1
|
Knudsen L, Guo F, Sharoh D, Huang J, Blicher JU, Lund TE, Zhou Y, Zhang P, Yang Y. The laminar pattern of proprioceptive activation in human primary motor cortex. Cereb Cortex 2025; 35:bhaf076. [PMID: 40233153 PMCID: PMC11998912 DOI: 10.1093/cercor/bhaf076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/16/2025] [Accepted: 03/09/2025] [Indexed: 04/17/2025] Open
Abstract
The primary motor cortex (M1) is increasingly being recognized for its vital role in proprioceptive somatosensation. However, our current understanding of proprioceptive processing at the laminar scale is limited. Empirical findings in primates and rodents suggest a pronounced role of superficial cortical layers, but the involvement of deep layers has yet to be examined in humans. Submillimeter resolution functional magnetic resonance imaging (fMRI) has emerged in recent years, paving the way for studying layer-dependent activity in humans (laminar fMRI). In the present study, laminar fMRI was employed to investigate the influence of proprioceptive somatosensation on M1 deep layer activation using passive finger movements. Significant M1 deep layer activation was observed in response to proprioceptive stimulation across 10 healthy subjects using a vascular space occupancy (VASO)-sequence at 7 T. For further validation, two additional datasets were included which were obtained using a balanced steady-state free precession sequence with ultrahigh (0.3 mm) in-plane resolution, yielding converging results. These results were interpreted in the light of previous laminar fMRI studies and the active inference account of motor control. We propose that a considerable proportion of M1 deep layer activation is due to proprioceptive influence and that deep layers of M1 constitute a key component in proprioceptive circuits.
Collapse
Affiliation(s)
- Lasse Knudsen
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, No 15 Datun Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100040, China
- Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Yanqihu East Road 1, Beijing, 101408, China
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Universitetsbyen 3, Aarhus, 8000, Denmark
| | - Fanhua Guo
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, No 15 Datun Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100040, China
| | - Daniel Sharoh
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Trigon 204, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
- Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, 6525 XD, The Netherlands
| | - Jiepin Huang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, No 15 Datun Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100040, China
| | - Jakob U Blicher
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Universitetsbyen 3, Aarhus, 8000, Denmark
- Department of Neurology, Aalborg University Hospital, Reberbansgade 15, Aalborg, 9000, Denmark
| | - Torben E Lund
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Universitetsbyen 3, Aarhus, 8000, Denmark
| | - Yan Zhou
- Department of Neurosurgery, Air Force Medical Center, PLA, 30 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Peng Zhang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, No 15 Datun Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100040, China
- Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Yanqihu East Road 1, Beijing, 101408, China
- Institute of Artificial Intelligence Hefei Comprehensive National Science Center, No. 5089 Wangjiang West Road, High-Tech Zone, Hefei, Anhui Province, 230088, China
| | - Yan Yang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, No 15 Datun Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100040, China
- Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Yanqihu East Road 1, Beijing, 101408, China
- Institute of Artificial Intelligence Hefei Comprehensive National Science Center, No. 5089 Wangjiang West Road, High-Tech Zone, Hefei, Anhui Province, 230088, China
| |
Collapse
|
2
|
Miyachi R, Nagamori Y, Kanazawa Y, Kitagawa T, Yamazaki T. Effects of whole-body vibration-based trunk training on lumbar motor control: A randomized controlled trial. Hum Mov Sci 2025; 99:103321. [PMID: 39874836 DOI: 10.1016/j.humov.2025.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
Lumbar motor control is an important factor for the prevention and improvement of low back pain and the enhancement of sports performance. Interventions for lumbar motor control are complex and difficult; however, training with whole-body vibrations has the potential to be simple and effective. Therefore, this study aimed to verify the effects of 4 weeks of trunk training with whole-body vibrations on each component of lumbar motor control. This single-blind, randomized controlled trial recruited 24 healthy university students (12 males and 12 females) who were randomized to undergo either whole-body or non-whole-body vibration training. The lumbar motion angle and angular jerk cost were measured during each lumbar motor control task (pelvic tilting, ball-catching, and quadruped rocking). There was a significant group × period interaction for the lumbar spine motion angle in the anterior pelvic tilt; however, no significant group × period interaction was observed in the other tasks. Regarding the comparison of pre- and post-intervention outcomes in the whole-body vibration training group, the lumbar spine motion angle of the anterior pelvic tilt was significantly smaller post-intervention than pre-intervention. In the ball-catching task, the lumbar spine motion angle was significantly smaller post-intervention than pre-intervention. Backward rocking resulted in a significantly greater lumbar spine motion angle post-intervention than pre-intervention. In conclusion, whole-body vibration enhances the control of decreasing lumbar motion. However, it does not improve all components of lumbar motor control and should be considered based on the target component.
Collapse
Affiliation(s)
- Ryo Miyachi
- Faculty of Health and Medical Sciences, Hokuriku University, Kanazawa, Japan; Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| | - Yui Nagamori
- Faculty of Health and Medical Sciences, Hokuriku University, Kanazawa, Japan
| | - Yuji Kanazawa
- Faculty of Health and Medical Sciences, Hokuriku University, Kanazawa, Japan
| | - Takashi Kitagawa
- Department of Physical Therapy, School of Health Sciences, Shinshu University, Matsumoto, Japan
| | - Toshiaki Yamazaki
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
3
|
Miyachi R, Nagamori Y, Fujii Y, Kanazawa Y. Immediate Effects of Leg-Press Coordination Training on Ankle Sway in Individuals With Chronic Ankle Instability: A Randomized Controlled Trial. Cureus 2024; 16:e72335. [PMID: 39588424 PMCID: PMC11586250 DOI: 10.7759/cureus.72335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 11/27/2024] Open
Abstract
Objectives This study aimed to determine the effects of leg-press coordination training on immediate ankle sway in individuals with chronic ankle instability (CAI). Methods Participants with CAI (age 19.8 ± 1.0 years, seven men and 17 women) were randomly allocated to a control group (CON), which performed regular leg-press training, or a coordination training group (CT), which performed coordination training using a leg-press device. The main outcome measure was the average angular jerk cost of the ankle joint in the Y-balance test (YBT), and the secondary outcome measures were the maximum ankle and hip joint angles, maximum reach distance in the YBT, ankle proprioception, and weight-bearing dorsiflexion angle. Results A significant group × period (pre- and post-intervention) interaction in the ankle average angular jerk cost was observed in the YBT in anterior reaching and posteromedial reaching ankle plantar flexion/dorsiflexion (anterior reaching: p = 0.03, posteromedial reaching: p < 0.01) as well as in adduction/abduction (posteromedial reaching: p = 0.02). The average ankle angular jerk cost in the CT group was significantly lower at post-intervention than at pre-intervention. Conclusions Leg-press coordination training immediately reduces ankle sway in individuals with CAI.
Collapse
Affiliation(s)
- Ryo Miyachi
- Faculty of Health and Medical Sciences, Hokuriku University, Kanazawa, JPN
| | - Yui Nagamori
- Faculty of Health and Medical Sciences, Hokuriku University, Kanazawa, JPN
| | - Yoshinari Fujii
- Faculty of Health and Medical Sciences, Hokuriku University, Kanazawa, JPN
| | - Yuji Kanazawa
- Faculty of Health and Medical Sciences, Hokuriku University, Kanazawa, JPN
| |
Collapse
|
4
|
Grünbaum T, Christensen MS. The functional role of conscious sensation of movement. Neurosci Biobehav Rev 2024; 164:105813. [PMID: 39019245 DOI: 10.1016/j.neubiorev.2024.105813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
This paper proposes a new framework for investigating neural signals sufficient for a conscious sensation of movement and their role in motor control. We focus on signals sufficient for proprioceptive awareness, particularly from muscle spindle activation and from primary motor cortex (M1). Our review of muscle vibration studies reveals that afferent signals alone can induce conscious sensations of movement. Similarly, studies employing peripheral nerve blocks suggest that efferent signals from M1 are sufficient for sensations of movement. On this basis, we show that competing theories of motor control assign different roles to sensation of movement. According to motor command theories, sensation of movement corresponds to an estimation of the current state based on afferent signals, efferent signals, and predictions. In contrast, within active inference architectures, sensations correspond to proprioceptive predictions driven by efferent signals from M1. The focus on sensation of movement provides a way to critically compare and evaluate the two theories. Our analysis offers new insights into the functional roles of movement sensations in motor control and consciousness.
Collapse
Affiliation(s)
- Thor Grünbaum
- Department of Psychology, University of Copenhagen, Denmark; CoInAct Research Group, University of Copenhagen, Denmark; Section for Philosophy, University of Copenhagen, Denmark.
| | - Mark Schram Christensen
- Department of Psychology, University of Copenhagen, Denmark; CoInAct Research Group, University of Copenhagen, Denmark
| |
Collapse
|
5
|
Bach P, Frank C, Kunde W. Why motor imagery is not really motoric: towards a re-conceptualization in terms of effect-based action control. PSYCHOLOGICAL RESEARCH 2024; 88:1790-1804. [PMID: 36515699 PMCID: PMC11315751 DOI: 10.1007/s00426-022-01773-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/11/2022] [Indexed: 12/15/2022]
Abstract
Overt and imagined action seem inextricably linked. Both have similar timing, activate shared brain circuits, and motor imagery influences overt action and vice versa. Motor imagery is, therefore, often assumed to recruit the same motor processes that govern action execution, and which allow one to play through or simulate actions offline. Here, we advance a very different conceptualization. Accordingly, the links between imagery and overt action do not arise because action imagery is intrinsically motoric, but because action planning is intrinsically imaginistic and occurs in terms of the perceptual effects one want to achieve. Seen like this, the term 'motor imagery' is a misnomer of what is more appropriately portrayed as 'effect imagery'. In this article, we review the long-standing arguments for effect-based accounts of action, which are often ignored in motor imagery research. We show that such views provide a straightforward account of motor imagery. We review the evidence for imagery-execution overlaps through this new lens and argue that they indeed emerge because every action we execute is planned, initiated and controlled through an imagery-like process. We highlight findings that this new view can now explain and point out open questions.
Collapse
Affiliation(s)
- Patric Bach
- School of Psychology, University of Aberdeen, William Guild Building, Kings College, Aberdeen, UK.
| | - Cornelia Frank
- Department of Sports and Movement Science, School of Educational and Cultural Studies, Osnabrück University, Osnabrück, Germany
| | - Wilfried Kunde
- Department of Psychology, Julius-Maximilians-Universität Würzburg, Röntgenring 11, Würzburg, Germany
| |
Collapse
|
6
|
Yukawa Y, Higashi T, Minakuchi M, Naito E, Murata T. Vibration-Induced Illusory Movement Task Can Induce Functional Recovery in Patients With Subacute Stroke. Cureus 2024; 16:e66667. [PMID: 39262538 PMCID: PMC11388116 DOI: 10.7759/cureus.66667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
In recent years, mental practice (MP), which involves repetitive motor imagery (MI), has been applied in rehabilitation to actively enhance exercise performance. MP is a method that involves repetitive MI, consciously evoking the intentions and content of the exercise without actual exercise. Combining actual exercise with MP promotes the development of exercise skills. However, it is possible that the MI recall ability differs greatly between individuals, affecting the therapeutic effect. In contrast, the vibration-induced illusory movement (VIM) task acts as a method to induce a motor illusion by somatosensory stimuli without actual motor. VIM, actual movement, and MI are thought to share a common neural basis in the brain. Therefore, it was hypothesized that the VIM task would complement the differences in MI recall in individual patients with hemiplegic stroke and may be a new treatment to enhance MI recall. Accordingly, in this study, we investigated the therapeutic effects of the VIM task in patients with hemiplegic stroke. In Study I, the therapeutic effect of the VIM task in 14 patients with post-stroke hemiplegia was evaluated by motor function assessment. In Study II, treatment effects were investigated by examining the ability of the same group of patients to recall MI and by neurophysiological examination of the electroencephalogram (EEG) during MI recall in four patients who consented to the study. Motor function and MI were assessed four times: before the intervention, after occupational therapy, after the VIM task (which used the motor illusion induced by tendon vibration), and one month after acceptance of therapy. Compared with occupational therapy, the VIM task showed a statistically significant improvement in upper limb function and MI ability. In addition, we found an increase in event-related desynchronization intensity during MI in the affected hemisphere only after the VIM task. It is possible that the VIM task facilitates motor function and MI. VIM task implementation of MI recall variability between individuals, which is a problem in mental practice, possible to increase the effectiveness of the brain-machine interface.
Collapse
Affiliation(s)
- Yoshihiro Yukawa
- Department of Health Sciences, Graduate School of Biomedical Sciences, Health Sciences, Nagasaki University, Nagasaki, JPN
- Department of Rehabilitation, Wakayama Professional University of Rehabilitation, Wakayama, JPN
| | - Toshio Higashi
- Department of Health Sciences, Graduate School of Biomedical Sciences, Health Sciences, Nagasaki University, Nagasaki, JPN
| | - Marina Minakuchi
- Department of Occupational Therapy, Clover Care Medical Co, Tanabe, JPN
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Suita-shi, JPN
- Graduate School of Frontier Biosciences, Osaka University, Suita-shi, JPN
| | - Takaho Murata
- Department of Neurosurgery, Murata Hospital, Osaka-shi, JPN
| |
Collapse
|
7
|
Miyachi R, Kanazawa Y, Fujii Y, Kitagawa T, Yamazaki T. Effects of 6 weeks of whole-body vibration training on ankle motor control: a randomized controlled trial. J Sports Med Phys Fitness 2024; 64:676-684. [PMID: 38916091 DOI: 10.23736/s0022-4707.24.15788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
BACKGROUND Interventions on ankle motor control are important to prevent recurrent ankle sprains. Training using whole-body vibration may easily and effectively improve ankle motor control, but the effects have not been investigated. Therefore, this study aimed to clarify the effects of 6 weeks of training with whole-body vibration on ankle motor control in a dynamic movement task among healthy participants. METHODS Twenty healthy university students (6 males and 14 females) were randomly allocated to whole-body vibration training and control groups, with 10 participants in each group. The training was performed twice a week for 6 weeks in both groups. Primary outcome was mean ankle angular jerk cost in the star excursion balance test. Secondary outcomes were maximum ankle motion angle and maximum reach distance in the star excursion balance test, ankle proprioception, and range of ankle dorsiflexion motion in the loaded position. RESULTS There was a significant group × period (pre- and postintervention) interaction for mean ankle angular jerk cost in the direction of ankle abduction/adduction during posterolateral reaching, which was significantly lower at postintervention than that at preintervention in the whole-body vibration group In the whole-body vibration group, the maximum ankle dorsiflexion motion angle during anterior and posterolateral reaching was significantly higher at postintervention than that at preintervention. CONCLUSIONS Training with whole-body vibration improves ankle motor control in dynamic movement tasks, although the direction of reach and plane of motion are limited. Additionally, training with whole-body vibration is also effective in increasing the ankle dorsiflexion angle during dynamic movement tasks.
Collapse
Affiliation(s)
- Ryo Miyachi
- Faculty of Health and Medical Sciences, Hokuriku University, Kanazawa, Japan -
| | - Yuji Kanazawa
- Faculty of Health and Medical Sciences, Hokuriku University, Kanazawa, Japan
| | - Yoshinari Fujii
- Faculty of Health and Medical Sciences, Hokuriku University, Kanazawa, Japan
| | - Takashi Kitagawa
- School of Health Sciences, Department of Physical Therapy, Shinshu University, Matsumoto, Japan
| | - Toshiaki Yamazaki
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
8
|
Rueda Parra S, Perry JC, Wolbrecht ET, Gupta D. Neural correlates of bilateral proprioception and adaptation with training. PLoS One 2024; 19:e0299873. [PMID: 38489319 PMCID: PMC10942095 DOI: 10.1371/journal.pone.0299873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Bilateral proprioception includes the ability to sense the position and motion of one hand relative to the other, without looking. This sensory ability allows us to perform daily activities seamlessly, and its impairment is observed in various neurological disorders such as cerebral palsy and stroke. It can undergo experience-dependent plasticity, as seen in trained piano players. If its neural correlates were better understood, it would provide a useful assay and target for neurorehabilitation for people with impaired proprioception. We designed a non-invasive electroencephalography-based paradigm to assess the neural features relevant to proprioception, especially focusing on bilateral proprioception, i.e., assessing the limb distance from the body with the other limb. We compared it with a movement-only task, with and without the visibility of the target hand. Additionally, we explored proprioceptive accuracy during the tasks. We tested eleven Controls and nine Skilled musicians to assess whether sensorimotor event-related spectral perturbations in μ (8-12Hz) and low-β (12-18Hz) rhythms differ in people with musical instrument training, which intrinsically involves a bilateral proprioceptive component, or when new sensor modalities are added to the task. The Skilled group showed significantly reduced μ and low-β suppression in bilateral tasks compared to movement-only, a significative difference relative to Controls. This may be explained by reduced top-down control due to intensive training, despite this, proprioceptive errors were not smaller for this group. Target visibility significantly reduced proprioceptive error in Controls, while no change was observed in the Skilled group. During visual tasks, Controls exhibited significant μ and low-β power reversals, with significant differences relative to proprioceptive-only tasks compared to the Skilled group-possibly due to reduced uncertainty and top-down control. These results provide support for sensorimotor μ and low-β suppression as potential neuromarkers for assessing proprioceptive ability. The identification of these features is significant as they could be used to quantify altered proprioceptive neural processing in skill and movement disorders. This in turn can be useful as an assay for pre and post sensory-motor intervention research.
Collapse
Affiliation(s)
- Sebastian Rueda Parra
- Department of Electrical Engineering, University of Idaho, Moscow, Idaho, United States of America
- Stratton Veterans Affairs Medical Center, Albany, New York
| | - Joel C. Perry
- Department of Mechanical Engineering, University of Idaho, Moscow, Idaho, United States of America
| | - Eric T. Wolbrecht
- Department of Mechanical Engineering, University of Idaho, Moscow, Idaho, United States of America
| | - Disha Gupta
- Stratton Veterans Affairs Medical Center, Albany, New York
- Department of Electrical and Computer Engineering, University at Albany, State University of New York, Albany, New York, United States of America
| |
Collapse
|
9
|
Shen X, Yu Y, Xiao H, Ji L, Wu J. Cortical activity associated with focal muscle vibration applied directly to the affected forearm flexor muscle in post-stroke patients: an fNIRS study. Front Neurosci 2023; 17:1281160. [PMID: 38192508 PMCID: PMC10773788 DOI: 10.3389/fnins.2023.1281160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Objective The purpose of this study was to utilize functional near-infrared spectroscopy (fNIRS) to identify changes in cortical activity caused by focal muscle vibration (FMV), which was directly administered to the affected forearm flexor muscles of hemiplegic stroke patients. Additionally, the study aimed to investigate the correlation between these changes and the clinical characteristics of the patients, thereby expanding the understanding of potential neurophysiological mechanisms linked to these effects. Methods Twenty-two stroke patients with right hemiplegia who were admitted to our ward for rehabilitation were selected for this study. The fNIRS data were collected from subjects using a block-design paradigm. Subsequently, the collected data were analyzed using the NirSpark software to determine the mean Oxyhemoglobin (Hbo) concentrations for each cortical region of interest (ROI) in the task and rest states for every subject. The stimulation task was FMV (frequency 60 Hz, amplitude 6 mm) directly applied to belly of the flexor carpi radialis muscle (FCR) on the affected side. Hbo was measured in six regions of interest (ROIs) in the cerebral cortex, which included the bilateral prefrontal cortex (PFC), sensorimotor cortex (SMC), and occipital cortex (OC). The clinical characteristics of the patients were assessed concurrently, including Lovett's 6-level muscle strength assessment, clinical muscle tone assessment, the upper extremity function items of the Fugl-Meyer Assessment (FMA-UE), Bruunstrom staging scale (BRS), and Modified Barthel index (MBI). Statistical analyses were conducted to determine the activation in the ROIs and to comprehend its correlation with the clinical characteristics of the patients. Results Statistical analysis revealed that, except for right OC, there were statistically significant differences between the mean Hbo in the task state and rest state for bilateral SMC, PFC, and left OC. A positive correlation was observed between the muscle strength of the affected wrist flexor group and the change values of Hbo (Hbo-CV), as well as the beta values in the left SMC, PFC, and OC. However, no statistical correlation was found between muscle strength and Hbo-CV or beta values in the right SMC, PFC, and OC. The BRS of the affected upper limb exhibited a positive correlation with the Hbo-CV or beta values in the left SMC and PFC. In contrast, no statistical correlation was observed in the right SMC, PFC, and bilateral OC. No significant correlation was found between the muscle tone of the affected wrist flexor group, FMA-UE, MBI, and Hbo-CV or beta values of cortical ROIs. Conclusion FMV-evoked sensory stimulation applied directly to the FCR belly on the paralyzed side activated additional brain cortices, including bilateral PFC and ipsilesional OC, along with bilateral SMC in stroke patients. However, the clinical characteristics of the patients were only correlated with the intensity of ipsilesional SMC and PFC activation. The results of this study provide neurophysiological theoretical support for the expanded clinical application of FMV.
Collapse
Affiliation(s)
- Xianshan Shen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Rehabilitation and Sports Medicine, The Second Clinical College of Anhui Medical University, Hefei, China
| | - Yang Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Rehabilitation and Sports Medicine, The Second Clinical College of Anhui Medical University, Hefei, China
| | - Han Xiao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Rehabilitation and Sports Medicine, The Second Clinical College of Anhui Medical University, Hefei, China
| | - Leilei Ji
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Rehabilitation and Sports Medicine, The Second Clinical College of Anhui Medical University, Hefei, China
| | - Jianxian Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Rehabilitation and Sports Medicine, The Second Clinical College of Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Wang W, Shi B, Wang D, Wang J, Liu G. Enhanced lower-limb motor imagery by kinesthetic illusion. Front Neurosci 2023; 17:1077479. [PMID: 37409102 PMCID: PMC10319417 DOI: 10.3389/fnins.2023.1077479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Brain-computer interface (BCI) based on lower-limb motor imagery (LMI) enables hemiplegic patients to stand and walk independently. However, LMI ability is usually poor for BCI-illiterate (e.g., some stroke patients), limiting BCI performance. This study proposed a novel LMI-BCI paradigm with kinesthetic illusion(KI) induced by vibratory stimulation on Achilles tendon to enhance LMI ability. Sixteen healthy subjects were recruited to carry out two research contents: (1) To verify the feasibility of induced KI by vibrating Achilles tendon and analyze the EEG features produced by KI, research 1 compared the subjective feeling and brain activity of participants during rest task with and without vibratory stimulation (V-rest, rest). (2) Research 2 compared the LMI-BCI performance with and without KI (KI-LMI, no-LMI) to explore whether KI enhances LMI ability. The analysis methods of both experiments included classification accuracy (V-rest vs. rest, no-LMI vs. rest, KI-LMI vs. rest, KI-LMI vs. V-rest), time-domain features, oral questionnaire, statistic analysis and brain functional connectivity analysis. Research 1 verified that induced KI by vibrating Achilles tendon might be feasible, and provided a theoretical basis for applying KI to LMI-BCI paradigm, evidenced by oral questionnaire (Q1) and the independent effect of vibratory stimulation during rest task. The results of research 2 that KI enhanced mesial cortex activation and induced more intensive EEG features, evidenced by ERD power, topographical distribution, oral questionnaire (Q2 and Q3), and brain functional connectivity map. Additionally, the KI increased the offline accuracy of no-LMI/rest task by 6.88 to 82.19% (p < 0.001). The simulated online accuracy was also improved for most subjects (average accuracy for all subjects: 77.23% > 75.31%, and average F1_score for all subjects: 76.4% > 74.3%). The LMI-BCI paradigm of this study provides a novel approach to enhance LMI ability and accelerates the practical applications of the LMI-BCI system.
Collapse
Affiliation(s)
- Weizhen Wang
- Institute of Robotics and Intelligent Systems, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Bin Shi
- Institute of Robotics and Intelligent Systems, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Dong Wang
- Institute of Robotics and Intelligent Systems, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Jing Wang
- Institute of Robotics and Intelligent Systems, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Gang Liu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Effects of unilateral neck muscle vibration on standing postural orientation and spatial perception in healthy subjects based on stimulus duration and simultaneous stimulation of trunk muscles. PLoS One 2023; 18:e0281012. [PMID: 36701330 PMCID: PMC9879387 DOI: 10.1371/journal.pone.0281012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Neck muscle vibration (NMV) influences proprioceptive sensations and modulates standing postural orientation and spatial perception. However, the effects of NMV in healthy participants would vary based on the influence of stimulus duration and combination with trunk muscle vibration. Therefore, this study with a cross-over design clarified these effects. Twenty-four healthy participants (mean age, 25.7±3.7 years) were enrolled. To assess standing postural orientation, standing center-of-pressure (COP) measurements were recorded on a COP platform, starting with closed eyes and then with open eyes. The mean mediolateral (ML) and anteroposterior (AP) position [mm] of COP and other parameters were calculated. To assess spatial perception, subjective straight ahead (SSA) measurements were recorded, wherein participants were instructed to point and project the position of the manubrium of sternum on the touch panel using their right index finger with their eyes closed. Measurements were taken before and after four conditions: no vibration (control), left NMV for 30 s, left NMV for 10 min, and left NMV and left lumbar back vibration for 10 min. Vibratory stimulation was performed with the eyes closed at 80 Hz. The measurements under the four conditions were conducted with random cross-over and 5-min resting period between the conditions. COP and SSA values were subtracted before and after each condition for standardized variation and compared. NMV combined with trunk muscle vibration for 10 min resulted in significant deviations of the ML-COP toward the stimulation side and AP-COP toward the anterior side compared to the control condition with closed eyes. SSA showed no significant differences. These findings suggest that NMV-induced nervous system modulation would be amplified by proprioceptive sensory input to trunk muscles. Therefore, this method could provide a new option for clinical trials on postural orientation using NMV. SSA based on proprioceptive sensation may not be biased without visual illusions.
Collapse
|
12
|
Hao Z, Song Y, Shi Y, Xi H, Zhang H, Zhao M, Yu J, Huang L, Li H. Altered Effective Connectivity of the Primary Motor Cortex in Transient Ischemic Attack. Neural Plast 2022; 2022:2219993. [PMID: 36437903 PMCID: PMC9699783 DOI: 10.1155/2022/2219993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022] Open
Abstract
Objective This study is aimed at exploring alteration in motor-related effective connectivity in individuals with transient ischemic attack (TIA). Methods A total of 48 individuals with TIA and 41 age-matched and sex-matched healthy controls (HCs) were recruited for this study. The participants were scanned using MRI, and their clinical characteristics were collected. To investigate motor-related effective connectivity differences between individuals with TIA and HCs, the bilateral primary motor cortex (M1) was used as the regions of interest (ROIs) to perform a whole-brain Granger causality analysis (GCA). Furthermore, partial correlation was used to evaluate the relationship between GCA values and the clinical characteristics of individuals with TIA. Results Compared with HCs, individuals with TIA demonstrated alterations in the effective connectivity between M1 and widely distributed brain regions involved in motor, visual, auditory, and sensory integration. In addition, GCA values were significantly correlated with high- and low-density lipoprotein cholesterols in individuals with TIA. Conclusion This study provides important evidence for the alteration of motor-related effective connectivity in TIA, which reflects the abnormal information flow between different brain regions. This could help further elucidate the pathological mechanisms of motor impairment in individuals with TIA and provide a new perspective for future early diagnosis and intervention for TIA.
Collapse
Affiliation(s)
- Zeqi Hao
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Yulin Song
- Department of Neurology, Anshan Changda Hospital, Anshan, China
| | - Yuyu Shi
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Hongyu Xi
- Faculty of Western Languages, Heilongjiang University, Harbin, China
| | - Hongqiang Zhang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Mengqi Zhao
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Jiahao Yu
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Lina Huang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Huayun Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
13
|
Miyachi R, Sano A, Tanaka N, Tamai M, Miyazaki J. Relationship between lumbar spine motor control ability and perceptual awareness during prone hip extension movement in people with low back pain. THE JOURNAL OF MEDICAL INVESTIGATION 2022; 69:38-44. [PMID: 35466144 DOI: 10.2152/jmi.69.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
PURPOSE The purpose of this study was to clarify the differences in lumbar spine and hip joint motor control ability (MCA) in prone hip extension (PHE) between individuals with and without low back pain (LBP). It also aimed to determine the relationship between lumbar spine and hip joint MCA and lumbar perceptual awareness in individuals with LBP. METHODS In total, 78 university students (20 with LBP and 58 without) were included in the study. The MCA of the lumbar spine and hip joint in PHE and perceptual awareness were evaluated. The MCA of the lumbar spine and hip joint was measured using a wearable sensor. Subsequently, a comparison of the MCA of the lumbar spine and hip joints of the participants and the relationship between MCA and lumbar perceptual awareness were examined. RESULTS The MCA of the LBP group was higher than that of the non-LBP group in motion on the sagittal plane. In addition, perceptual awareness was negatively correlated with MCA in the sagittal plane in the lumbar spine. CONCLUSION People with LBP had higher lumbar spine and hip joint MCA than those without LBP. Perceptual awareness was associated with lumbar spine and hip joint MCA in people with LBP. J. Med. Invest. 69 : 38-44, February, 2022.
Collapse
Affiliation(s)
- Ryo Miyachi
- Faculty of Health and Medical Sciences, Hokuriku University, Kanazawa, Japan
| | - Ayaka Sano
- Department of Physical Therapy, Faculty of Health Science, Kyoto Tachibana University, Kyoto, Japan
| | - Nana Tanaka
- Department of Physical Therapy, Faculty of Health Science, Kyoto Tachibana University, Kyoto, Japan
| | - Misaki Tamai
- Department of Physical Therapy, Faculty of Health Science, Kyoto Tachibana University, Kyoto, Japan
| | - Junya Miyazaki
- Department of Physical Therapy, Faculty of Health Science, Kyoto Tachibana University, Kyoto, Japan
| |
Collapse
|
14
|
Effects of dynamic lumbar motor control training on lumbar proprioception: A randomized controlled trial. J Bodyw Mov Ther 2022; 30:132-139. [DOI: 10.1016/j.jbmt.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/17/2021] [Accepted: 02/04/2022] [Indexed: 11/20/2022]
|
15
|
Miyachi R, Sano A, Tanaka N, Tamai M, Miyazaki J. Relationships among lumbar hip motion angle, perceptual awareness, and low back pain in young adults. J Phys Ther Sci 2021; 33:880-886. [PMID: 34873367 PMCID: PMC8636914 DOI: 10.1589/jpts.33.880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
[Purpose] We aimed to examine the relationships among low back pain, lumbar-hip motion angle, and lumbar perceptual awareness in young adults to improve the treatment of low back pain. [Participants and Methods] Data were collected from 36 university students with low back pain. The items included for evaluation were the low back pain intensity (Numeric Rating Scale), disability due to low back pain (Oswestry Low Back Pain Disability Index), lumbar spine and hip motion angles in test movements, and perceptual awareness (Fremantle Back Awareness Questionnaire). The test movements employed included trunk forward bending, trunk back bending, and prone hip extension. The motion angles of the lumbar spine and hip joints were measured using a wearable sensor. [Results] The Numeric Rating Scale was not correlated with the lumbar hip motion angle and perceptual awareness. The Oswestry Low Back Pain Disability Index was correlated with lumbar hip motion angles, at the beginning of trunk forward bending and at maximum trunk backward bending, and with perceptual awareness. [Conclusion] There are relationships among disabilities due to low back pain, lumbar hip motion angles, and perceptual awareness in each test movement; however, they vary depending on the type and angle of the test movement conducted.
Collapse
Affiliation(s)
- Ryo Miyachi
- Faculty of Health and Medical Sciences, Hokuriku University: 1-1 Taiyogaoka, Kanazawa-shi, Ishikawa 920-1180, Japan
| | - Ayaka Sano
- Department of Physical Therapy, Faculty of Health Science, Kyoto Tachibana University, Japan
| | - Nana Tanaka
- Department of Physical Therapy, Faculty of Health Science, Kyoto Tachibana University, Japan
| | - Misaki Tamai
- Department of Physical Therapy, Faculty of Health Science, Kyoto Tachibana University, Japan
| | - Junya Miyazaki
- Department of Physical Therapy, Faculty of Health Science, Kyoto Tachibana University, Japan
| |
Collapse
|
16
|
Mirdamadi JL, Seigel CR, Husch SD, Block HJ. Somatotopic Specificity of Perceptual and Neurophysiological Changes Associated with Visuo-proprioceptive Realignment. Cereb Cortex 2021; 32:1184-1199. [PMID: 34424950 DOI: 10.1093/cercor/bhab280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/26/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
When visual and proprioceptive estimates of hand position disagree (e.g., viewing the hand underwater), the brain realigns them to reduce mismatch. This perceptual change is reflected in primary motor cortex (M1) excitability, suggesting potential relevance for hand movement. Here, we asked whether fingertip visuo-proprioceptive misalignment affects only the brain's representation of that finger (somatotopically focal), or extends to other parts of the limb that would be needed to move the misaligned finger (somatotopically broad). In Experiments 1 and 2, before and after misaligned or veridical visuo-proprioceptive training at the index finger, we used transcranial magnetic stimulation to assess M1 representation of five hand and arm muscles. The index finger representation showed an association between M1 excitability and visuo-proprioceptive realignment, as did the pinkie finger representation to a lesser extent. Forearm flexors, forearm extensors, and biceps did not show any such relationship. In Experiment 3, participants indicated their proprioceptive estimate of the fingertip, knuckle, wrist, and elbow, before and after misalignment at the fingertip. Proprioceptive realignment at the knuckle, but not the wrist or elbow, was correlated with realignment at the fingertip. These results suggest the effects of visuo-proprioceptive mismatch are somatotopically focal in both sensory and motor domains.
Collapse
Affiliation(s)
- Jasmine L Mirdamadi
- Program in Neuroscience, Indiana University Bloomington, Bloomington, IN 47405, USA.,Department of Kinesiology, School of Public Health, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Courtney R Seigel
- Program in Neuroscience, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Stephen D Husch
- Department of Kinesiology, School of Public Health, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Hannah J Block
- Program in Neuroscience, Indiana University Bloomington, Bloomington, IN 47405, USA.,Department of Kinesiology, School of Public Health, Indiana University Bloomington, Bloomington, IN 47405, USA
| |
Collapse
|
17
|
Suárez-Méndez I, Walter S, López-Sanz D, Pasquín N, Bernabé R, Castillo Gallo E, Valdés M, Del Pozo F, Maestú F, Rodríguez-Mañas L. Ongoing Oscillatory Electrophysiological Alterations in Frail Older Adults: A MEG Study. Front Aging Neurosci 2021; 13:609043. [PMID: 33679373 PMCID: PMC7935553 DOI: 10.3389/fnagi.2021.609043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The role of the central nervous system in the pathophysiology of frailty is controversial. We used magnetoencephalography (MEG) to search for abnormalities in the ongoing oscillatory neural activity of frail individuals without global cognitive impairment. Methods: Fifty four older (≥70 years) and cognitively healthy (Mini-Mental State Examination ≥24) participants were classified as robust (0 criterion, n = 34) or frail (≥ 3 criteria, n = 20) following Fried's phenotype. Memory, language, attention, and executive function were assessed through well-validated neuropsychological tests. Every participant underwent a resting-state MEG and a T1-weighted magnetic resonance imaging scan. We performed MEG power spectral analyses to compare the electrophysiological profiles of frail and robust individuals. We used an ensemble learner to investigate the ability of MEG spectral power to discriminate frail from robust participants. Results: We identified increased relative power in the frail group in the mu (p < 0.05) and sensorimotor (p < 0.05) frequencies across right sensorimotor, posterior parietal, and frontal regions. The ensemble learner discriminated frail from robust participants [area under the curve = 0.73 (95% CI = 0.49–0.98)]. Frail individuals performed significantly worse in the Trail Making Test, Digit Span Test (forward), Rey-Osterrieth Complex Figure, and Semantic Fluency Test. Interpretation: Frail individuals without global cognitive impairment showed ongoing oscillatory alterations within brain regions associated with aspects of motor control, jointly to failures in executive function. Our results suggest that some physical manifestations of frailty might partly arise from failures in central structures relevant to sensorimotor and executive processing.
Collapse
Affiliation(s)
- Isabel Suárez-Méndez
- Laboratory of Cognitive and Computational Neuroscience (Complutense University of Madrid - Universidad Politécnica de Madrid), Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Madrid, Spain.,Department of Structure of Matter, Thermal Physics and Electronics, Complutense University of Madrid (UCM), Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Stefan Walter
- Foundation for Biomedical Research, University Hospital of Getafe, Getafe, Spain.,Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Spain.,Department of Medicine and Public Health, Rey Juan Carlos University, Madrid, Spain
| | - David López-Sanz
- Laboratory of Cognitive and Computational Neuroscience (Complutense University of Madrid - Universidad Politécnica de Madrid), Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Madrid, Spain.,Department of Psychobiology and Methodology in Behavioral Sciences, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Natalia Pasquín
- Foundation for Biomedical Research, University Hospital of Getafe, Getafe, Spain
| | - Raquel Bernabé
- Foundation for Biomedical Research, University Hospital of Getafe, Getafe, Spain
| | | | - Myriam Valdés
- Foundation for Biomedical Research, University Hospital of Getafe, Getafe, Spain.,Geriatric Service, University Hospital of Getafe, Getafe, Spain
| | - Francisco Del Pozo
- Laboratory of Cognitive and Computational Neuroscience (Complutense University of Madrid - Universidad Politécnica de Madrid), Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience (Complutense University of Madrid - Universidad Politécnica de Madrid), Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Leocadio Rodríguez-Mañas
- Foundation for Biomedical Research, University Hospital of Getafe, Getafe, Spain.,Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Spain.,Geriatric Service, University Hospital of Getafe, Getafe, Spain
| |
Collapse
|
18
|
Changes in the Organization of the Secondary Somatosensory Cortex While Processing Lumbar Proprioception and the Relationship With Sensorimotor Control in Low Back Pain. Clin J Pain 2020; 35:394-406. [PMID: 30730445 DOI: 10.1097/ajp.0000000000000692] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Patients with nonspecific low back pain (NSLBP) rely more on the ankle compared with the lower back proprioception while standing, perform sit-to-stand-to-sit (STSTS) movements slower, and exhibit perceptual impairments at the lower back. However, no studies investigated whether these sensorimotor impairments relate to a reorganization of the primary and secondary somatosensory cortices (S1 and S2) and primary motor cortex (M1) during proprioceptive processing. MATERIALS AND METHODS Proprioceptive stimuli were applied at the lower back and ankle muscles during functional magnetic resonance imaging in 15 patients with NSLBP and 13 controls. The location of the activation peaks during the processing of proprioception within S1, S2, and M1 were determined and compared between groups. Proprioceptive use during postural control was evaluated, the duration to perform 5 STSTS movements was recorded, and participants completed the Fremantle Back Awareness Questionnaire (FreBAQ) to assess back-specific body perception. RESULTS The activation peak during the processing of lower back proprioception in the right S2 was shifted laterally in the NSLBP group compared with the healthy group (P=0.007). Moreover, patients with NSLSP performed STSTS movements slower (P=0.018), and reported more perceptual impairments at the lower back (P<0.001). Finally, a significant correlation between a more lateral location of the activation peak during back proprioceptive processing and a more disturbed body perception was found across the total group (ρ=0.42, P=0.025). CONCLUSIONS The results suggest that patients with NSLBP show a reorganization of the higher-order processing of lower back proprioception, which could negatively affect spinal control and body perception.
Collapse
|
19
|
Hua L, Recasens M, Grent-'t-Jong T, Adams RA, Gross J, Uhlhaas PJ. Investigating cortico-subcortical circuits during auditory sensory attenuation: A combined magnetoencephalographic and dynamic causal modeling study. Hum Brain Mapp 2020; 41:4419-4430. [PMID: 32662585 PMCID: PMC7502827 DOI: 10.1002/hbm.25134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 01/27/2023] Open
Abstract
Sensory attenuation refers to the decreased intensity of a sensory percept when a sensation is self‐generated compared with when it is externally triggered. However, the underlying brain regions and network interactions that give rise to this phenomenon remain to be determined. To address this issue, we recorded magnetoencephalographic (MEG) data from 35 healthy controls during an auditory task in which pure tones were either elicited through a button press or passively presented. We analyzed the auditory M100 at sensor‐ and source‐level and identified movement‐related magnetic fields (MRMFs). Regression analyses were used to further identify brain regions that contributed significantly to sensory attenuation, followed by a dynamic causal modeling (DCM) approach to explore network interactions between generators. Attenuation of the M100 was pronounced in right Heschl's gyrus (HES), superior temporal cortex (ST), thalamus, rolandic operculum (ROL), precuneus and inferior parietal cortex (IPL). Regression analyses showed that right postcentral gyrus (PoCG) and left precentral gyrus (PreCG) predicted M100 sensory attenuation. In addition, DCM results indicated that auditory sensory attenuation involved bi‐directional information flow between thalamus, IPL, and auditory cortex. In summary, our data show that sensory attenuation is mediated by bottom‐up and top‐down information flow in a thalamocortical network, providing support for the role of predictive processing in sensory‐motor system.
Collapse
Affiliation(s)
- Lingling Hua
- Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Marc Recasens
- Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Tineke Grent-'t-Jong
- Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, UK.,Department of Child and Adolescent Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Rick A Adams
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Joachim Gross
- Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, UK.,Institute of Biomagnetism and Biosignal analysis, Westphalian Wilhelms University Muenster, Münster, Germany
| | - Peter J Uhlhaas
- Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, UK.,Department of Child and Adolescent Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
20
|
Meier ML, Vrana A, Schweinhardt P. Low Back Pain: The Potential Contribution of Supraspinal Motor Control and Proprioception. Neuroscientist 2019; 25:583-596. [PMID: 30387689 PMCID: PMC6900582 DOI: 10.1177/1073858418809074] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Motor control, which relies on constant communication between motor and sensory systems, is crucial for spine posture, stability and movement. Adaptions of motor control occur in low back pain (LBP) while different motor adaption strategies exist across individuals, probably to reduce LBP and risk of injury. However, in some individuals with LBP, adapted motor control strategies might have long-term consequences, such as increased spinal loading that has been linked with degeneration of intervertebral discs and other tissues, potentially maintaining recurrent or chronic LBP. Factors contributing to motor control adaptations in LBP have been extensively studied on the motor output side, but less attention has been paid to changes in sensory input, specifically proprioception. Furthermore, motor cortex reorganization has been linked with chronic and recurrent LBP, but underlying factors are poorly understood. Here, we review current research on behavioral and neural effects of motor control adaptions in LBP. We conclude that back pain-induced disrupted or reduced proprioceptive signaling likely plays a pivotal role in driving long-term changes in the top-down control of the motor system via motor and sensory cortical reorganization. In the outlook of this review, we explore whether motor control adaptations are also important for other (musculoskeletal) pain conditions.
Collapse
Affiliation(s)
- Michael Lukas Meier
- Integrative Spinal Research, Department of
Chiropractic Medicine, University Hospital Balgrist, Zurich, Switzerland
| | - Andrea Vrana
- Integrative Spinal Research, Department of
Chiropractic Medicine, University Hospital Balgrist, Zurich, Switzerland
| | - Petra Schweinhardt
- Integrative Spinal Research, Department of
Chiropractic Medicine, University Hospital Balgrist, Zurich, Switzerland
- Alan Edwards Center for Research on Pain,
McGill University, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Marini F, Zenzeri J, Pippo V, Morasso P, Campus C. Neural correlates of proprioceptive upper limb position matching. Hum Brain Mapp 2019; 40:4813-4826. [PMID: 31348604 PMCID: PMC6865654 DOI: 10.1002/hbm.24739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 11/06/2022] Open
Abstract
Proprioceptive information allows humans to perform smooth coordinated movements by constantly updating one's mind with knowledge of the position of one's limbs in space. How this information is combined with other sensory modalities and centrally processed to form conscious perceptions of limb position remains relatively unknown. What has proven even more elusive is pinpointing the contribution of proprioception in cortical activity related to motion. This study addresses these gaps by examining electrocortical dynamics while participants performed an upper limb position matching task in two conditions, namely with proprioceptive feedback or with both visual and proprioceptive feedback. Specifically, we evaluated the reduction of the electroencephalographic power (desynchronization) in the μ frequency band (8-12 Hz), which is known to characterize the neural activation associated with motor control and behavior. We observed a stronger desynchronization in the left motor and somatosensory areas, contralateral to the moving limb while, parietal and occipital regions, identifying association and visual areas, respectively, exhibited a similar activation level in the two hemispheres. Pertaining to the influence of the two experimental conditions it affected only movement's offset, and precisely we found that when matching movements are performed relying only on proprioceptive information, a lower cortical activity is entailed. This effect was strongest in the visual and association areas, while there was a minor effect in the hand motor and somatosensory areas.
Collapse
Affiliation(s)
- Francesca Marini
- Department of Robotics, Brain and Cognitive SciencesIstituto Italiano di TecnologiaGenoaItaly
| | - Jacopo Zenzeri
- Department of Robotics, Brain and Cognitive SciencesIstituto Italiano di TecnologiaGenoaItaly
| | - Valentina Pippo
- Department of Robotics, Brain and Cognitive SciencesIstituto Italiano di TecnologiaGenoaItaly
| | - Pietro Morasso
- Department of Robotics, Brain and Cognitive SciencesIstituto Italiano di TecnologiaGenoaItaly
| | - Claudio Campus
- U‐VIP Unit for Visually Impaired PeopleIstituto Italiano di TecnologiaGenoaItaly
| |
Collapse
|
22
|
Effects of wrist tendon vibration and eye movements on manual aiming. Exp Brain Res 2018; 236:847-857. [PMID: 29353311 DOI: 10.1007/s00221-018-5180-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/12/2018] [Indexed: 12/19/2022]
Abstract
In the present study, we investigated whether visual information mediates a proprioceptive illusion effect induced by muscle tendon vibration in manual aiming. Visual information was gradually degraded from a situation in which the targets were present and participants (n = 20; 22.3 ± 2.7 years) were permitted to make saccadic eye movements to designated target positions, to a condition in which the targets were not visible and participants were required to perform cyclical aiming while fixating a point between the two target positions. Local tendon vibration applied to the right wrist extensor muscles induced an illusory reduction of 15% in hand movement amplitude. This effect was greater in the fixation than in the saccade condition. Both anticipatory control and proprioceptive feedback are proposed to contribute to the observed effects. The primary saccade amplitude was also reduced by almost 4% when muscle tendon vibration was locally applied to the wrist. These results confirm a tight link between eye movements and manual perception and action. Moreover, the impact of the proprioceptive illusion on the ocular system indicates that the interaction between systems is bidirectional.
Collapse
|
23
|
Effects of illusory kinesthesia by tendon vibratory stimulation on the postoperative neural activities of distal radius fracture patients. Neuroreport 2017; 28:1144-1149. [DOI: 10.1097/wnr.0000000000000874] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Kodama T, Nakano H, Katayama O, Murata S. The association between brain activity and motor imagery during motor illusion induction by vibratory stimulation. Restor Neurol Neurosci 2017; 35:683-692. [PMID: 29172013 PMCID: PMC5701761 DOI: 10.3233/rnn-170771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The association between motor imagery ability and brain neural activity that leads to the manifestation of a motor illusion remains unclear. Objective: In this study, we examined the association between the ability to generate motor imagery and brain neural activity leading to the induction of a motor illusion by vibratory stimulation. Methods: The sample consisted of 20 healthy individuals who did not have movement or sensory disorders. We measured the time between the starting and ending points of a motor illusion (the time to illusion induction, TII) and performed electroencephalography (EEG). We conducted a temporo-spatial analysis on brain activity leading to the induction of motor illusions using the EEG microstate segmentation method. Additionally, we assessed the ability to generate motor imagery using the Japanese version of the Movement Imagery Questionnaire-Revised (JMIQ-R) prior to performing the task and examined the associations among brain neural activity levels as identified by microstate segmentation method, TII, and the JMIQ-R scores. Results: The results showed four typical microstates during TII and significantly higher neural activity in the ventrolateral prefrontal cortex, primary sensorimotor area, supplementary motor area (SMA), and inferior parietal lobule (IPL). Moreover, there were significant negative correlations between the neural activity of the primary motor cortex (MI), SMA, IPL, and TII, and a significant positive correlation between the neural activity of the SMA and the JMIQ-R scores. Conclusion: These findings suggest the possibility that a neural network primarily comprised of the neural activity of SMA and M1, which are involved in generating motor imagery, may be the neural basis for inducing motor illusions. This may aid in creating a new approach to neurorehabilitation that enables a more robust reorganization of the neural base for patients with brain dysfunction with a motor function disorder.
Collapse
Affiliation(s)
- Takayuki Kodama
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Hideki Nakano
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Osamu Katayama
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Nara, Japan
| | - Shin Murata
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| |
Collapse
|
25
|
Corporaal SHA, Gooijers J, Chalavi S, Cheval B, Swinnen SP, Boisgontier MP. Neural predictors of motor control and impact of visuo-proprioceptive information in youth. Hum Brain Mapp 2017; 38:5628-5647. [PMID: 28782899 DOI: 10.1002/hbm.23754] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/10/2017] [Accepted: 07/24/2017] [Indexed: 01/15/2023] Open
Abstract
For successful motor control, the central nervous system is required to combine information from the environment and the current body state, which is provided by vision and proprioception respectively. We investigated the relative contribution of visual and proprioceptive information to upper limb motor control and the extent to which structural brain measures predict this performance in youth (n = 40; age range 9-18 years). Participants performed a manual tracking task, adopting in-phase and anti-phase coordination modes. Results showed that, in contrast to older participants, younger participants performed the task with lower accuracy in general and poorer performance in anti-phase than in-phase modes. However, a proprioceptive advantage was found at all ages, that is, tracking accuracy was higher when proprioceptive information was available during both in- and anti-phase modes at all ages. The microstructural organization of interhemispheric connections between homologous dorsolateral prefrontal cortices, and the cortical thickness of the primary motor cortex were associated with sensory-specific accuracy of tracking performance. Overall, the findings suggest that manual tracking performance in youth does not only rely on brain regions involved in sensorimotor processing, but also on prefrontal regions involved in attention and working memory. Hum Brain Mapp 38:5628-5647, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sharissa H A Corporaal
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Jolien Gooijers
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Sima Chalavi
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Boris Cheval
- Department of General Internal Medicine, Rehabilitation and Geriatrics, University of Geneva, Geneva, Switzerland.,Swiss NCCR "LIVES - Overcoming Vulnerability: Life Course Perspectives", University of Geneva, Geneva, Switzerland
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Matthieu P Boisgontier
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Imai R, Osumi M, Ishigaki T, Morioka S. The influence of trait anxiety and illusory kinesthesia on pain threshold. J Phys Ther Sci 2017; 29:1236-1241. [PMID: 28744055 PMCID: PMC5509599 DOI: 10.1589/jpts.29.1236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/27/2017] [Indexed: 12/12/2022] Open
Abstract
[Purpose] It has also been reported that decreased activity in the reward pathway causes
a decrease in brain activity in the descending pain control system in people with high
trait anxiety. Activation of this system is dependent on both the reward pathway and motor
areas. Recently, studies have also shown that motor areas are activated by illusory
kinesthesia. It was aimed to explore whether anxiety trait modulates the influence of
illusory kinesthesia on pain threshold. [Subjects and Methods] The pain threshold and
trait anxiety at rest before vibratory tendon stimulation (the task) were measured. After
the task, the pain threshold, the illusory kinesthesia angle, and the intensity of
illusory kinesthesia for patients with and without illusory kinesthesia were measured. A
total of 35 healthy right-handed students participated, among whom 22 and 13 were included
in the illusion and no-illusion groups, respectively. [Results] There was a significant
increase in the pain threshold after task completion in both groups; however, there was no
statistically significant difference between the two groups. Correlational analysis
revealed that State-Trait Anxiety Inventory-trait score correlated negatively with the
pain threshold in the no-illusion group, but there was no correlation in the illusion
group. [Conclusion] The pain threshold improved regardless of the size of trait anxiety in
the illusion group, but did not improve merely through sensory input by vibratory
stimulation in the no-illusion group. Thus, illusory kinesthesia has effect of increasing
the pain threshold.
Collapse
Affiliation(s)
- Ryota Imai
- Department of Neurorehabilitation, Graduate School of Health Science, Kio University, Japan.,Department of Rehabilitation, Kawachi General Hospital, Japan
| | | | - Tomoya Ishigaki
- Department of Neurorehabilitation, Graduate School of Health Science, Kio University, Japan
| | - Shu Morioka
- Department of Neurorehabilitation, Graduate School of Health Science, Kio University, Japan.,Neuro Rehabilitation Research Center, Kio University, Japan
| |
Collapse
|
27
|
Morita T, Saito DN, Ban M, Shimada K, Okamoto Y, Kosaka H, Okazawa H, Asada M, Naito E. Self-face recognition shares brain regions active during proprioceptive illusion in the right inferior fronto-parietal superior longitudinal fasciculus III network. Neuroscience 2017; 348:288-301. [DOI: 10.1016/j.neuroscience.2017.02.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/31/2017] [Accepted: 02/15/2017] [Indexed: 01/27/2023]
|
28
|
Taylor MW, Taylor JL, Seizova-Cajic T. Muscle Vibration-Induced Illusions: Review of Contributing Factors, Taxonomy of Illusions and User’s Guide. Multisens Res 2017. [DOI: 10.1163/22134808-00002544] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Limb muscle vibration creates an illusory limb movement in the direction corresponding to lengthening of the vibrated muscle. Neck muscle vibration results in illusory motion of visual and auditory stimuli. Attributed to the activation of muscle spindles, these and related effects are of great interest as a tool in research on proprioception, for rehabilitation of sensorimotor function and for multisensory immersive virtual environments. However, these illusions are not easy to elicit in a consistent manner. We review factors that influence them, propose their classification in a scheme that links this area of research to perception theory, and provide practical suggestions to researchers. Local factors that determine the illusory effect of vibration include properties of the vibration stimulus such as its frequency, amplitude and duration, and properties of the vibrated muscle, such as contraction and fatigue. Contextual (gestalt) factors concern the relationship of the vibrated body part to the rest of the body and the environment. Tactile and visual cues play an important role, and so does movement, imagined or real. The best-known vibration illusions concern one’s own body and can be classified as ‘first-order’ due to a direct link between activity in muscle spindles and the percept. More complex illusions involve other sensory modalities and external objects, and provide important clues regarding the hidden role of proprioception, our ‘silent’ sense. Our taxonomy makes explicit this and other distinctions between different illusory effects. We include User’s Guide with tips for anyone wishing to conduct a vibration study.
Collapse
Affiliation(s)
- Mitchell W. Taylor
- Faculty of Health Sciences, University of Sydney, 75 East St, Lidcombe 2141 NSW, Sydney, Australia
| | - Janet L. Taylor
- Neuroscience Research Australia, University of New South Wales, Sydney, Australia
| | - Tatjana Seizova-Cajic
- Faculty of Health Sciences, University of Sydney, 75 East St, Lidcombe 2141 NSW, Sydney, Australia
| |
Collapse
|
29
|
Amemiya K, Naito E. Importance of human right inferior frontoparietal network connected by inferior branch of superior longitudinal fasciculus tract in corporeal awareness of kinesthetic illusory movement. Cortex 2016; 78:15-30. [DOI: 10.1016/j.cortex.2016.01.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 12/14/2015] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
|
30
|
Naito E, Morita T, Amemiya K. Body representations in the human brain revealed by kinesthetic illusions and their essential contributions to motor control and corporeal awareness. Neurosci Res 2016; 104:16-30. [DOI: 10.1016/j.neures.2015.10.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/12/2022]
|
31
|
Xu L, Cardinale M, Rabotti C, Beju B, Mischi M. Eight-Week Vibration Training of the Elbow Flexors by Force Modulation: Effects on Dynamic and Isometric Strength. J Strength Cond Res 2015; 30:739-46. [PMID: 26332777 DOI: 10.1519/jsc.0000000000001149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vibration exercise (VE) has been suggested as an effective method to improve strength and power capabilities. However, the underlying mechanisms in response to VE are still unclear. A pulley-like VE system, characterized by sinusoidal force applications has been developed and tested for proof of concept in a previous study. The aim of this study was to evaluate the effects of such force modulation on elbow flexors strength and compare it with conventional methods. Forty subjects were randomly divided into 4 groups of 10: the vibration group (VG), the no-vibration group (NVG), the dumbbell group (DG), and the control group (CG). Biceps curl exercises were used to train the elbow flexors 2 times a week for 8 weeks. Subjects in the VG were trained using a ramp-up baseline with superimposed 30 Hz sinusoidal vibration whereas the subjects in the NVG were trained using the same baseline but without vibration. Subjects in the DG were trained using dumbbells, and the subjects in the CG were not trained. The isometric break force (IBF) and 1 repetition maximum (1RM) of the subject's dominant arm were assessed before and after the 8-week training period. The VG achieved 1RM improvement (22.7%) larger than the NVG (10.8%) and comparable with the DG (22.3%). Differences in IBF gains following the training period among the training groups were found to be not significant. Our results support the inclusion of the proposed VE in strength training programs aimed at improving dynamic strength on the elbow flexors.
Collapse
Affiliation(s)
- Lin Xu
- 1Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; 2Aspire Academy, Doha, Qatar; and 3Department of Computer Science, University College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Gay A, Aimonetti JM, Roll JP, Ribot-Ciscar E. Kinesthetic illusions attenuate experimental muscle pain, as do muscle and cutaneous stimulation. Brain Res 2015; 1615:148-156. [PMID: 25935692 DOI: 10.1016/j.brainres.2015.04.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/19/2015] [Accepted: 04/06/2015] [Indexed: 12/28/2022]
Abstract
In the present study, muscle pain was induced experimentally in healthy subjects by administrating hypertonic saline injections into the tibialis anterior (TA) muscle. We first aimed at comparing the analgesic effects of mechanical vibration applied to either cutaneous or muscle receptors of the TA or to both types simultaneously. Secondly, pain alleviation was compared in subjects in whom muscle tendon vibration evoked kinesthetic illusions of the ankle joint. Muscle tendon vibration, which primarily activated muscle receptors, reduced pain intensity by 30% (p<0.01). In addition, tangential skin vibration reduced pain intensity by 33% (p<0.01), primarily by activating cutaneous receptors. Concurrently stimulating both sensory channels induced stronger analgesic effects (-51%, p<0.01), as shown by the lower levels of electrodermal activity. The strongest analgesic effects of the vibration-induced muscle inputs occurred when illusory movements were perceived (-38%, p=0.01). The results suggest that both cutaneous and muscle sensory feedback reduce muscle pain, most likely via segmental and supraspinal processes. Further clinical trials are needed to investigate these new methods of muscle pain relief.
Collapse
Affiliation(s)
- André Gay
- La Conception Hospital, APHM, Marseille, France
| | | | - Jean-Pierre Roll
- Aix-Marseille université, CNRS, NIA UMR 7260, 13331 Marseille, France
| | | |
Collapse
|
33
|
Imai R, Osumi M, Morioka S. Influence of illusory kinesthesia by vibratory tendon stimulation on acute pain after surgery for distal radius fractures: a quasi-randomized controlled study. Clin Rehabil 2015. [PMID: 26198893 DOI: 10.1177/0269215515593610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives: We investigated the effects of inducing an illusion of motion by tendon vibration on sensory and emotional aspects of pain and range of motion in patients with fractures of the distal radius. Design: A quasi-randomized controlled trial. Setting: Kawachi General Hospital, Japan. Subjects: A total of 26 patients with fractures of the distal radius were distributed quasi-randomly to either the illusory kinesthesia group ( n = 13) or control group ( n = 13). Intervention: The intervention was performed on seven consecutive days from postoperative Day 1. Evaluation was performed at seven days, one month, and two months after the surgery. Main measures: Data were collected for pain at rest, movement pain, the pain catastrophizing scale, the Hospital Anxiety and Depression Scale, and range of motion. Results: The illusory kinesthesia group reported improved pain at rest ( p < 0.001), movement pain ( p < 0.001), pain catastrophizing scale ( p < 0.001), Hospital Anxiety and Depression Scale ( p < 0.01), and range of motion ( p < 0.05) compared with the control group at seven days, one month, and two months after the surgery. The mean (SD) score of the visual analogue scale of pain at rest was 51.3 (16.8) at one day and 4.2 (4.7) at seven days in the illusory kinesthesia group, and 56.8 (22.1) at one day and 35.5 (16.2) at seven days in the control group. Conclusion: Illusory kinesthesia group improves the sensory and emotion aspects of pain in patients with fractures of the distal radius.
Collapse
Affiliation(s)
- Ryota Imai
- Department of Neurorehabilitation, Graduate School of Health Science, Kio University, Nara, Japan
- Department of Rehabilitation, Kawachi General Hospital, Osaka, Japan
| | - Michihiro Osumi
- Department of Neurorehabilitation, Graduate School of Health Science, Kio University, Nara, Japan
- Neuro Rehabilitation Research Center, Kio University, Nara, Japan
| | - Shu Morioka
- Department of Neurorehabilitation, Graduate School of Health Science, Kio University, Nara, Japan
- Neuro Rehabilitation Research Center, Kio University, Nara, Japan
| |
Collapse
|
34
|
Nojima I, Koganemaru S, Kawamata T, Fukuyama H, Mima T. Action observation with kinesthetic illusion can produce human motor plasticity. Eur J Neurosci 2015; 41:1614-23. [DOI: 10.1111/ejn.12921] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Ippei Nojima
- Department of Physical Therapy; Nagoya University Graduate School of Medicine; Nagoya Aichi Japan
| | - Satoko Koganemaru
- Human Brain Research Center; Kyoto University Graduate School of Medicine; Kyoto 606-8507 Japan
| | - Toshio Kawamata
- Kobe University Graduate School of Health Science; Kobe Hyogo Japan
| | - Hidenao Fukuyama
- Human Brain Research Center; Kyoto University Graduate School of Medicine; Kyoto 606-8507 Japan
| | - Tatsuya Mima
- Human Brain Research Center; Kyoto University Graduate School of Medicine; Kyoto 606-8507 Japan
| |
Collapse
|
35
|
Broser PJ, Moor V, Braun C. A Non-Magnetic Rotating Disk Stimulator for the Study of Neuromagnetic Correlates of Sensorimotor Interaction. IEEE Trans Neural Syst Rehabil Eng 2015; 23:1078-84. [PMID: 25823039 DOI: 10.1109/tnsre.2015.2414482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fine motor skills in humans require close interaction between the motor and the sensory systems. It is still not fully understood, how sensory feedback modulates motor commands. This is due to the fact, that there is no approach for investigating the sensorimotor cortical-interaction in sufficient detail. The fast and precise communication between the sensory and motor-systems requires measurements of cortical activity with high temporal and spatial resolution. Magnetoencephalography (MEG) is capable of both. Previously, we showed that sensory responses, can be observed by repetitive tactile stimulation. Further, motor cortex responses can be generated by periodical increase and decrease of muscle tone. Utilizing both observations we have designed an MEG and magnetic resonance imaging (MRI) compatible stimulator allowing for the study of brain activity related to sensorimotor integration. The stimulator consists of a rotating disk with an elevation such that subject senses with his finger the speed of the disk. With the force applied by the finger onto the disk, the subject can control its speed. During the experiment the subject is asked to keep the speed of the disk constant while the driving torque is systematically manipulated. This closed-loop design is especially useful to analyze the fast and continuous information flow between the two systems. In a single case pilot study using MEG, we could show that a detailed analysis of the sensorimotor-network is possible. In contrast to existing paradigms this setup allows separate time-locked analysis of the sensory- and motor-component independently and therefore the calculation of latency parameters for both systems. In the future this method will help to understand the interaction between the two systems in much greater detail.
Collapse
|
36
|
Ramos-Murguialday A, Birbaumer N. Brain oscillatory signatures of motor tasks. J Neurophysiol 2015; 113:3663-82. [PMID: 25810484 DOI: 10.1152/jn.00467.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 03/12/2015] [Indexed: 11/22/2022] Open
Abstract
Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral part of motor regulation. Changes in task-specific frequency power compared with rest were similar between motor tasks, and only significant differences in the time course and some narrow specific frequency bands were observed between motor tasks. We identified EEG features representing active and passive proprioception (with and without muscle contraction) and active intention and passive involvement (with and without voluntary effort) differentiating brain oscillations during motor tasks that could substantially support the design of novel motor BCI-based rehabilitation therapies. The BCI task induced significantly different brain activity compared with the other motor tasks, indicating neural processes unique to the use of body actuators control in a BCI context.
Collapse
Affiliation(s)
- Ander Ramos-Murguialday
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tubingen, Tubingen, Germany; TECNALIA, San Sebastian, Spain;
| | - Niels Birbaumer
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tubingen, Tubingen, Germany; Ospedale San Camillo, Istituto di Ricovero e Cura a Carattere Scientifico, Lido de Venezia, Italy
| |
Collapse
|
37
|
Yao L, Meng J, Sheng X, Zhang D, Zhu X. A novel calibration and task guidance framework for motor imagery BCI via a tendon vibration induced sensation with kinesthesia illusion. J Neural Eng 2014; 12:016005. [PMID: 25461477 DOI: 10.1088/1741-2560/12/1/016005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Lack of efficient calibration and task guidance in motor imagery (MI) based brain-computer interface (BCI) would result in the failure of communication or control, especially in patients, such as a stroke with motor impairment and intact sensation, locked-in state amyotrophic lateral sclerosis, in which the sources of data for calibration may worsen the subsequent decoding. In addition, enhancing the proprioceptive experience in MI might improve the BCI performance. APPROACH In this work, we propose a new calibrating and task guidance methodology to further improve the MI BCI, exploiting the afferent nerve system through tendon vibration stimulation to induce a sensation with kinesthesia illusion. A total of 30 subjects' experiments were carried out, and randomly divided into a control group (control-group) and calibration and task guidance group (CTG-group). MAIN RESULTS Online experiments have shown that MI could be decoded by classifier calibrated solely using sensation data, with 8 of the 15 subjects in the CTG-Group above 80%, 3 above 95% and all above 65%. Offline chronological cross-validation analysis shows that it has reached a comparable performance with the traditional calibration method (F (1, 14) = 0.14, P = 0.7176). In addition, the discrimination accuracy of MI in the CTG-Group is significantly 12.17% higher on average than that in the control-group (unpaired-T test, P = 0.0086), and illusory sensation indicates no significant difference (unpaired-T test, p = 0.3412). The finding of the existed similarity of the discriminative brain patterns and grand averaged ERD/ERS between imagined movement (actively induced) and illusory movement (passively evoked) also validates the proposed calibration and task guidance framework. SIGNIFICANCE The cognitive complexity of the illusory sensation task is much lower and more objective than that of MI. In addition, subjects' kinesthetic experience mentally simulated during the MI task might be enhanced by accessing sensory experiences from the illusory stimulation. This sensory stimulation aided BCI design could help make MI BCI more applicable.
Collapse
Affiliation(s)
- Lin Yao
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
38
|
Pettorossi VE, Schieppati M. Neck proprioception shapes body orientation and perception of motion. Front Hum Neurosci 2014; 8:895. [PMID: 25414660 PMCID: PMC4220123 DOI: 10.3389/fnhum.2014.00895] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/20/2014] [Indexed: 12/30/2022] Open
Abstract
This review article deals with some effects of neck muscle proprioception on human balance, gait trajectory, subjective straight-ahead (SSA), and self-motion perception. These effects are easily observed during neck muscle vibration, a strong stimulus for the spindle primary afferent fibers. We first remind the early findings on human balance, gait trajectory, SSA, induced by limb, and neck muscle vibration. Then, more recent findings on self-motion perception of vestibular origin are described. The use of a vestibular asymmetric yaw-rotation stimulus for emphasizing the proprioceptive modulation of motion perception from the neck is mentioned. In addition, an attempt has been made to conjointly discuss the effects of unilateral neck proprioception on motion perception, SSA, and walking trajectory. Neck vibration also induces persistent aftereffects on the SSA and on self-motion perception of vestibular origin. These perceptive effects depend on intensity, duration, side of the conditioning vibratory stimulation, and on muscle status. These effects can be maintained for hours when prolonged high-frequency vibration is superimposed on muscle contraction. Overall, this brief outline emphasizes the contribution of neck muscle inflow to the construction and fine-tuning of perception of body orientation and motion. Furthermore, it indicates that tonic neck-proprioceptive input may induce persistent influences on the subject's mental representation of space. These plastic changes might adapt motion sensitiveness to lasting or permanent head positional or motor changes.
Collapse
Affiliation(s)
| | - Marco Schieppati
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCSS), Scientific Institute of Pavia, Pavia, Italy
| |
Collapse
|
39
|
Imai R, Hayashida K, Nakano H, Morioka S. Brain Activity Associated with the Illusion of Motion Evoked by Different Vibration Stimulation Devices: An fNIRS Study. J Phys Ther Sci 2014; 26:1115-9. [PMID: 25140108 PMCID: PMC4135209 DOI: 10.1589/jpts.26.1115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/07/2014] [Indexed: 11/24/2022] Open
Abstract
[Purpose] A number of different stimulation devices are used in basic and clinical research studies, and their frequencies of use vary. However, whether or not they are equally effective has not been investigated. The purpose of the present study was to investigate neural activity in the brain during the illusion of motion evoked by stimulating the tendons of the wrist extensor muscles using various vibration devices. [Subjects] Twelve right-handed university students with no history of nervous system disorder or orthopedic disease participated in the study. [Methods] The wrist extensor tendon was stimulated using 3 different devices: 1) a vibration stimulation device (SL-0105 LP; Asahi Seisakusho Co., Ltd., Saitama, Japan), frequency 80 Hz; 2) a handy massager (YCM-20; Yamazen Corporation, Osaka, Japan), frequency 70 Hz; and 3) a handy massager (Thrive MD-01; Thrive Co., Ltd., Osaka, Japan), frequency 91.7 Hz. Brain activity was recorded during stimulation by using functional near-infrared spectroscopy. [Results] Increased neural activity was observed in both the premotor cortices and the parietal region in both hemispheres in all 3 cases. The level and localization of neural activity was comparable for all 3 stimulation devices used. [Conclusion] This suggests that subjects experience the illusion of motion while the tendon is being stimulated using any vibration device.
Collapse
Affiliation(s)
- Ryota Imai
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Japan ; Department of Rehabilitation, Kawachi General Hospital, Japan
| | - Kazuki Hayashida
- Department of Physical Therapy, Faculty of Health and Science, Kio University, Japan
| | - Hideki Nakano
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Japan ; Queensland Brain Institute, The University of Queensland, Australia ; Japan Society for the Promotion of Science, Japan
| | - Shu Morioka
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Japan
| |
Collapse
|
40
|
Ganesh G, Osu R, Naito E. Feeling the force: returning haptic signals influence effort inference during motor coordination. Sci Rep 2014; 3:2648. [PMID: 24026052 PMCID: PMC3770969 DOI: 10.1038/srep02648] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/28/2013] [Indexed: 01/05/2023] Open
Abstract
Our brain is known to automatically optimize effort expenditure during motor coordination, such that for example, during bimanual braking of a bicycle, a well-oiled brake will automatically be used more than a corroded, heavy brake. But how does our brain infer the effort expenditure? All previous motor coordination models have believed that the effort in a task is known precisely to our brain, solely from the motor commands it generates. Here we show that this belief is incorrect. Through experiments and simulation we exhibit that in addition to the motor commands, the returning haptic signals play a crucial role in the inference of the effort during a force sharing task. Our results thus elucidate a previously unknown sensory-motor association that has major ramifications for our understanding of motor coordination and provides new insights into how sensory modifications due to ergonomics, stroke and disease can affect motor coordination in humans.
Collapse
Affiliation(s)
- G Ganesh
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, 1-4 Yamadaoka, Osaka University Campus, Suita, Japan 5650871
| | | | | |
Collapse
|
41
|
Cignetti F, Vaugoyeau M, Nazarian B, Roth M, Anton JL, Assaiante C. Boosted activation of right inferior frontoparietal network: a basis for illusory movement awareness. Hum Brain Mapp 2014; 35:5166-78. [PMID: 24798824 DOI: 10.1002/hbm.22541] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/17/2014] [Accepted: 04/21/2014] [Indexed: 11/11/2022] Open
Abstract
The feeling of illusory movement is considered important in the study of human behavior because it is deeply related to motor consciousness. However, the neural basis underlying the illusion of movement remains to be understood. Following optimal vibratory stimulation of muscle tendon, certain subjects experience illusory movements while others do not. In the present fMRI study, we sought to uncover the neural basis of illusory movement awareness by contrasting a posteriori these two types of subjects. Examining fMRI data using leave-one-subject-out general linear models and region of interest analyses, we found that a non-limb-specific associative network, including the opercular part of the right inferior frontal gyrus and the right inferior parietal lobule, was more active in subjects with illusions. On the other hand, levels of activation in other brain areas involved in kinaesthetic processing were rather similar between the two subsamples of subjects. These results suggest that activation of the right inferior frontoparietal areas, once passed a certain threshold, forms the basis of illusory movements. This is consistent with the global neuronal workspace hypothesis that associates conscious processing with surges of frontoparietal activity.
Collapse
Affiliation(s)
- Fabien Cignetti
- Aix-Marseille Université, CNRS, LNC UMR, 7291, Marseille, France; Aix-Marseille Université, CNRS, FR, 3512, Marseille, France
| | | | | | | | | | | |
Collapse
|
42
|
Nakano H, Nozaki M, Ueta K, Osumi M, Kawami S, Morioka S. Effect of a plantar perceptual learning task on walking stability in the elderly: a randomized controlled trial. Clin Rehabil 2013; 27:608-15. [PMID: 23405022 DOI: 10.1177/0269215512471062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To determine whether the plantar perceptual learning task, using a hardness discrimination training, efficiently improves walking stability in the elderly. DESIGN A randomized controlled trial. SETTING Elder day-care center. PARTICIPANTS Eighty-six elderly people (73.84 SD 5.98 years) who went to an elder day-care center were randomly assigned evenly to either an intervention or a control group. INTERVENTION The intervention group performed a task to discriminate hardness differences while standing on sponge mats of different levels of hardness. The control group underwent the same task except that they were not instructed to discriminate hardness levels of the mats. The tasks were carried out over a four-week period for 10 days for both groups. OUTCOME MEASURES Outcome was assessed by determining root mean squares of trunk acceleration during walking. RESULTS Plantar perception was significantly improved in the intervention group after training (F = 26.24, p < 0.01). In addition, changes in root mean square values of acceleration were significantly greater after training in the intervention group (medial-lateral, 0.36 SD 0.26; vertical, 0.32 SD 0.24; anterio-posterior, 0.26 SD 0.24) than in the control group (medial-lateral, 0.14 SD 0.28, vertical, 0.16 SD 0.35, anterio-posterior, 0.12 SD 0.29) (p < 0.05). Changes in walking speed were not significantly different (p = 0.13) between the intervention (0.06 SD 0.13) and control groups (0.02 SD 0.14). CONCLUSION The plantar perceptual learning task might efficiently stabilize postural control during walking in the elderly.
Collapse
Affiliation(s)
- Hideki Nakano
- Department of Neurorehabilitation, Graduate School of Health Science, Kio University, Nara, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Nocchi F, Gazzellini S, Grisolia C, Petrarca M, Cannatà V, Cappa P, D'Alessio T, Castelli E. Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI study. J Neuroeng Rehabil 2012; 9:49. [PMID: 22828181 PMCID: PMC3443433 DOI: 10.1186/1743-0003-9-49] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 07/24/2012] [Indexed: 12/17/2022] Open
Abstract
Background The potential of robot-mediated therapy and virtual reality in neurorehabilitation is becoming of increasing importance. However, there is limited information, using neuroimaging, on the neural networks involved in training with these technologies. This study was intended to detect the brain network involved in the visual processing of movement during robotic training. The main aim was to investigate the existence of a common cerebral network able to assimilate biological (human upper limb) and non-biological (abstract object) movements, hence testing the suitability of the visual non-biological feedback provided by the InMotion2 Robot. Methods A visual functional Magnetic Resonance Imaging (fMRI) task was administered to 22 healthy subjects. The task required observation and retrieval of motor gestures and of the visual feedback used in robotic training. Functional activations of both biological and non-biological movements were examined to identify areas activated in both conditions, along with differential activity in upper limb vs. abstract object trials. Control of response was also tested by administering trials with congruent and incongruent reaching movements. Results The observation of upper limb and abstract object movements elicited similar patterns of activations according to a caudo-rostral pathway for the visual processing of movements (including specific areas of the occipital, temporal, parietal, and frontal lobes). Similarly, overlapping activations were found for the subsequent retrieval of the observed movement. Furthermore, activations of frontal cortical areas were associated with congruent trials more than with the incongruent ones. Conclusions This study identified the neural pathway associated with visual processing of movement stimuli used in upper limb robot-mediated training and investigated the brain’s ability to assimilate abstract object movements with human motor gestures. In both conditions, activations were elicited in cerebral areas involved in visual perception, sensory integration, recognition of movement, re-mapping on the somatosensory and motor cortex, storage in memory, and response control. Results from the congruent vs. incongruent trials revealed greater activity for the former condition than the latter in a network including cingulate cortex, right inferior and middle frontal gyrus that are involved in the go-signal and in decision control. Results on healthy subjects would suggest the appropriateness of an abstract visual feedback provided during motor training. The task contributes to highlight the potential of fMRI in improving the understanding of visual motor processes and may also be useful in detecting brain reorganisation during training.
Collapse
Affiliation(s)
- Federico Nocchi
- Clinical Technology Innovations Research Area, Bambino Gesù Children's Hospital, IRCCS, Piazza S, Onofrio 4, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Aoyama T, Kaneko F, Hayami T, Shibata E. The effects of kinesthetic illusory sensation induced by a visual stimulus on the corticomotor excitability of the leg muscles. Neurosci Lett 2012; 514:106-9. [PMID: 22402187 DOI: 10.1016/j.neulet.2012.02.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/17/2012] [Accepted: 02/18/2012] [Indexed: 11/15/2022]
Abstract
A novel method of visual stimulus, reported by Kaneko et al. [14], induced a vivid kinesthetic illusion and increased the corticomotor excitability of the finger muscles without any overt movement. To explore the effect of this method on the lower limbs, motor evoked potentials (MEP) were recorded from the left tibialis anterior (TA) and soleus muscles using transcranial magnetic stimulation (TMS). A computer screen that showed the moving image of an ankle movement was placed over the subject's leg, and its position was modulated to induce an illusory sensation that the subject's own ankle was moving (illusion condition). TMS was delivered at rest and at two different times during the illusion condition (ankle dorsiflexion phase: illusion-DF; ankle plantarflexion phase: illusion-PF). The MEP amplitude of the TA, which is the agonist muscle for ankle dorsiflexion, was significantly increased during the illusion-DF condition. This indicated that the visual stimulus showing the moving image of an ankle movement could induce a kinesthetic illusion and selectively increase the corticomotor excitability in an agonist muscle for an illusion, as was previously reported for an upper limb. The MEP amplitude of the soleus, which is the agonist muscle for ankle plantarflexion, increased during the illusion-PF condition, but not significantly. Because of the vividness of the illusory sensation was significantly greater during the illusion-DF condition than the illusion-PF condition, we concluded that the vividness of the illusory sensation had a crucial role in increasing corticomotor excitability.
Collapse
Affiliation(s)
- T Aoyama
- Graduate School of Health Sciences, Sapporo Medical University, West 17-South 1, Chuo-ku, Sapporo City, Japan
| | | | | | | |
Collapse
|
45
|
Beudel M, Zijlstra S, Mulder T, Zijdewind I, de Jong BM. Secondary sensory area SII is crucially involved in the preparation of familiar movements compared to movements never made before. Hum Brain Mapp 2012; 32:564-79. [PMID: 21391247 DOI: 10.1002/hbm.21044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Secondary sensorimotor regions are involved in sensorimotor integration and movement preparation. These regions take part in parietal-premotor circuitry that is not only active during motor execution but also during movement observation and imagery. This activation particularly occurs when observed movements belong to one's own motor repertoire, consistent with the finding that motor imagery only improves performance when one can actually make such movement. We aimed to investigate whether imagery or observation of a movement that was never made before causes parietal-premotor activation or that the ability to perform this movement is indeed a precondition. Nine subjects [group Already Knowing It (AKI)] could abduct their hallux (moving big toe outward). Seven subjects initially failed to make such movement (Absolute Zero A0 group). They had to imagine, observe, or execute this movement, whereas fMRI data were obtained both before and after training. Contrasting abduction observation between the AKI-group and A0-group showed increased left SII and supplementary motor area activation. Comparing the observation of hallux flexion with abduction showed increased bilateral SII activation in the A0 and not in the AKI group. Prolonged training resulted in equal performance and similar cerebral activation patterns in the two groups. Thereby, conjunction analysis of the correlations on subject's range of abduction during execution, imagery, and observation of hallux abduction showed exclusive bilateral SII activation. The reduced SII involvement in A0 may imply that effective interplay between sensory predictions and feedback does not take place without actual movement experience. However, this can be acquired by training.
Collapse
Affiliation(s)
- M Beudel
- Department of Neurology, University Medical Center Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
46
|
|
47
|
|
48
|
Conflict with vision diminishes proprioceptive adaptation to muscle vibration. Exp Brain Res 2011; 211:169-75. [DOI: 10.1007/s00221-011-2663-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 03/25/2011] [Indexed: 11/30/2022]
|
49
|
Goble DJ, Coxon JP, Van Impe A, Geurts M, Van Hecke W, Sunaert S, Wenderoth N, Swinnen SP. The neural basis of central proprioceptive processing in older versus younger adults: an important sensory role for right putamen. Hum Brain Mapp 2011; 33:895-908. [PMID: 21432946 DOI: 10.1002/hbm.21257] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 11/30/2010] [Accepted: 12/16/2010] [Indexed: 11/09/2022] Open
Abstract
Our sense of body position and movement independent of vision (i.e., proprioception) relies on muscle spindle feedback and is vital for performing motor acts. In this study, we first sought to elucidate age-related differences in the central processing of proprioceptive information by stimulating foot muscle spindles and by measuring neural activation with functional magnetic resonance imaging. We found that healthy older adults activated a similar, distributed network of primary somatosensory and secondary-associative cortical brain regions as young individuals during the vibration-induced muscle spindle stimulation. A significant decrease in neural activity was also found in a cluster of right putamen voxels for the older age group when compared with the younger age group. Given these differences, we performed two additional analyses within each group that quantified the degree to which age-dependent activity was related to (1) brain structure and (2) a behavioral measure of proprioceptive ability. Using diffusion tensor imaging, older (but not younger) adults with higher mean fractional anisotropy were found to have increased right putamen neural activity. Age-dependent right putamen activity seen during tendon vibration was also correlated with a behavioral test of proprioceptive ability measuring ankle joint position sense in both young and old age groups. Partial correlation tests determined that the relationship between elderly joint position sense and neural activity in right putamen was mediated by brain structure, but not vice versa. These results suggest that structural differences within the right putamen are related to reduced activation in the elderly and potentially serve as biomarker of proprioceptive sensibility in older adults.
Collapse
Affiliation(s)
- Daniel J Goble
- Motor Control Laboratory, Research Center for Movement Control and Neuroplasticity, Department of Biomedical Kinesiology, K.U. Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Naito E, Matsumoto R, Hagura N, Oouchida Y, Tomimoto H, Hanakawa T. Importance of precentral motor regions in human kinesthesia: a single case study. Neurocase 2011; 17:133-47. [PMID: 20830645 DOI: 10.1080/13554794.2010.498428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Prompted by our neuroimaging findings in 60 normal people, we examined whether focal damage to the hand section of precentral motor regions impairs hand kinesthesia in a patient, and investigated brain regions related to recovery of kinesthetic function. The damage impaired contralateral kinesthesia. The peri-lesional cerebral motor region, together with the ipsilateral intermediate cerebellum, participated in the recovered kinesthetic processing. The study confirmed the importance of precentral motor regions in human kinesthesia, and indicated a contribution of the peri-lesional cerebral region in recovered kinesthesia after precentral damage, which conceptually fits with cases of recovery of motor function.
Collapse
Affiliation(s)
- Eiichi Naito
- National Institute of Information and Communication Technology, Research Department 1, Kobe Advanced ICT Research Center, Kyoto, Japan.
| | | | | | | | | | | |
Collapse
|