collapse
Affiliation(s)
- Clement Agboyibor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China
| | - Jianshu Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China
| | - Clement Yaw Effah
- College of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Emmanuel Kwateng Drokow
- Department of Oncology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital Henan, 450003, Zhengzhou, PR China
| | | | - Waqar Pervaiz
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China
| | - Augustina Sangmor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xinli Ma
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, PR China
| | - Jian Li
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, PR China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China.
| | - Peng Zhang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan province, PR China 450008.
| |
Collapse
|