1
|
Braaß H, Wolf S, Feldheim J, Chu Y, Tinnermann A, Finsterbusch J, Büchel C, Gerloff C, Schulz R. Altered Functional Connectivity Between Cortical Premotor Areas and the Spinal Cord in Chronic Stroke. Stroke 2025; 56:1159-1168. [PMID: 40110598 PMCID: PMC12036787 DOI: 10.1161/strokeaha.124.048384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/14/2025] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Neuroscience research has contributed significantly to understanding alterations in brain structure and function after ischemic stroke. Technical limitations have excluded the spinal cord from imaging-based research. Available data are restricted to a few microstructural analyses, and functional connectivity data are absent. The present study attempted to close this knowledge gap and assess alterations in corticospinal coupling in chronic stroke and their relation to motor deficits. METHODS In this cross-sectional study, patients with chronic stroke and healthy controls underwent corticospinal functional magnetic resonance imaging while performing a simple force generation task at the University Medical Center Hamburg-Eppendorf between September 2021 and June 2023. Task-related activation was localized in the ipsilesional ventral premotor cortex, the supplementary motor area, and the cervical spinal cord. Psycho-physiological interactions and linear modeling were used to infer functional connectivity between cortical motor regions and the cervical spinal cord and their associations with clinical scores. RESULTS Thirteen well-recovered patients with stroke (1 woman, 12 men; mean age, 62.6 years; mean time after stroke: 47.6 months) and 13 healthy controls (5 women, 8 men; mean age, 64.5 years) were included. The main finding was that ventral premotor cortex and supplementary motor area showed topographically distinct alterations in their connectivity with the spinal cord. Specifically, we found a reduced coupling between the supplementary motor area and the ipsilateral ventral spinal cord and an enhanced coupling between the ventral premotor cortex and ventral and intermediate central spinal zones. Lower supplementary motor area and higher ventral premotor cortex-related spinal cord couplings were correlated with residual deficits. CONCLUSIONS This work provides first-in-human functional insights into stroke-related alterations in the functional connectivity between cortical premotor areas and the spinal cord, suggesting that different premotor areas and spinal neuronal assemblies might be involved in coupling changes. It adds a novel, promising approach to better understanding stroke recovery and developing innovative models to comprehend treatment strategies with spinal cord stimulation.
Collapse
Affiliation(s)
- Hanna Braaß
- Department of Neurology (H.B., S.W., J. Feldheim, C.G., R.S.), University Medical Center Hamburg-Eppendorf, Germany
- Department of Systems Neuroscience (H.B., Y.C., A.T., J. Finsterbusch, C.B.), University Medical Center Hamburg-Eppendorf, Germany
| | - Silke Wolf
- Department of Neurology (H.B., S.W., J. Feldheim, C.G., R.S.), University Medical Center Hamburg-Eppendorf, Germany
| | - Jan Feldheim
- Department of Neurology (H.B., S.W., J. Feldheim, C.G., R.S.), University Medical Center Hamburg-Eppendorf, Germany
| | - Ying Chu
- Department of Systems Neuroscience (H.B., Y.C., A.T., J. Finsterbusch, C.B.), University Medical Center Hamburg-Eppendorf, Germany
| | - Alexandra Tinnermann
- Department of Systems Neuroscience (H.B., Y.C., A.T., J. Finsterbusch, C.B.), University Medical Center Hamburg-Eppendorf, Germany
| | - Jürgen Finsterbusch
- Department of Systems Neuroscience (H.B., Y.C., A.T., J. Finsterbusch, C.B.), University Medical Center Hamburg-Eppendorf, Germany
| | - Christian Büchel
- Department of Systems Neuroscience (H.B., Y.C., A.T., J. Finsterbusch, C.B.), University Medical Center Hamburg-Eppendorf, Germany
| | - Christian Gerloff
- Department of Neurology (H.B., S.W., J. Feldheim, C.G., R.S.), University Medical Center Hamburg-Eppendorf, Germany
| | - Robert Schulz
- Department of Neurology (H.B., S.W., J. Feldheim, C.G., R.S.), University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
2
|
Butet S, Fleury M, Duché Q, Bannier E, Lioi G, Scotto di Covella L, Lévêque-Le Bars E, Lécuyer A, Maurel P, Bonan I. EEG-fMRI neurofeedback versus motor imagery after stroke, a randomized controlled trial. J Neuroeng Rehabil 2025; 22:67. [PMID: 40134017 PMCID: PMC11938649 DOI: 10.1186/s12984-025-01598-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/01/2025] [Indexed: 03/27/2025] Open
Abstract
Neurofeedback (NF), an advanced technique enabling self-regulation of brain activity, was used to enhance upper limb motor recovery in chronic stroke survivors. A comparison was conducted between the efficacy of NF versus motor imagery (MI) training without feedback. We hypothesized that employing a bimodal EEG-fMRI based NF training approach would ensure precise targeting, and incorporating progressive multi-target feedback would provide a more effective mean to enhance plasticity. Thirty stroke survivors, exhibiting partial upper-limb motor impairment with a Fugl-Meyer Assessment Upper Extremity score (FMA-UE) > 21 and partially functional corticospinal tract (CST) were randomly allocated to the NF and MI groups. The NF group (n = 15) underwent a bimodal EEG-fMRI NF training focused on regulating activity in ipsilesional motor areas (M1 and SMA), while the MI group (n = 15) engaged in MI training. Demographic and stroke clinical data were collected. The primary outcome measure was the post-intervention FMA-UE score. Change in bold activations in target regions, EEG and fMRI laterality index (LI) and fractional anisotropy (FA) asymmetry of the CST were assessed after the intervention in both groups (respectively ΔEEG LI, ΔMRI LI and ΔFA asymmetry) and correlated with FMA-UE improvement (ΔFMA). Participants from both groups completed the 5-week training, with the NF group successfully modulating their brain activity in target regions. FMA-UE improvement post-intervention tended to be higher in the NF group than in the MI group (p = 0.048), and FMA-UE increased significantly only in the NF group (p = 0.003 vs p = 0.633 for MI). This improvement persisted at one-month in the NF group (p = 0.029). Eight out 15 patients in the NF group positively responded (i.e., improved by at least for 4 points in FMA-UE) compared to 3 out 15 in the MI group. No significant between-group differences were found in the evolution of ipsilesional M1 (t = 1.43, p = 0.16) and SMA (t = 0.85, p = 0.40) activation maps. The NF group exhibited a more pronounced lateralisation in unimodal EEG LI (t = - 3.56, p = 0.0004) compared to the MI group, but no significant difference was observed for MRI LI. A non-significant difference in ΔFA asymmetry of the CST between the two groups was found (t = 25; p = 0,055). A non-significant correlation between unimodal ΔEEG LI and ΔFMA (r = 0.5; p = 0.058) was observed for the NF group. Chronic stroke survivors can effectively engage themselves in a NF task and can benefit from a bimodal EEG-fMRI NF training. This demonstrates potential for NF in enhancing upper-limb motor recovery more efficiently than MI training.
Collapse
Affiliation(s)
- Simon Butet
- Physical Medicine and Rehabilitation Department, CHU Rennes, Hôpital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes Cedex 9, France
| | - Mathis Fleury
- Univ Rennes, INRIA, CNRS, INSERM, IRISA, EMPENN ERL U1228, 35000, Rennes, France
- Unité Empenn U1228, INSERM, INRIA, Université Rennes I, IRISA, UMR CNRS 6074, Campus de Beaulieu, 35042, Rennes, France
| | - Quentin Duché
- Univ Rennes, INRIA, CNRS, INSERM, IRISA, EMPENN ERL U1228, 35000, Rennes, France
- Unité Empenn U1228, INSERM, INRIA, Université Rennes I, IRISA, UMR CNRS 6074, Campus de Beaulieu, 35042, Rennes, France
| | - Elise Bannier
- Univ Rennes, INRIA, CNRS, INSERM, IRISA, EMPENN ERL U1228, 35000, Rennes, France
- Radiology Department, CHU Rennes, Rennes, France
- Plateforme Neurinfo, Unité Empenn U1228, Service de Radiologie - IRM RdC CHU Rennes, Université Rennes 1, Hôpital Pontchaillou, 2, rue Henri Le Guilloux, 35033, Rennes, France
| | - Giulia Lioi
- BRAIn Team, Lab-STICC, IMT Atlantique, UMR CNRS 6285, Atlantique Bretagne-Pays de La Loire Campus de Brest Technopôle Brest-Iroise CS 83818 29238, Brest, France
| | - Lou Scotto di Covella
- Univ Rennes, INRIA, CNRS, INSERM, IRISA, EMPENN ERL U1228, 35000, Rennes, France
- Unité Empenn U1228, INSERM, INRIA, Université Rennes I, IRISA, UMR CNRS 6074, Campus de Beaulieu, 35042, Rennes, France
| | - Emilie Lévêque-Le Bars
- Physical Medicine and Rehabilitation Department, CHU Rennes, Hôpital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes Cedex 9, France
| | - Anatole Lécuyer
- INRIA, Univ Rennes, CNRS, IRISA, Campus Universitaire de Beaulieu, 35042, Rennes, France
| | - Pierre Maurel
- Univ Rennes, INRIA, CNRS, INSERM, IRISA, EMPENN ERL U1228, 35000, Rennes, France.
- Unité Empenn U1228, INSERM, INRIA, Université Rennes I, IRISA, UMR CNRS 6074, Campus de Beaulieu, 35042, Rennes, France.
| | - Isabelle Bonan
- Physical Medicine and Rehabilitation Department, CHU Rennes, Hôpital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes Cedex 9, France
- Univ Rennes, INRIA, CNRS, INSERM, IRISA, EMPENN ERL U1228, 35000, Rennes, France
| |
Collapse
|
3
|
Liu CL, Su KH, Horng YS, Chen CL, Huang SH, Wu CY. Theory-Driven EEG Indexes for Tracking Motor Recovery and Predicting the Effects of Hybridizing tDCS With Mirror Therapy in Stroke Patients. IEEE Trans Neural Syst Rehabil Eng 2024; 32:4042-4051. [PMID: 39514362 DOI: 10.1109/tnsre.2024.3493926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Stroke remains a leading cause of adult disability, underscoring why research continues to focus on advancing new treatment methods and neurophysiological indexes. While these studies may be effective, many lack a clear theoretical framework. The current study first determined the optimal combination effects of mirror therapy (MT) with transcranial direct current stimulation (tDCS) on the premotor or primary motor cortex on its short-term and sustained clinical outcomes. We then introduced electroencephalogram (EEG) indexes derived from the gating-by-inhibition model to explore the underlying therapeutic mechanisms. The EEG indexes used in this study focused on the functional involvement for motor generation: alpha power at temporal regions (inhibiting non-motor activity) and central-frontal regions (releasing motor regions from inhibition). Results showed that post-training benefits, measured by Fugl-Meyer Assessment (FMA), were similar across 3 tDCS interventions (premotor, primary motor, sham). EEG seemed more sensitive to the training, with notable responses in the premotor tDCS group. Three months after training, only the premotor tDCS group maintained the gains in FMA, with these improvements correlated with the EEG indexes. Again, this pattern was specific to premotor tDCS. Since the gating-by-inhibition model suggests that EEG index reflects an individual's psychomotor efficiency, we also found that the baseline EEG index could predict FMA retention. Our findings demonstrate the superiority of combined premotor tDCS with MT and identify functionally oscillatory alpha-band activity in the temporal and central-frontal regions as potentially underlying the therapeutic mechanism. An individual's spatial pattern of EEG may be effective in predicting upper extremity retention effect.
Collapse
|
4
|
Mitsuhashi M, Yamaguchi R, Kawasaki T, Ueno S, Sun Y, Isa K, Takahashi J, Kobayashi K, Onoe H, Takahashi R, Isa T. Stage-dependent role of interhemispheric pathway for motor recovery in primates. Nat Commun 2024; 15:6762. [PMID: 39174504 PMCID: PMC11341697 DOI: 10.1038/s41467-024-51070-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
Whether and how the non-lesional sensorimotor cortex is activated and contributes to post-injury motor recovery is controversial. Here, we investigated the role of interhemispheric pathway from the contralesional to ipsilesional premotor cortex in activating the ipsilesional sensorimotor cortex and promoting recovery after lesioning the lateral corticospinal tract at the cervical cord, by unidirectional chemogenetic blockade in macaques. The blockade impaired dexterous hand movements during the early recovery stage. Electrocorticographical recording showed that the low frequency band activity of the ipsilesional premotor cortex around movement onset was decreased by the blockade during the early recovery stage, while it was increased by blockade during the intact state and late recovery stage. These results demonstrate that action of the interhemispheric pathway changed from inhibition to facilitation, to involve the ipsilesional sensorimotor cortex in hand movements during the early recovery stage. The present study offers insights into the stage-dependent role of the interhemispheric pathway and a therapeutic target in the early recovery stage after lesioning of the corticospinal tract.
Collapse
Affiliation(s)
- Masahiro Mitsuhashi
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Reona Yamaguchi
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Toshinari Kawasaki
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Satoko Ueno
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Yiping Sun
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kaoru Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
- Graduate University of Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
| | - Hirotaka Onoe
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8397, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan.
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8397, Japan.
| |
Collapse
|
5
|
Ferris JK, Lo BP, Barisano G, Brodtmann A, Buetefisch CM, Conforto AB, Donnelly MR, Egorova-Brumley N, Hayward KS, Khlif MS, Revill KP, Zavaliangos-Petropulu A, Boyd L, Liew SL. Modulation of the Association Between Corticospinal Tract Damage and Outcome After Stroke by White Matter Hyperintensities. Neurology 2024; 102:e209387. [PMID: 38701386 PMCID: PMC11196095 DOI: 10.1212/wnl.0000000000209387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/04/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Motor outcomes after stroke relate to corticospinal tract (CST) damage. The brain leverages surviving neural pathways to compensate for CST damage and mediate motor recovery. Thus, concurrent age-related damage from white matter hyperintensities (WMHs) might affect neurologic capacity for recovery after CST injury. The role of WMHs in post-stroke motor outcomes is unclear. In this study, we evaluated whether WMHs modulate the relationship between CST damage and post-stroke motor outcomes. METHODS We used data from the multisite ENIGMA Stroke Recovery Working Group with T1 and T2/fluid-attenuated inversion recovery imaging. CST damage was indexed with weighted CST lesion load (CST-LL). WMH volumes were extracted with Freesurfer's SAMSEG. Mixed-effects beta-regression models were fit to test the impact of CST-LL, WMH volume, and their interaction on motor impairment, controlling for age, days after stroke, and stroke volume. RESULTS A total of 223 individuals were included. WMH volume related to motor impairment above and beyond CST-LL (β = 0.178, 95% CI 0.025-0.331, p = 0.022). Relationships varied by WMH severity (mild vs moderate-severe). In individuals with mild WMHs, motor impairment related to CST-LL (β = 0.888, 95% CI 0.604-1.172, p < 0.001) with a CST-LL × WMH interaction (β = -0.211, 95% CI -0.340 to -0.026, p = 0.026). In individuals with moderate-severe WMHs, motor impairment related to WMH volume (β = 0.299, 95% CI 0.008-0.590, p = 0.044), but did not significantly relate to CST-LL or a CST-LL × WMH interaction. DISCUSSION WMHs relate to motor outcomes after stroke and modify relationships between motor impairment and CST damage. WMH-related damage may be under-recognized in stroke research as a factor contributing to variability in motor outcomes. Our findings emphasize the importance of brain structural reserve in motor outcomes after brain injury.
Collapse
Affiliation(s)
- Jennifer K Ferris
- From the Gerontology Research Centre (J.K.F.), Simon Fraser University; Department of Physical Therapy and Djavad Mowafaghian Centre for Brain Health (J.K.F.), University of British Columbia, Vancouver, Canada; Chan Division of Occupational Science and Occupational Therapy (B.P.L., M.R.D., S.-L.L.), University of Southern California, Los Angeles; Department of Neurosurgery (G.B.), Stanford School of Medicine, Stanford University, CA; Central Clinical School (A.B., M.S.K.), Monash University, Melbourne, Victoria, Australia; Department of Medicine (A.B.), Royal Melbourne Hospital, University of Melbourne, Victoria, Australia; Department of Neurology (C.M.B.), Department of Rehabilitation Medicine (C.M.B.), and Department of Radiology (C.M.B.), Emory University, Atlanta, GA; Hospital das Clinicas HCFMUSP (A.B.C.), Faculdade de Medicina, Universidade de São Paulo; Hospital Israelita Albert Einstein (A.B.C.), São Paulo, Brazil; Melbourne School of Psychological Sciences (N.E.-B.), University of Melbourne; Departments of Physiotherapy, Medicine (RMH) & The Florey Institute of Neuroscience and Mental Health (K.S.H.), University of Melbourne, Victoria, Australia; Facility for Education and Research in Neuroscience (K.P.R.), Emory University, Atlanta, GA; Brain Mapping Center (A.Z.-P.), Department of Neurology, Geffen School of Medicine, University of California Los Angeles; and Mark and Mary Stevens Neuroimaging and Informatics Institute and Keck School of Medicine (L.B., S.-L.L.), University of Southern California, Los Angeles
| | - Bethany P Lo
- From the Gerontology Research Centre (J.K.F.), Simon Fraser University; Department of Physical Therapy and Djavad Mowafaghian Centre for Brain Health (J.K.F.), University of British Columbia, Vancouver, Canada; Chan Division of Occupational Science and Occupational Therapy (B.P.L., M.R.D., S.-L.L.), University of Southern California, Los Angeles; Department of Neurosurgery (G.B.), Stanford School of Medicine, Stanford University, CA; Central Clinical School (A.B., M.S.K.), Monash University, Melbourne, Victoria, Australia; Department of Medicine (A.B.), Royal Melbourne Hospital, University of Melbourne, Victoria, Australia; Department of Neurology (C.M.B.), Department of Rehabilitation Medicine (C.M.B.), and Department of Radiology (C.M.B.), Emory University, Atlanta, GA; Hospital das Clinicas HCFMUSP (A.B.C.), Faculdade de Medicina, Universidade de São Paulo; Hospital Israelita Albert Einstein (A.B.C.), São Paulo, Brazil; Melbourne School of Psychological Sciences (N.E.-B.), University of Melbourne; Departments of Physiotherapy, Medicine (RMH) & The Florey Institute of Neuroscience and Mental Health (K.S.H.), University of Melbourne, Victoria, Australia; Facility for Education and Research in Neuroscience (K.P.R.), Emory University, Atlanta, GA; Brain Mapping Center (A.Z.-P.), Department of Neurology, Geffen School of Medicine, University of California Los Angeles; and Mark and Mary Stevens Neuroimaging and Informatics Institute and Keck School of Medicine (L.B., S.-L.L.), University of Southern California, Los Angeles
| | - Giuseppe Barisano
- From the Gerontology Research Centre (J.K.F.), Simon Fraser University; Department of Physical Therapy and Djavad Mowafaghian Centre for Brain Health (J.K.F.), University of British Columbia, Vancouver, Canada; Chan Division of Occupational Science and Occupational Therapy (B.P.L., M.R.D., S.-L.L.), University of Southern California, Los Angeles; Department of Neurosurgery (G.B.), Stanford School of Medicine, Stanford University, CA; Central Clinical School (A.B., M.S.K.), Monash University, Melbourne, Victoria, Australia; Department of Medicine (A.B.), Royal Melbourne Hospital, University of Melbourne, Victoria, Australia; Department of Neurology (C.M.B.), Department of Rehabilitation Medicine (C.M.B.), and Department of Radiology (C.M.B.), Emory University, Atlanta, GA; Hospital das Clinicas HCFMUSP (A.B.C.), Faculdade de Medicina, Universidade de São Paulo; Hospital Israelita Albert Einstein (A.B.C.), São Paulo, Brazil; Melbourne School of Psychological Sciences (N.E.-B.), University of Melbourne; Departments of Physiotherapy, Medicine (RMH) & The Florey Institute of Neuroscience and Mental Health (K.S.H.), University of Melbourne, Victoria, Australia; Facility for Education and Research in Neuroscience (K.P.R.), Emory University, Atlanta, GA; Brain Mapping Center (A.Z.-P.), Department of Neurology, Geffen School of Medicine, University of California Los Angeles; and Mark and Mary Stevens Neuroimaging and Informatics Institute and Keck School of Medicine (L.B., S.-L.L.), University of Southern California, Los Angeles
| | - Amy Brodtmann
- From the Gerontology Research Centre (J.K.F.), Simon Fraser University; Department of Physical Therapy and Djavad Mowafaghian Centre for Brain Health (J.K.F.), University of British Columbia, Vancouver, Canada; Chan Division of Occupational Science and Occupational Therapy (B.P.L., M.R.D., S.-L.L.), University of Southern California, Los Angeles; Department of Neurosurgery (G.B.), Stanford School of Medicine, Stanford University, CA; Central Clinical School (A.B., M.S.K.), Monash University, Melbourne, Victoria, Australia; Department of Medicine (A.B.), Royal Melbourne Hospital, University of Melbourne, Victoria, Australia; Department of Neurology (C.M.B.), Department of Rehabilitation Medicine (C.M.B.), and Department of Radiology (C.M.B.), Emory University, Atlanta, GA; Hospital das Clinicas HCFMUSP (A.B.C.), Faculdade de Medicina, Universidade de São Paulo; Hospital Israelita Albert Einstein (A.B.C.), São Paulo, Brazil; Melbourne School of Psychological Sciences (N.E.-B.), University of Melbourne; Departments of Physiotherapy, Medicine (RMH) & The Florey Institute of Neuroscience and Mental Health (K.S.H.), University of Melbourne, Victoria, Australia; Facility for Education and Research in Neuroscience (K.P.R.), Emory University, Atlanta, GA; Brain Mapping Center (A.Z.-P.), Department of Neurology, Geffen School of Medicine, University of California Los Angeles; and Mark and Mary Stevens Neuroimaging and Informatics Institute and Keck School of Medicine (L.B., S.-L.L.), University of Southern California, Los Angeles
| | - Cathrin M Buetefisch
- From the Gerontology Research Centre (J.K.F.), Simon Fraser University; Department of Physical Therapy and Djavad Mowafaghian Centre for Brain Health (J.K.F.), University of British Columbia, Vancouver, Canada; Chan Division of Occupational Science and Occupational Therapy (B.P.L., M.R.D., S.-L.L.), University of Southern California, Los Angeles; Department of Neurosurgery (G.B.), Stanford School of Medicine, Stanford University, CA; Central Clinical School (A.B., M.S.K.), Monash University, Melbourne, Victoria, Australia; Department of Medicine (A.B.), Royal Melbourne Hospital, University of Melbourne, Victoria, Australia; Department of Neurology (C.M.B.), Department of Rehabilitation Medicine (C.M.B.), and Department of Radiology (C.M.B.), Emory University, Atlanta, GA; Hospital das Clinicas HCFMUSP (A.B.C.), Faculdade de Medicina, Universidade de São Paulo; Hospital Israelita Albert Einstein (A.B.C.), São Paulo, Brazil; Melbourne School of Psychological Sciences (N.E.-B.), University of Melbourne; Departments of Physiotherapy, Medicine (RMH) & The Florey Institute of Neuroscience and Mental Health (K.S.H.), University of Melbourne, Victoria, Australia; Facility for Education and Research in Neuroscience (K.P.R.), Emory University, Atlanta, GA; Brain Mapping Center (A.Z.-P.), Department of Neurology, Geffen School of Medicine, University of California Los Angeles; and Mark and Mary Stevens Neuroimaging and Informatics Institute and Keck School of Medicine (L.B., S.-L.L.), University of Southern California, Los Angeles
| | - Adriana B Conforto
- From the Gerontology Research Centre (J.K.F.), Simon Fraser University; Department of Physical Therapy and Djavad Mowafaghian Centre for Brain Health (J.K.F.), University of British Columbia, Vancouver, Canada; Chan Division of Occupational Science and Occupational Therapy (B.P.L., M.R.D., S.-L.L.), University of Southern California, Los Angeles; Department of Neurosurgery (G.B.), Stanford School of Medicine, Stanford University, CA; Central Clinical School (A.B., M.S.K.), Monash University, Melbourne, Victoria, Australia; Department of Medicine (A.B.), Royal Melbourne Hospital, University of Melbourne, Victoria, Australia; Department of Neurology (C.M.B.), Department of Rehabilitation Medicine (C.M.B.), and Department of Radiology (C.M.B.), Emory University, Atlanta, GA; Hospital das Clinicas HCFMUSP (A.B.C.), Faculdade de Medicina, Universidade de São Paulo; Hospital Israelita Albert Einstein (A.B.C.), São Paulo, Brazil; Melbourne School of Psychological Sciences (N.E.-B.), University of Melbourne; Departments of Physiotherapy, Medicine (RMH) & The Florey Institute of Neuroscience and Mental Health (K.S.H.), University of Melbourne, Victoria, Australia; Facility for Education and Research in Neuroscience (K.P.R.), Emory University, Atlanta, GA; Brain Mapping Center (A.Z.-P.), Department of Neurology, Geffen School of Medicine, University of California Los Angeles; and Mark and Mary Stevens Neuroimaging and Informatics Institute and Keck School of Medicine (L.B., S.-L.L.), University of Southern California, Los Angeles
| | - Miranda R Donnelly
- From the Gerontology Research Centre (J.K.F.), Simon Fraser University; Department of Physical Therapy and Djavad Mowafaghian Centre for Brain Health (J.K.F.), University of British Columbia, Vancouver, Canada; Chan Division of Occupational Science and Occupational Therapy (B.P.L., M.R.D., S.-L.L.), University of Southern California, Los Angeles; Department of Neurosurgery (G.B.), Stanford School of Medicine, Stanford University, CA; Central Clinical School (A.B., M.S.K.), Monash University, Melbourne, Victoria, Australia; Department of Medicine (A.B.), Royal Melbourne Hospital, University of Melbourne, Victoria, Australia; Department of Neurology (C.M.B.), Department of Rehabilitation Medicine (C.M.B.), and Department of Radiology (C.M.B.), Emory University, Atlanta, GA; Hospital das Clinicas HCFMUSP (A.B.C.), Faculdade de Medicina, Universidade de São Paulo; Hospital Israelita Albert Einstein (A.B.C.), São Paulo, Brazil; Melbourne School of Psychological Sciences (N.E.-B.), University of Melbourne; Departments of Physiotherapy, Medicine (RMH) & The Florey Institute of Neuroscience and Mental Health (K.S.H.), University of Melbourne, Victoria, Australia; Facility for Education and Research in Neuroscience (K.P.R.), Emory University, Atlanta, GA; Brain Mapping Center (A.Z.-P.), Department of Neurology, Geffen School of Medicine, University of California Los Angeles; and Mark and Mary Stevens Neuroimaging and Informatics Institute and Keck School of Medicine (L.B., S.-L.L.), University of Southern California, Los Angeles
| | - Natalia Egorova-Brumley
- From the Gerontology Research Centre (J.K.F.), Simon Fraser University; Department of Physical Therapy and Djavad Mowafaghian Centre for Brain Health (J.K.F.), University of British Columbia, Vancouver, Canada; Chan Division of Occupational Science and Occupational Therapy (B.P.L., M.R.D., S.-L.L.), University of Southern California, Los Angeles; Department of Neurosurgery (G.B.), Stanford School of Medicine, Stanford University, CA; Central Clinical School (A.B., M.S.K.), Monash University, Melbourne, Victoria, Australia; Department of Medicine (A.B.), Royal Melbourne Hospital, University of Melbourne, Victoria, Australia; Department of Neurology (C.M.B.), Department of Rehabilitation Medicine (C.M.B.), and Department of Radiology (C.M.B.), Emory University, Atlanta, GA; Hospital das Clinicas HCFMUSP (A.B.C.), Faculdade de Medicina, Universidade de São Paulo; Hospital Israelita Albert Einstein (A.B.C.), São Paulo, Brazil; Melbourne School of Psychological Sciences (N.E.-B.), University of Melbourne; Departments of Physiotherapy, Medicine (RMH) & The Florey Institute of Neuroscience and Mental Health (K.S.H.), University of Melbourne, Victoria, Australia; Facility for Education and Research in Neuroscience (K.P.R.), Emory University, Atlanta, GA; Brain Mapping Center (A.Z.-P.), Department of Neurology, Geffen School of Medicine, University of California Los Angeles; and Mark and Mary Stevens Neuroimaging and Informatics Institute and Keck School of Medicine (L.B., S.-L.L.), University of Southern California, Los Angeles
| | - Kathryn S Hayward
- From the Gerontology Research Centre (J.K.F.), Simon Fraser University; Department of Physical Therapy and Djavad Mowafaghian Centre for Brain Health (J.K.F.), University of British Columbia, Vancouver, Canada; Chan Division of Occupational Science and Occupational Therapy (B.P.L., M.R.D., S.-L.L.), University of Southern California, Los Angeles; Department of Neurosurgery (G.B.), Stanford School of Medicine, Stanford University, CA; Central Clinical School (A.B., M.S.K.), Monash University, Melbourne, Victoria, Australia; Department of Medicine (A.B.), Royal Melbourne Hospital, University of Melbourne, Victoria, Australia; Department of Neurology (C.M.B.), Department of Rehabilitation Medicine (C.M.B.), and Department of Radiology (C.M.B.), Emory University, Atlanta, GA; Hospital das Clinicas HCFMUSP (A.B.C.), Faculdade de Medicina, Universidade de São Paulo; Hospital Israelita Albert Einstein (A.B.C.), São Paulo, Brazil; Melbourne School of Psychological Sciences (N.E.-B.), University of Melbourne; Departments of Physiotherapy, Medicine (RMH) & The Florey Institute of Neuroscience and Mental Health (K.S.H.), University of Melbourne, Victoria, Australia; Facility for Education and Research in Neuroscience (K.P.R.), Emory University, Atlanta, GA; Brain Mapping Center (A.Z.-P.), Department of Neurology, Geffen School of Medicine, University of California Los Angeles; and Mark and Mary Stevens Neuroimaging and Informatics Institute and Keck School of Medicine (L.B., S.-L.L.), University of Southern California, Los Angeles
| | - Mohamed Salah Khlif
- From the Gerontology Research Centre (J.K.F.), Simon Fraser University; Department of Physical Therapy and Djavad Mowafaghian Centre for Brain Health (J.K.F.), University of British Columbia, Vancouver, Canada; Chan Division of Occupational Science and Occupational Therapy (B.P.L., M.R.D., S.-L.L.), University of Southern California, Los Angeles; Department of Neurosurgery (G.B.), Stanford School of Medicine, Stanford University, CA; Central Clinical School (A.B., M.S.K.), Monash University, Melbourne, Victoria, Australia; Department of Medicine (A.B.), Royal Melbourne Hospital, University of Melbourne, Victoria, Australia; Department of Neurology (C.M.B.), Department of Rehabilitation Medicine (C.M.B.), and Department of Radiology (C.M.B.), Emory University, Atlanta, GA; Hospital das Clinicas HCFMUSP (A.B.C.), Faculdade de Medicina, Universidade de São Paulo; Hospital Israelita Albert Einstein (A.B.C.), São Paulo, Brazil; Melbourne School of Psychological Sciences (N.E.-B.), University of Melbourne; Departments of Physiotherapy, Medicine (RMH) & The Florey Institute of Neuroscience and Mental Health (K.S.H.), University of Melbourne, Victoria, Australia; Facility for Education and Research in Neuroscience (K.P.R.), Emory University, Atlanta, GA; Brain Mapping Center (A.Z.-P.), Department of Neurology, Geffen School of Medicine, University of California Los Angeles; and Mark and Mary Stevens Neuroimaging and Informatics Institute and Keck School of Medicine (L.B., S.-L.L.), University of Southern California, Los Angeles
| | - Kate P Revill
- From the Gerontology Research Centre (J.K.F.), Simon Fraser University; Department of Physical Therapy and Djavad Mowafaghian Centre for Brain Health (J.K.F.), University of British Columbia, Vancouver, Canada; Chan Division of Occupational Science and Occupational Therapy (B.P.L., M.R.D., S.-L.L.), University of Southern California, Los Angeles; Department of Neurosurgery (G.B.), Stanford School of Medicine, Stanford University, CA; Central Clinical School (A.B., M.S.K.), Monash University, Melbourne, Victoria, Australia; Department of Medicine (A.B.), Royal Melbourne Hospital, University of Melbourne, Victoria, Australia; Department of Neurology (C.M.B.), Department of Rehabilitation Medicine (C.M.B.), and Department of Radiology (C.M.B.), Emory University, Atlanta, GA; Hospital das Clinicas HCFMUSP (A.B.C.), Faculdade de Medicina, Universidade de São Paulo; Hospital Israelita Albert Einstein (A.B.C.), São Paulo, Brazil; Melbourne School of Psychological Sciences (N.E.-B.), University of Melbourne; Departments of Physiotherapy, Medicine (RMH) & The Florey Institute of Neuroscience and Mental Health (K.S.H.), University of Melbourne, Victoria, Australia; Facility for Education and Research in Neuroscience (K.P.R.), Emory University, Atlanta, GA; Brain Mapping Center (A.Z.-P.), Department of Neurology, Geffen School of Medicine, University of California Los Angeles; and Mark and Mary Stevens Neuroimaging and Informatics Institute and Keck School of Medicine (L.B., S.-L.L.), University of Southern California, Los Angeles
| | - Artemis Zavaliangos-Petropulu
- From the Gerontology Research Centre (J.K.F.), Simon Fraser University; Department of Physical Therapy and Djavad Mowafaghian Centre for Brain Health (J.K.F.), University of British Columbia, Vancouver, Canada; Chan Division of Occupational Science and Occupational Therapy (B.P.L., M.R.D., S.-L.L.), University of Southern California, Los Angeles; Department of Neurosurgery (G.B.), Stanford School of Medicine, Stanford University, CA; Central Clinical School (A.B., M.S.K.), Monash University, Melbourne, Victoria, Australia; Department of Medicine (A.B.), Royal Melbourne Hospital, University of Melbourne, Victoria, Australia; Department of Neurology (C.M.B.), Department of Rehabilitation Medicine (C.M.B.), and Department of Radiology (C.M.B.), Emory University, Atlanta, GA; Hospital das Clinicas HCFMUSP (A.B.C.), Faculdade de Medicina, Universidade de São Paulo; Hospital Israelita Albert Einstein (A.B.C.), São Paulo, Brazil; Melbourne School of Psychological Sciences (N.E.-B.), University of Melbourne; Departments of Physiotherapy, Medicine (RMH) & The Florey Institute of Neuroscience and Mental Health (K.S.H.), University of Melbourne, Victoria, Australia; Facility for Education and Research in Neuroscience (K.P.R.), Emory University, Atlanta, GA; Brain Mapping Center (A.Z.-P.), Department of Neurology, Geffen School of Medicine, University of California Los Angeles; and Mark and Mary Stevens Neuroimaging and Informatics Institute and Keck School of Medicine (L.B., S.-L.L.), University of Southern California, Los Angeles
| | - Lara Boyd
- From the Gerontology Research Centre (J.K.F.), Simon Fraser University; Department of Physical Therapy and Djavad Mowafaghian Centre for Brain Health (J.K.F.), University of British Columbia, Vancouver, Canada; Chan Division of Occupational Science and Occupational Therapy (B.P.L., M.R.D., S.-L.L.), University of Southern California, Los Angeles; Department of Neurosurgery (G.B.), Stanford School of Medicine, Stanford University, CA; Central Clinical School (A.B., M.S.K.), Monash University, Melbourne, Victoria, Australia; Department of Medicine (A.B.), Royal Melbourne Hospital, University of Melbourne, Victoria, Australia; Department of Neurology (C.M.B.), Department of Rehabilitation Medicine (C.M.B.), and Department of Radiology (C.M.B.), Emory University, Atlanta, GA; Hospital das Clinicas HCFMUSP (A.B.C.), Faculdade de Medicina, Universidade de São Paulo; Hospital Israelita Albert Einstein (A.B.C.), São Paulo, Brazil; Melbourne School of Psychological Sciences (N.E.-B.), University of Melbourne; Departments of Physiotherapy, Medicine (RMH) & The Florey Institute of Neuroscience and Mental Health (K.S.H.), University of Melbourne, Victoria, Australia; Facility for Education and Research in Neuroscience (K.P.R.), Emory University, Atlanta, GA; Brain Mapping Center (A.Z.-P.), Department of Neurology, Geffen School of Medicine, University of California Los Angeles; and Mark and Mary Stevens Neuroimaging and Informatics Institute and Keck School of Medicine (L.B., S.-L.L.), University of Southern California, Los Angeles
| | - Sook-Lei Liew
- From the Gerontology Research Centre (J.K.F.), Simon Fraser University; Department of Physical Therapy and Djavad Mowafaghian Centre for Brain Health (J.K.F.), University of British Columbia, Vancouver, Canada; Chan Division of Occupational Science and Occupational Therapy (B.P.L., M.R.D., S.-L.L.), University of Southern California, Los Angeles; Department of Neurosurgery (G.B.), Stanford School of Medicine, Stanford University, CA; Central Clinical School (A.B., M.S.K.), Monash University, Melbourne, Victoria, Australia; Department of Medicine (A.B.), Royal Melbourne Hospital, University of Melbourne, Victoria, Australia; Department of Neurology (C.M.B.), Department of Rehabilitation Medicine (C.M.B.), and Department of Radiology (C.M.B.), Emory University, Atlanta, GA; Hospital das Clinicas HCFMUSP (A.B.C.), Faculdade de Medicina, Universidade de São Paulo; Hospital Israelita Albert Einstein (A.B.C.), São Paulo, Brazil; Melbourne School of Psychological Sciences (N.E.-B.), University of Melbourne; Departments of Physiotherapy, Medicine (RMH) & The Florey Institute of Neuroscience and Mental Health (K.S.H.), University of Melbourne, Victoria, Australia; Facility for Education and Research in Neuroscience (K.P.R.), Emory University, Atlanta, GA; Brain Mapping Center (A.Z.-P.), Department of Neurology, Geffen School of Medicine, University of California Los Angeles; and Mark and Mary Stevens Neuroimaging and Informatics Institute and Keck School of Medicine (L.B., S.-L.L.), University of Southern California, Los Angeles
| |
Collapse
|
6
|
Huang XL, Wu MY, Wu CC, Yan LC, He MH, Chen YC, Tsai ST. Neuromodulation techniques in poststroke motor impairment recovery: Efficacy, challenges, and future directions. Tzu Chi Med J 2024; 36:136-141. [PMID: 38645790 PMCID: PMC11025597 DOI: 10.4103/tcmj.tcmj_247_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/16/2023] [Accepted: 12/19/2023] [Indexed: 04/23/2024] Open
Abstract
Cerebrovascular accidents, also known as strokes, represent a major global public health challenge and contribute to substantial mortality, disability, and socioeconomic burden. Multidisciplinary approaches for poststroke therapies are crucial for recovering lost functions and adapting to new limitations. This review discusses the potential of neuromodulation techniques, repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation, spinal cord stimulation (SCS), vagus nerve stimulation (VNS), and deep brain stimulation (DBS), as innovative strategies for facilitating poststroke recovery. Neuromodulation is an emerging adjunct to conventional therapies that target neural plasticity to restore lost function and compensate for damaged brain areas. The techniques discussed in this review have different efficacies in enhancing neural plasticity, optimizing motor recovery, and mitigating poststroke impairments. Specifically, rTMS has shown significant promise in enhancing motor function, whereas SCS has shown potential in improving limb movement and reducing disability. Similarly, VNS, typically used to treat epilepsy, has shown promise in enhancing poststroke motor recovery, while DBS may be used to improve poststroke motor recovery and symptom mitigation. Further studies with standardized protocols are warranted to elucidate the efficacy of these methods and integrate them into mainstream clinical practice to optimize poststroke care.
Collapse
Affiliation(s)
- Xiang-Ling Huang
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Nursing, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ming-Yung Wu
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ciou-Chan Wu
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Lian-Cing Yan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Mei-Huei He
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yu-Chen Chen
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Informatics, Tzu Chi University, Hualien, Taiwan
| | - Sheng-Tzung Tsai
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
7
|
Goldenkoff ER, Deluisi JA, Destiny DP, Lee TG, Michon KJ, Brissenden JA, Taylor SF, Polk TA, Vesia M. The behavioral and neural effects of parietal theta burst stimulation on the grasp network are stronger during a grasping task than at rest. Front Neurosci 2023; 17:1198222. [PMID: 37954875 PMCID: PMC10637360 DOI: 10.3389/fnins.2023.1198222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (TMS) is widely used in neuroscience and clinical settings to modulate human cortical activity. The effects of TMS on neural activity depend on the excitability of specific neural populations at the time of stimulation. Accordingly, the brain state at the time of stimulation may influence the persistent effects of repetitive TMS on distal brain activity and associated behaviors. We applied intermittent theta burst stimulation (iTBS) to a region in the posterior parietal cortex (PPC) associated with grasp control to evaluate the interaction between stimulation and brain state. Across two experiments, we demonstrate the immediate responses of motor cortex activity and motor performance to state-dependent parietal stimulation. We randomly assigned 72 healthy adult participants to one of three TMS intervention groups, followed by electrophysiological measures with TMS and behavioral measures. Participants in the first group received iTBS to PPC while performing a grasping task concurrently. Participants in the second group received iTBS to PPC while in a task-free, resting state. A third group of participants received iTBS to a parietal region outside the cortical grasping network while performing a grasping task concurrently. We compared changes in motor cortical excitability and motor performance in the three stimulation groups within an hour of each intervention. We found that parietal stimulation during a behavioral manipulation that activates the cortical grasping network increased downstream motor cortical excitability and improved motor performance relative to stimulation during rest. We conclude that constraining the brain state with a behavioral task during brain stimulation has the potential to optimize plasticity induction in cortical circuit mechanisms that mediate movement processes.
Collapse
Affiliation(s)
| | - Joseph A. Deluisi
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Danielle P. Destiny
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Taraz G. Lee
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Katherine J. Michon
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - James A. Brissenden
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Stephan F. Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Thad A. Polk
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Michael Vesia
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Chen S, Zhang X, Chen X, Zhou Z, Cong W, Chong K, Xu Q, Wu J, Li Z, Lin W, Shan C. The assessment of interhemispheric imbalance using functional near-infrared spectroscopic and transcranial magnetic stimulation for predicting motor outcome after stroke. Front Neurosci 2023; 17:1231693. [PMID: 37655011 PMCID: PMC10466792 DOI: 10.3389/fnins.2023.1231693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
Objective To investigate changes in interhemispheric imbalance of cortical excitability during motor recovery after stroke and to clarify the relationship between motor function recovery and alterations in interhemispheric imbalance, with the aim to establish more effective neuromodulation strategies. Methods Thirty-one patients underwent assessments of resting motor threshold (RMT) using transcranial magnetic stimulation (TMS); the cortical activity of the primary motor cortex (M1), premotor cortex (PMC), and supplementary motor area (SMA) using functional near-infrared spectroscopy (fNIRS); as well as motor function using upper extremity Fugl-Meyer (FMA-UE). The laterality index (LI) of RMT and fNIRS were also calculated. All indicators were measured at baseline(T1) and 1 month later(T2). Correlations between motor function outcome and TMS and fNIRS metrics at baseline were analyzed using bivariate correlation. Results All the motor function (FMA-UE1, FMA-UE2, FMA-d2) and LI-RMT (LI-RMT1 and LI-RMT2) had a moderate negative correlation. The higher the corticospinal excitability of the affected hemisphere, the better the motor outcome of the upper extremity, especially in the distal upper extremity (r = -0.366, p = 0.043; r = -0.393, p = 0.029). The greater the activation of the SMA of the unaffected hemisphere, the better the motor outcome, especially in the distal upper extremity (r = -0.356, p = 0.049; r = -0.367, p = 0.042). There was a significant moderate positive correlation observed between LI-RMT2 and LI-SMA1 (r = 0.422, p = 0.018). The improvement in motor function was most significant when both LI-RMT1 and LI-SMA1 were lower. Besides, in patients dominated by unaffected hemisphere corticospinal excitability during motor recovery, LI-(M1 + SMA + PMC)2 exhibited a significant moderate positive association with the proximal upper extremity function 1 month later (r = 0.642, p = 0.007). Conclusion The combination of both TMS and fNIRS can infer the prognosis of motor function to some extent. Which can infer the role of both hemispheres in recovery and may contribute to the development of effective individualized neuromodulation strategies.
Collapse
Affiliation(s)
- Songmei Chen
- Department of Rehabilitation Medicine, Shanghai No.3 Rehabilitation Hospital, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolin Zhang
- Department of Rehabilitation Medicine, Shanghai No.3 Rehabilitation Hospital, Shanghai, China
| | - Xixi Chen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiqing Zhou
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiqin Cong
- Department of Rehabilitation Medicine, Shanghai No.3 Rehabilitation Hospital, Shanghai, China
| | - KaYee Chong
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Xu
- Department of Rehabilitation Medicine, Shanghai No.3 Rehabilitation Hospital, Shanghai, China
| | - Jiali Wu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaoyuan Li
- Department of Rehabilitation Medicine, Shanghai No.3 Rehabilitation Hospital, Shanghai, China
| | - Wanlong Lin
- Department of Rehabilitation Medicine, Shanghai No.3 Rehabilitation Hospital, Shanghai, China
| | - Chunlei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Institute of rehabilitation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Cheng S, Xin R, Zhao Y, Wang P, Feng W, Liu P. Evaluation of fMRI activation in post-stroke patients with movement disorders after repetitive transcranial magnetic stimulation: a scoping review. Front Neurol 2023; 14:1192545. [PMID: 37404941 PMCID: PMC10315664 DOI: 10.3389/fneur.2023.1192545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Background Movement disorders are one of the most common stroke residual effects, which cause a major stress on their families and society. Repetitive transcranial magnetic stimulation (rTMS) could change neuroplasticity, which has been suggested as an alternative rehabilitative treatment for enhancing stroke recovery. Functional magnetic resonance imaging (fMRI) is a promising tool to explore neural mechanisms underlying rTMS intervention. Object Our primary goal is to better understand the neuroplastic mechanisms of rTMS in stroke rehabilitation, this paper provides a scoping review of recent studies, which investigate the alteration of brain activity using fMRI after the application of rTMS over the primary motor area (M1) in movement disorders patients after stroke. Method The database PubMed, Embase, Web of Science, WanFang Chinese database, ZhiWang Chinese database from establishment of each database until December 2022 were included. Two researchers reviewed the study, collected the information and the relevant characteristic extracted to a summary table. Two researchers also assessed the quality of literature with the Downs and Black criteria. When the two researchers unable to reach an agreement, a third researcher would have been consulted. Results Seven hundred and eleven studies in all were discovered in the databases, and nine were finally enrolled. They were of good quality or fair quality. The literature mainly involved the therapeutic effect and imaging mechanisms of rTMS on improving movement disorders after stroke. In all of them, there was improvement of the motor function post-rTMS treatment. Both high-frequency rTMS (HF-rTMS) and low-frequency rTMS (LF-rTMS) can induce increased functional connectivity, which may not directly correspond to the impact of rTMS on the activation of the stimulated brain areas. Comparing real rTMS with sham group, the neuroplastic effect of real rTMS can lead to better functional connectivity in the brain network in assisting stroke recovery. Conclusion rTMS allows the excitation and synchronization of neural activity, promotes the reorganization of brain function, and achieves the motor function recovery. fMRI can observe the influence of rTMS on brain networks and reveal the neuroplasticity mechanism of post-stroke rehabilitation. The scoping review helps us to put forward a series of recommendations that might guide future researchers exploring the effect of motor stroke treatments on brain connectivity.
Collapse
Affiliation(s)
- Siman Cheng
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Rong Xin
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yan Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pu Wang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wuwei Feng
- Department of Neurology, Medical University of South Carolina, Charleston, SC, United States
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Fu J, Chen S, Shu X, Lin Y, Jiang Z, Wei D, Gao J, Jia J. Functional-oriented, portable brain-computer interface training for hand motor recovery after stroke: a randomized controlled study. Front Neurosci 2023; 17:1146146. [PMID: 37250399 PMCID: PMC10213744 DOI: 10.3389/fnins.2023.1146146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/07/2023] [Indexed: 05/31/2023] Open
Abstract
Background Brain-computer interfaces (BCIs) have been proven to be effective for hand motor recovery after stroke. Facing kinds of dysfunction of the paretic hand, the motor task of BCIs for hand rehabilitation is relatively single, and the operation of many BCI devices is complex for clinical use. Therefore, we proposed a functional-oriented, portable BCI equipment and explored the efficiency of hand motor recovery after a stroke. Materials and methods Stroke patients were randomly assigned to the BCI group and the control group. The BCI group received BCI-based grasp/open motor training, while the control group received task-oriented guidance training. Both groups received 20 sessions of motor training in 4 weeks, and each session lasted for 30 min. The Fugl-Meyer assessment of the upper limb (FMA-UE) was applied for the assessment of rehabilitation outcomes, and the EEG signals were obtained for processing. Results The progress of FMA-UE between the BCI group [10.50 (5.75, 16.50)] and the control group [5.00 (4.00, 8.00)] was significantly different (Z = -2.834, P = 0.005). Meanwhile, the FMA-UE of both groups improved significantly (P < 0.001). A total of 24 patients in the BCI group achieved the minimal clinically important difference (MCID) of FMA-UE with an effective rate of 80%, and 16 in the control group achieved the MCID, with an effective rate of 51.6%. The lateral index of the open task in the BCI group was significantly decreased (Z = -2.704, P = 0.007). The average BCI accuracy for 24 stroke patients in 20 sessions was 70.7%, which was improved by 5.0% in the final session compared with the first session. Conclusion Targeted hand movement and two motor task modes, namely grasp and open, to be applied in a BCI design may be suitable in stroke patients with hand dysfunction. The functional-oriented, portable BCI training can promote hand recovery after a stroke, and it is expected to be widely used in clinical practice. The lateral index change of inter-hemispheric balance may be the mechanism of motor recovery. Trial registration number ChiCTR2100044492.
Collapse
Affiliation(s)
- Jianghong Fu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shugeng Chen
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaokang Shu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yifang Lin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zewu Jiang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Dongshuai Wei
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiajia Gao
- Department of Rehabilitation Medicine, Shanghai No. 3 Rehabilitation Hospital, Shanghai, China
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Fu J, Jiang Z, Shu X, Chen S, Jia J. Correlation between the ERD in grasp/open tasks of BCIs and hand function of stroke patients: a cross-sectional study. Biomed Eng Online 2023; 22:36. [PMID: 37061673 PMCID: PMC10105926 DOI: 10.1186/s12938-023-01091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/02/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND AND AIMS Brain-computer interfaces (BCIs) are emerging as a promising tool for upper limb recovery after stroke, and motor tasks are an essential part of BCIs for patient training and control of rehabilitative/assistive BCIs. However, the correlation between brain activation with different levels of motor impairment and motor tasks in BCIs is still not so clear. Thus, we aim to compare the brain activation of different levels of motor impairment in performing the hand grasping and opening tasks in BCIs. METHODS We instructed stroke patients to perform motor attempts (MA) to grasp and open the affected hand for 30 trials, respectively. During this period, they underwent EEG acquisition and BCIs accuracy recordings. They also received detailed history records and behavioral scale assessments (the Fugl-Meyer assessment of upper limb, FMA-UE). RESULTS The FMA-UE was negatively correlated with the event-related desynchronization (ERD) of the affected hemisphere during open MA (R = - 0.423, P = 0.009) but not with grasp MA (R = - 0.058, P = 0.733). Then we divided the stroke patients into group 1 (Brunnstrom recovery stages between I to II, n = 19) and group 2 (Brunnstrom recovery stages between III to VI, n = 23). No difference during the grasping task (t = 0.091, P = 0.928), but a significant difference during the open task (t = 2.156, P = 0.037) was found between the two groups on the affected hemisphere. No significant difference was found in the unaffected hemisphere. CONCLUSIONS The study indicated that brain activation is positively correlated with the hand function of stroke in open-hand tasks. In the grasping task, the patients in the different groups have a similar brain response, while in the open task, mildly injured patients have more brain activation in open the hand than the poor hand function patients.
Collapse
Affiliation(s)
- Jianghong Fu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 Mid-Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - ZeWu Jiang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 Mid-Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Xiaokang Shu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shugeng Chen
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 Mid-Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 Mid-Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- National Center for Neurological Disorders, Shanghai, China.
| |
Collapse
|
12
|
Ofir‐Geva S, Meilijson I, Frenkel‐Toledo S, Soroker N. Use of multi-perturbation Shapley analysis in lesion studies of functional networks: The case of upper limb paresis. Hum Brain Mapp 2023; 44:1320-1343. [PMID: 36206326 PMCID: PMC9921264 DOI: 10.1002/hbm.26105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/07/2022] Open
Abstract
Understanding the impact of variation in lesion topography on the expression of functional impairments following stroke is important, as it may pave the way to modeling structure-function relations in statistical terms while pointing to constraints for adaptive remapping and functional recovery. Multi-perturbation Shapley-value analysis (MSA) is a relatively novel game-theoretical approach for multivariate lesion-symptom mapping. In this methodological paper, we provide a comprehensive explanation of MSA. We use synthetic data to assess the method's accuracy and perform parameter optimization. We then demonstrate its application using a cohort of 107 first-event subacute stroke patients, assessed for upper limb (UL) motor impairment (Fugl-Meyer Assessment scale). Under the conditions tested, MSA could correctly detect simulated ground-truth lesion-symptom relationships with a sensitivity of 75% and specificity of ~90%. For real behavioral data, MSA disclosed a strong hemispheric effect in the relative contribution of specific regions-of-interest (ROIs): poststroke UL motor function was mostly contributed by damage to ROIs associated with movement planning (supplementary motor cortex and superior frontal gyrus) following left-hemispheric damage (LHD) and by ROIs associated with movement execution (primary motor and somatosensory cortices and the ventral brainstem) following right-hemispheric damage (RHD). Residual UL motor ability following LHD was found to depend on a wider array of brain structures compared to the residual motor ability of RHD patients. The results demonstrate that MSA can provide a unique insight into the relative importance of different hubs in neural networks, which is difficult to obtain using standard univariate methods.
Collapse
Affiliation(s)
- Shay Ofir‐Geva
- Department of Neurological RehabilitationLoewenstein Rehabilitation Medical CenterRaananaIsrael
- Department of Rehabilitation Medicine, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Isaac Meilijson
- School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael
| | | | - Nachum Soroker
- Department of Neurological RehabilitationLoewenstein Rehabilitation Medical CenterRaananaIsrael
- Department of Rehabilitation Medicine, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
13
|
Anti-spastic effect of contralesional dorsal premotor cortex stimulation in stroke patients with moderate-to-severe spastic paresis: a randomized, controlled pilot trial. Acta Neurol Belg 2023:10.1007/s13760-023-02212-2. [PMID: 36809647 DOI: 10.1007/s13760-023-02212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/12/2023] [Indexed: 02/23/2023]
Abstract
OBJECTIVE This study aimed at investigating the effect of a single-session repetitive transcranial magnetic stimulation (rTMS) of the contralesional dorsal premotor cortex on poststroke upper-limb spasticity. MATERIAL AND METHODS The study consisted of the following three independent parallel arms: inhibitory rTMS (n = 12), excitatory rTMS (n = 12), and sham stimulation (n = 13). The primary and secondary outcome measures were the Modified Ashworth Scale (MAS) and F/M amplitude ratio, respectively. A clinically meaningful difference was defined as a reduction in at least one MAS score. RESULTS There was a statistically significant change in MAS score within only the excitatory rTMS group over time [median (interquartile range) of - 1.0 (- 1.0 to - 0.5), p = 0.004]. However, groups were comparable in terms of median changes in MAS scores (p > 0.05). The proportions of patients achieving at least one MAS score reduction (9/12 in the excitatory rTMS group, 5/12 in the inhibitory rTMS group, and 5/13 in the control group) were also comparable (p = 0.135). For the F/M amplitude ratio, main time effect, main intervention effect, and time-intervention interaction effect were not statistically significant (p > 0.05). CONCLUSIONS Modulation of the contralesional dorsal premotor cortex with a single-session of excitatory or inhibitory rTMS does not appear to have an immediate anti-spastic effect beyond sham/placebo. The implication of this small study remains unclear and further studies into excitatory rTMS for the treatment of moderate-to-severe spastic paresis in poststroke patients should be undertaken. CLINICAL TRIAL REGISTRATION NO NCT04063995 (clinicaltrials.gov).
Collapse
|
14
|
Yu Q, Yin D, Kaiser M, Xu G, Guo M, Liu F, Li J, Fan M. Pathway-Specific Mediation Effect Between Structure, Function, and Motor Impairment After Subcortical Stroke. Neurology 2023; 100:e616-e626. [PMID: 36307219 PMCID: PMC9946180 DOI: 10.1212/wnl.0000000000201495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/15/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVE To investigate the pathway-specific correspondence between structural and functional changes resulting from focal subcortical stroke and their causal influence on clinical symptom. METHODS In this retrospective, cross-sectional study, we mainly focused on patients with unilateral subcortical chronic stroke with moderate-severe motor impairment assessed by Fugl-Meyer Assessment (upper extremity) and healthy controls. All participants underwent both resting-state fMRI and diffusion tensor imaging. To parse the pathway-specific structure-function covariation, we performed association analyses between the fine-grained corticospinal tracts (CSTs) originating from 6 subareas of the sensorimotor cortex and functional connectivity (FC) of the corresponding subarea, along with the refined corpus callosum (CC) sections and interhemispheric FC. A mediation analysis with FC as the mediator was used to further assess the pathway-specific effects of structural damage on motor impairment. RESULTS Thirty-five patients (mean age 52.7 ± 10.2 years, 27 men) and 43 healthy controls (mean age 56.2 ± 9.3 years, 21 men) were enrolled. Among the 6 CSTs, we identified 9 structurally and functionally covaried pathways, originating from the ipsilesional primary motor area (M1), dorsal premotor area (PMd), and primary somatosensory cortex (p < 0.05, corrected). FC for the bilateral M1, PMd, and ventral premotor cortex covaried with secondary degeneration of the corresponding CC sections (p < 0.05, corrected). Moreover, these covarying structures and functions were significantly correlated with the Fugl-Meyer Assessment (upper extremity) scores (p < 0.05, uncorrected). In particular, FC between the ipsilesional PMd and contralesional cerebellum (β = -0.141, p < 0.05, CI = [-0.319 to -0.015]) and interhemispheric FC of the PMd (β = 0.169, p < 0.05, CI = [0.015-0.391]) showed significant mediation effects in the prediction of motor impairment with structural damage of the CST and CC. DISCUSSIONS This study reveals causal influence of structural and functional pathways on motor impairment after subcortical stroke and provides a promising way to investigate pathway-specific structure-function coupling. Clinically, our findings may offer a circuit-based evidence for the PMd as a critical neuromodulation target in more impaired patients with stroke and also suggest the cerebellum as a potential target.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingxia Fan
- From the Shanghai Key Laboratory of Magnetic Resonance (Q.Y., G.X., M.G., F.L., J.L., M.F.), School of Physics and Electronic Science, East China Normal University; Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education) (D.Y.), School of Psychology and Cognitive Science, East China Normal University; Shanghai Changning Mental Health Center (D.Y.); Precision Imaging Beacon (M.K.), School of Medicine, University of Nottingham, United Kingdom; and School of Medicine (M.K.), Shanghai Jiao Tong University, China.
| |
Collapse
|
15
|
De Laet C, Herman B, Riga A, Bihin B, Regnier M, Leeuwerck M, Raymackers JM, Vandermeeren Y. Bimanual motor skill learning after stroke: Combining robotics and anodal tDCS over the undamaged hemisphere: An exploratory study. Front Neurol 2022; 13:882225. [PMID: 36061986 PMCID: PMC9433746 DOI: 10.3389/fneur.2022.882225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundSince a stroke can impair bimanual activities, enhancing bimanual cooperation through motor skill learning may improve neurorehabilitation. Therefore, robotics and neuromodulation with transcranial direct current stimulation (tDCS) are promising approaches. To date, tDCS has failed to enhance bimanual motor control after stroke possibly because it was not integrating the hypothesis that the undamaged hemisphere becomes the major poststroke hub for bimanual control.ObjectiveWe tested the following hypotheses: (I) In patients with chronic hemiparetic stroke training on a robotic device, anodal tDCS applied over the primary motor cortex of the undamaged hemisphere enhances bimanual motor skill learning compared to sham tDCS. (II) The severity of impairment correlates with the effect of tDCS on bimanual motor skill learning. (III) Bimanual motor skill learning is less efficient in patients than in healthy individuals (HI).MethodsA total of 17 patients with chronic hemiparetic stroke and 7 healthy individuals learned a complex bimanual cooperation skill on the REAplan® neurorehabilitation robot. The bimanual speed/accuracy trade-off (biSAT), bimanual coordination (biCo), and bimanual force (biFOP) scores were computed for each performance. In patients, real/sham tDCS was applied in a crossover, randomized, double-blind approach.ResultsCompared to sham, real tDCS did not enhance bimanual motor skill learning, retention, or generalization in patients, and no correlation with impairment was noted. The healthy individuals performed better than patients on bimanual motor skill learning, but generalization was similar in both groups.ConclusionA short motor skill learning session with a robotic device resulted in the retention and generalization of a complex skill involving bimanual cooperation. The tDCS strategy that would best enhance bimanual motor skill learning after stroke remains unknown.Clinical trial registrationhttps://clinicaltrials.gov/ct2/show/NCT02308852, identifier: NCT02308852.
Collapse
Affiliation(s)
- Chloë De Laet
- Stroke Unit/NeuroModulation Unit (NeMU), Department of Neurology, CHU UCL Namur (Mont-Godinne), UCLouvain, Yvoir, Belgium
| | - Benoît Herman
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium
- Materials and Civil Engineering (iMMC), Institute of Mechanics, UCLouvain, Louvain-la-Neuve, Belgium
| | - Audrey Riga
- Stroke Unit/NeuroModulation Unit (NeMU), Department of Neurology, CHU UCL Namur (Mont-Godinne), UCLouvain, Yvoir, Belgium
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium
- Clinical Division (NEUR), Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Benoît Bihin
- Scientific Support Unit, CHU UCL Namur (Mont-Godinne), UCLouvain, Yvoir, Belgium
| | - Maxime Regnier
- Scientific Support Unit, CHU UCL Namur (Mont-Godinne), UCLouvain, Yvoir, Belgium
| | - Maria Leeuwerck
- Department of Physical Medicine and Rehabilitation, CHU UCL Namur (Mont-Godinne), UCLouvain, Yvoir, Belgium
| | - Jean-Marc Raymackers
- Department of Neurology and Neurosurgery, Clinique Saint-Pierre, Ottignies-Louvain-la-Neuve, Belgium
| | - Yves Vandermeeren
- Stroke Unit/NeuroModulation Unit (NeMU), Department of Neurology, CHU UCL Namur (Mont-Godinne), UCLouvain, Yvoir, Belgium
- Louvain Bionics, UCLouvain, Louvain-la-Neuve, Belgium
- Clinical Division (NEUR), Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
- *Correspondence: Yves Vandermeeren
| |
Collapse
|
16
|
Hayward KS, Ferris JK, Lohse KR, Borich MR, Borstad A, Cassidy JM, Cramer SC, Dukelow SP, Findlater SE, Hawe RL, Liew SL, Neva JL, Stewart JC, Boyd LA. Observational Study of Neuroimaging Biomarkers of Severe Upper Limb Impairment After Stroke. Neurology 2022; 99:e402-e413. [PMID: 35550551 PMCID: PMC9421772 DOI: 10.1212/wnl.0000000000200517] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/28/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES It is difficult to predict poststroke outcome for individuals with severe motor impairment because both clinical tests and corticospinal tract (CST) microstructure may not reliably indicate severe motor impairment. Here, we test whether imaging biomarkers beyond the CST relate to severe upper limb (UL) impairment poststroke by evaluating white matter microstructure in the corpus callosum (CC). In an international, multisite hypothesis-generating observational study, we determined if (1) CST asymmetry index (CST-AI) can differentiate between individuals with mild-moderate and severe UL impairment and (2) CC biomarkers relate to UL impairment within individuals with severe impairment poststroke. We hypothesized that CST-AI would differentiate between mild-moderate and severe impairment, but CC microstructure would relate to motor outcome for individuals with severe UL impairment. METHODS Seven cohorts with individual diffusion imaging and motor impairment (Fugl-Meyer Upper Limb) data were pooled. Hand-drawn regions-of-interest were used to seed probabilistic tractography for CST (ipsilesional/contralesional) and CC (prefrontal/premotor/motor/sensory/posterior) tracts. Our main imaging measure was mean fractional anisotropy. Linear mixed-effects regression explored relationships between candidate biomarkers and motor impairment, controlling for observations nested within cohorts, as well as age, sex, time poststroke, and lesion volume. RESULTS Data from 110 individuals (30 with mild-moderate and 80 with severe motor impairment) were included. In the full sample, greater CST-AI (i.e., lower fractional anisotropy in the ipsilesional hemisphere, p < 0.001) and larger lesion volume (p = 0.139) were negatively related to impairment. In the severe subgroup, CST-AI was not reliably associated with impairment across models. Instead, lesion volume and CC microstructure explained impairment in the severe group beyond CST-AI (p's < 0.010). DISCUSSION Within a large cohort of individuals with severe UL impairment, CC microstructure related to motor outcome poststroke. Our findings demonstrate that CST microstructure does relate to UL outcome across the full range of motor impairment but was not reliably associated within the severe subgroup. Therefore, CC microstructure may provide a promising biomarker for severe UL outcome poststroke, which may advance our ability to predict recovery in individuals with severe motor impairment after stroke.
Collapse
Affiliation(s)
- Kathryn S Hayward
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia.
| | - Jennifer K Ferris
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Keith R Lohse
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Michael R Borich
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Alexandra Borstad
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Jessica M Cassidy
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Steven C Cramer
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Sean P Dukelow
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Sonja E Findlater
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Rachel L Hawe
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Sook-Lei Liew
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Jason L Neva
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Jill C Stewart
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| | - Lara A Boyd
- From the Departments of Physiotherapy (K.S.H.), Medicine and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Heidelberg, Victoria, Australia; Rehabilitation Sciences Graduate Research Program (J.K.F., L.A.B.), University of British Columbia, Vancouver, British Columbia, Canada; Physical Therapy and Neurology (K.R.L.), Washington University School of Medicine in Saint Louis, MO; Division of Physical Therapy (M.R.B.), Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA; School of Health Sciences (A.B.), Department of Physical Therapy, College of St. Scholastica, Duluth, MN; Department of Allied Health Sciences (J.M.C.), University of North Carolina at Chapel Hill, NC; Department of Neurology (S.C.C.), University of California Los Angeles; California Rehabilitation Institute (S.C.C.), Los Angeles, California; Department of Clinical Neurosciences (S.P.D., S.E.F.), Cumming School of Medicine, University of Calgary, Alberta, Canada; School of Kinesiology (R.L.H.), University of Minnesota, Minneapolis; Chan Division of Occupational Science and Occupational Therapy (S.-L.L.), Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles; Université de Montréal (J.L.N.), École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, and Centre de recherche de l'institut universitaire de gériatrie de Montréal, Quebec, Canada; and Physical Therapy Program (J.C.S.), Department of Exercise Science, University of South Carolina, Columbia
| |
Collapse
|
17
|
Boccuni L, Marinelli L, Trompetto C, Pascual-Leone A, Tormos Muñoz JM. Time to reconcile research findings and clinical practice on upper limb neurorehabilitation. Front Neurol 2022; 13:939748. [PMID: 35928130 PMCID: PMC9343948 DOI: 10.3389/fneur.2022.939748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
The problemIn the field of upper limb neurorehabilitation, the translation from research findings to clinical practice remains troublesome. Patients are not receiving treatments based on the best available evidence. There are certainly multiple reasons to account for this issue, including the power of habit over innovation, subjective beliefs over objective results. We need to take a step forward, by looking at most important results from randomized controlled trials, and then identify key active ingredients that determined the success of interventions. On the other hand, we need to recognize those specific categories of patients having the greatest benefit from each intervention, and why. The aim is to reach the ability to design a neurorehabilitation program based on motor learning principles with established clinical efficacy and tailored for specific patient's needs.Proposed solutionsThe objective of the present manuscript is to facilitate the translation of research findings to clinical practice. Starting from a literature review of selected neurorehabilitation approaches, for each intervention the following elements were highlighted: definition of active ingredients; identification of underlying motor learning principles and neural mechanisms of recovery; inferences from research findings; and recommendations for clinical practice. Furthermore, we included a dedicated chapter on the importance of a comprehensive assessment (objective impairments and patient's perspective) to design personalized and effective neurorehabilitation interventions.ConclusionsIt's time to reconcile research findings with clinical practice. Evidence from literature is consistently showing that neurological patients improve upper limb function, when core strategies based on motor learning principles are applied. To this end, practical take-home messages in the concluding section are provided, focusing on the importance of graded task practice, high number of repetitions, interventions tailored to patient's goals and expectations, solutions to increase and distribute therapy beyond the formal patient-therapist session, and how to integrate different interventions to maximize upper limb motor outcomes. We hope that this manuscript will serve as starting point to fill the gap between theory and practice in upper limb neurorehabilitation, and as a practical tool to leverage the positive impact of clinicians on patients' recovery.
Collapse
Affiliation(s)
- Leonardo Boccuni
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- *Correspondence: Leonardo Boccuni
| | - Lucio Marinelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Department of Neuroscience, Division of Clinical Neurophysiology, Genova, Italy
| | - Carlo Trompetto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Department of Neuroscience, Division of Neurorehabilitation, Genova, Italy
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Spain
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology and Harvard Medical School, Boston, MA, United States
| | - José María Tormos Muñoz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
18
|
Le Franc S, Herrera Altamira G, Guillen M, Butet S, Fleck S, Lécuyer A, Bougrain L, Bonan I. Toward an Adapted Neurofeedback for Post-stroke Motor Rehabilitation: State of the Art and Perspectives. Front Hum Neurosci 2022; 16:917909. [PMID: 35911589 PMCID: PMC9332194 DOI: 10.3389/fnhum.2022.917909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
Stroke is a severe health issue, and motor recovery after stroke remains an important challenge in the rehabilitation field. Neurofeedback (NFB), as part of a brain–computer interface, is a technique for modulating brain activity using on-line feedback that has proved to be useful in motor rehabilitation for the chronic stroke population in addition to traditional therapies. Nevertheless, its use and applications in the field still leave unresolved questions. The brain pathophysiological mechanisms after stroke remain partly unknown, and the possibilities for intervention on these mechanisms to promote cerebral plasticity are limited in clinical practice. In NFB motor rehabilitation, the aim is to adapt the therapy to the patient’s clinical context using brain imaging, considering the time after stroke, the localization of brain lesions, and their clinical impact, while taking into account currently used biomarkers and technical limitations. These modern techniques also allow a better understanding of the physiopathology and neuroplasticity of the brain after stroke. We conducted a narrative literature review of studies using NFB for post-stroke motor rehabilitation. The main goal was to decompose all the elements that can be modified in NFB therapies, which can lead to their adaptation according to the patient’s context and according to the current technological limits. Adaptation and individualization of care could derive from this analysis to better meet the patients’ needs. We focused on and highlighted the various clinical and technological components considering the most recent experiments. The second goal was to propose general recommendations and enhance the limits and perspectives to improve our general knowledge in the field and allow clinical applications. We highlighted the multidisciplinary approach of this work by combining engineering abilities and medical experience. Engineering development is essential for the available technological tools and aims to increase neuroscience knowledge in the NFB topic. This technological development was born out of the real clinical need to provide complementary therapeutic solutions to a public health problem, considering the actual clinical context of the post-stroke patient and the practical limits resulting from it.
Collapse
Affiliation(s)
- Salomé Le Franc
- Rehabilitation Medicine Unit, University Hospital of Rennes, Rennes, France
- Hybrid Team, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
- *Correspondence: Salomé Le Franc,
| | | | - Maud Guillen
- Hybrid Team, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
- Neurology Unit, University Hospital of Rennes, Rennes, France
| | - Simon Butet
- Rehabilitation Medicine Unit, University Hospital of Rennes, Rennes, France
- Empenn Unit U1228, Inserm, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
| | - Stéphanie Fleck
- Université de Lorraine, CNRS, LORIA, Nancy, France
- EA7312 Laboratoire de Psychologie Ergonomique et Sociale pour l’Expérience Utilisateurs (PERSEUS), Metz, France
| | - Anatole Lécuyer
- Hybrid Team, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
| | | | - Isabelle Bonan
- Rehabilitation Medicine Unit, University Hospital of Rennes, Rennes, France
- Empenn Unit U1228, Inserm, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
| |
Collapse
|
19
|
Mohan A, Knutson JS, Cunningham DA, Widina M, O'Laughlin K, Arora T, Li X, Sakaie K, Wang X, Uchino K, Plow EB. Contralaterally Controlled Functional Electrical Stimulation Combined With Brain Stimulation for Severe Upper Limb Hemiplegia-Study Protocol for a Randomized Controlled Trial. Front Neurol 2022; 13:869733. [PMID: 35599736 PMCID: PMC9117963 DOI: 10.3389/fneur.2022.869733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/01/2022] [Indexed: 12/05/2022] Open
Abstract
Background Approximately two-thirds of stroke survivors experience chronic upper limb paresis, and of them, 50% experience severe paresis. Treatment options for severely impaired survivors are often limited. Rehabilitation involves intensively engaging the paretic upper limb, and disincentivizing use of the non-paretic upper limb, with the goal to increase excitability of the ipsilesional primary motor cortex (iM1) and suppress excitability of the undamaged (contralesional) motor cortices, presumed to have an inhibitory effect on iM1. Accordingly, brain stimulation approaches, such as repetitive transcranial magnetic stimulation (rTMS), are also given to excite iM1 and/or suppress contralesional motor cortices. But such approaches aimed at ultimately increasing iM1 excitability yield limited functional benefit in severely impaired survivors who lack sufficient ipsilesional substrate. Aim Here, we test the premise that combining Contralaterally Controlled Functional Electrical Stimulation (CCFES), a rehabilitation technique that engages the non-paretic upper limb in delivery of neuromuscular electrical stimulation to the paretic upper limb, and a new rTMS approach that excites intact, contralesional higher motor cortices (cHMC), may have more favorable effect on paretic upper limb function in severely impaired survivors based on recruitment of spared, transcallosal and (alternate) ipsilateral substrate. Methods In a prospective, double-blind, placebo-controlled RCT, 72 chronic stroke survivors with severe distal hand impairment receive CCFES plus cHMC rTMS, iM1 rTMS, or sham rTMS, 2X/wk for 12wks. Measures of upper limb motor impairment (Upper Extremity Fugl Meyer, UEFM), functional ability (Wolf Motor-Function Test, WMFT) and perceived disability are collected at 0, 6, 12 (end-of-treatment), 24, and 36 wks (follow-up). TMS is performed at 0, 12 (end-of-treatment), and 36 wks (follow-up) to evaluate inter-hemispheric and ipsilateral mechanisms. Influence of baseline severity is also characterized with imaging. Conclusions Targeting of spared neural substrates and rehabilitation which engages the unimpaired limb in movement of the impaired limb may serve as a suitable combinatorial treatment option for severely impaired stroke survivors. ClinicalTrials No NCT03870672.
Collapse
Affiliation(s)
- Akhil Mohan
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jayme S. Knutson
- Department of Physical Medicine and Rehabilitation, MetroHealth System, Cleveland, OH, United States
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland FES Center, Cleveland, OH, United States
| | - David A. Cunningham
- Department of Physical Medicine and Rehabilitation, MetroHealth System, Cleveland, OH, United States
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland FES Center, Cleveland, OH, United States
| | - Morgan Widina
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Kyle O'Laughlin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Tarun Arora
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Xin Li
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Ken Sakaie
- Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Xiaofeng Wang
- Respiratory Institute Biostatistics Core, Lerner Research Institute, Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Ken Uchino
- Cerebrovascular Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Ela B. Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
20
|
Hensel L, Lange F, Tscherpel C, Viswanathan S, Freytag J, Volz LJ, Eickhoff SB, Fink GR, Grefkes C. Recovered grasping performance after stroke depends on interhemispheric frontoparietal connectivity. Brain 2022; 146:1006-1020. [PMID: 35485480 PMCID: PMC9976969 DOI: 10.1093/brain/awac157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 01/11/2023] Open
Abstract
Activity changes in the ipsi- and contralesional parietal cortex and abnormal interhemispheric connectivity between these regions are commonly observed after stroke, however, their significance for motor recovery remains poorly understood. We here assessed the contribution of ipsilesional and contralesional anterior intraparietal cortex (aIPS) for hand motor function in 18 recovered chronic stroke patients and 18 healthy control subjects using a multimodal assessment consisting of resting-state functional MRI, motor task functional MRI, online-repetitive transcranial magnetic stimulation (rTMS) interference, and 3D movement kinematics. Effects were compared against two control stimulation sites, i.e. contralesional M1 and a sham stimulation condition. We found that patients with good motor outcome compared to patients with more substantial residual deficits featured increased resting-state connectivity between ipsilesional aIPS and contralesional aIPS as well as between ipsilesional aIPS and dorsal premotor cortex. Moreover, interhemispheric connectivity between ipsilesional M1 and contralesional M1 as well as ipsilesional aIPS and contralesional M1 correlated with better motor performance across tasks. TMS interference at individual aIPS and M1 coordinates led to differential effects depending on the motor task that was tested, i.e. index finger-tapping, rapid pointing movements, or a reach-grasp-lift task. Interfering with contralesional aIPS deteriorated the accuracy of grasping, especially in patients featuring higher connectivity between ipsi- and contralesional aIPS. In contrast, interference with the contralesional M1 led to impaired grasping speed in patients featuring higher connectivity between bilateral M1. These findings suggest differential roles of contralesional M1 and aIPS for distinct aspects of recovered hand motor function, depending on the reorganization of interhemispheric connectivity.
Collapse
Affiliation(s)
- Lukas Hensel
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Fabian Lange
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Caroline Tscherpel
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Shivakumar Viswanathan
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Jana Freytag
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Lukas J Volz
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Gereon R Fink
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Christian Grefkes
- Correspondence to: Christian Grefkes Institute of Neuroscience and Medicine - Cognitive Neuroscience (INM-3) Research Centre Juelich, Juelich, Germany E-mail:
| |
Collapse
|
21
|
Brancaccio A, Tabarelli D, Belardinelli P. A New Framework to Interpret Individual Inter-Hemispheric Compensatory Communication after Stroke. J Pers Med 2022; 12:jpm12010059. [PMID: 35055374 PMCID: PMC8778334 DOI: 10.3390/jpm12010059] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022] Open
Abstract
Stroke constitutes the main cause of adult disability worldwide. Even after application of standard rehabilitation protocols, the majority of patients still show relevant motor impairment. Outcomes of standard rehabilitation protocols have led to mixed results, suggesting that relevant factors for brain re-organization after stroke have not been considered in explanatory models. Therefore, finding a comprehensive model to optimally define patient-dependent rehabilitation protocols represents a crucial topic in clinical neuroscience. In this context, we first report on the rehabilitation models conceived thus far in the attempt of predicting stroke rehabilitation outcomes. Then, we propose a new framework to interpret results in stroke literature in the light of the latest evidence regarding: (1) the role of the callosum in inter-hemispheric communication, (2) the role of prefrontal cortices in exerting a control function, and (3) diaschisis mechanisms. These new pieces of evidence on the role of callosum can help to understand which compensatory mechanism may take place following a stroke. Moreover, depending on the individual impairment, the prefrontal control network will play different roles according to the need of high-level motor control. We believe that our new model, which includes crucial overlooked factors, will enable clinicians to better define individualized motor rehabilitation protocols.
Collapse
|
22
|
Rolle CE, Baumer FM, Jordan JT, Berry K, Garcia M, Monusko K, Trivedi H, Wu W, Toll R, Buckwalter MS, Lansberg M, Etkin A. Mapping causal circuit dynamics in stroke using simultaneous electroencephalography and transcranial magnetic stimulation. BMC Neurol 2021; 21:280. [PMID: 34271872 PMCID: PMC8283835 DOI: 10.1186/s12883-021-02319-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/16/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Motor impairment after stroke is due not only to direct tissue loss but also to disrupted connectivity within the motor network. Mixed results from studies attempting to enhance motor recovery with Transcranial Magnetic Stimulation (TMS) highlight the need for a better understanding of both connectivity after stroke and the impact of TMS on this connectivity. This study used TMS-EEG to map the causal information flow in the motor network of healthy adult subjects and define how stroke alters these circuits. METHODS Fourteen stroke patients and 12 controls received TMS to two sites (bilateral primary motor cortices) during two motor tasks (paretic/dominant hand movement vs. rest) while EEG measured the cortical response to TMS pulses. TMS-EEG based connectivity measurements were derived for each hemisphere and the change in connectivity (ΔC) between the two motor tasks was calculated. We analyzed if ΔC for each hemisphere differed between the stroke and control groups or across TMS sites, and whether ΔC correlated with arm function in stroke patients. RESULTS Right hand movement increased connectivity in the left compared to the right hemisphere in controls, while hand movement did not significantly change connectivity in either hemisphere in stroke. Stroke patients with the largest increase in healthy hemisphere connectivity during paretic hand movement had the best arm function. CONCLUSIONS TMS-EEG measurements are sensitive to movement-induced changes in brain connectivity. These measurements may characterize clinically meaningful changes in circuit dynamics after stroke, thus providing specific targets for trials of TMS in post-stroke rehabilitation.
Collapse
Affiliation(s)
- Camarin E Rolle
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, MC: 5797, Stanford, CA, 94305-5797, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Sierra-Pacific Mental Illness Research, Education, and Clinical Centers (MIRECC), Palo Alto Veterans Health Care Administration, Palo Alto, CA, USA
| | - Fiona M Baumer
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua T Jordan
- Department of Psychiatry, University of California At San Francisco, San Francisco, CA, USA
| | - Ketura Berry
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Madelleine Garcia
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Karen Monusko
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, MC: 5797, Stanford, CA, 94305-5797, USA
| | - Hersh Trivedi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, MC: 5797, Stanford, CA, 94305-5797, USA
| | - Wei Wu
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, MC: 5797, Stanford, CA, 94305-5797, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Sierra-Pacific Mental Illness Research, Education, and Clinical Centers (MIRECC), Palo Alto Veterans Health Care Administration, Palo Alto, CA, USA
| | - Russell Toll
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, MC: 5797, Stanford, CA, 94305-5797, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Sierra-Pacific Mental Illness Research, Education, and Clinical Centers (MIRECC), Palo Alto Veterans Health Care Administration, Palo Alto, CA, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Maarten Lansberg
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, MC: 5797, Stanford, CA, 94305-5797, USA. .,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA. .,Sierra-Pacific Mental Illness Research, Education, and Clinical Centers (MIRECC), Palo Alto Veterans Health Care Administration, Palo Alto, CA, USA.
| |
Collapse
|
23
|
Ferrari F, Shell CE, Thumser ZC, Clemente F, Plow EB, Cipriani C, Marasco PD. Proprioceptive Augmentation With Illusory Kinaesthetic Sensation in Stroke Patients Improves Movement Quality in an Active Upper Limb Reach-and-Point Task. Front Neurorobot 2021; 15:610673. [PMID: 33732129 PMCID: PMC7956990 DOI: 10.3389/fnbot.2021.610673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
Stroke patients often have difficulty completing motor tasks even after substantive rehabilitation. Poor recovery of motor function can often be linked to stroke-induced damage to motor pathways. However, stroke damage in pathways that impact effective integration of sensory feedback with motor control may represent an unappreciated obstacle to smooth motor coordination. In this study we investigated the effects of augmenting movement proprioception during a reaching task in six stroke patients as a proof of concept. We used a wearable neurorobotic proprioceptive feedback system to induce illusory kinaesthetic sensation by vibrating participants' upper arm muscles over active limb movements. Participants were instructed to extend their elbow to reach-and-point to targets of differing sizes at various distances, while illusion-inducing vibration (90 Hz), sham vibration (25 Hz), or no vibration was applied to the distal tendons of either their biceps brachii or their triceps brachii. To assess the impact of augmented kinaesthetic feedback on motor function we compared the results of vibrating the biceps or triceps during arm extension in the affected arm of stroke patients and able-bodied participants. We quantified performance across conditions and participants by tracking limb/hand kinematics with motion capture, and through Fitts' law analysis of reaching target acquisition. Kinematic analyses revealed that injecting 90 Hz illusory kinaesthetic sensation into the actively contracting (agonist) triceps muscle during reaching increased movement smoothness, movement directness, and elbow extension. Conversely, injecting 90 Hz illusory kinaesthetic sensation into the antagonistic biceps during reaching negatively impacted those same parameters. The Fitts' law analyses reflected similar effects with a trend toward increased throughput with triceps vibration during reaching. Across all analyses, able-bodied participants were largely unresponsive to illusory vibrational augmentation. These findings provide evidence that vibration-induced movement illusions delivered to the primary agonist muscle involved in active movement may be integrated into rehabilitative approaches to help promote functional motor recovery in stroke patients.
Collapse
Affiliation(s)
- Francesca Ferrari
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics & A.I., Scuola Superiore Sant'Anna, Pisa, Italy
| | - Courtney E Shell
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute-Cleveland Clinic, Cleveland, OH, United States.,Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Zachary C Thumser
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute-Cleveland Clinic, Cleveland, OH, United States.,Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Francesco Clemente
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics & A.I., Scuola Superiore Sant'Anna, Pisa, Italy
| | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute-Cleveland Clinic, Cleveland, OH, United States.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Christian Cipriani
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics & A.I., Scuola Superiore Sant'Anna, Pisa, Italy
| | - Paul D Marasco
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute-Cleveland Clinic, Cleveland, OH, United States.,Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| |
Collapse
|
24
|
Hordacre B, Lotze M, Jenkinson M, Lazari A, Barras CD, Boyd L, Hillier S. Fronto-parietal involvement in chronic stroke motor performance when corticospinal tract integrity is compromised. NEUROIMAGE-CLINICAL 2021; 29:102558. [PMID: 33513561 PMCID: PMC7841401 DOI: 10.1016/j.nicl.2021.102558] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Preserved integrity of the corticospinal tract (CST) is a marker of good upper-limb behavior and recovery following stroke. However, there is less understanding of neural mechanisms that might help facilitate upper-limb motor recovery in stroke survivors with extensive CST damage. OBJECTIVE The purpose of this study was to investigate resting state functional connectivity in chronic stroke survivors with different levels of CST damage and to explore neural correlates of greater upper-limb motor performance in stroke survivors with compromised ipsilesional CST integrity. METHODS Thirty chronic stroke survivors (24 males, aged 64.7 ± 10.8 years) participated in this study. Three experimental sessions were conducted to: 1) obtain anatomical (T1, T2) structural (diffusion) and functional (resting state) MRI sequences, 2) determine CST integrity with transcranial magnetic stimulation (TMS) and conduct assessments of upper-limb behavior, and 3) reconfirm CST integrity status. Participants were divided into groups according to the extent of CST damage. Those in the extensive CST damage group did not show TMS evoked responses and had significantly lower ipsilesional fractional anisotropy. RESULTS Of the 30 chronic stroke survivors, 12 were categorized as having extensive CST damage. Stroke survivors with extensive CST damage had weaker functional connectivity in the ipsilesional sensorimotor network and greater functional connectivity in the ipsilesional fronto-parietal network compared to those with preserved CST integrity. For participants with extensive CST damage, improved motor performance was associated with greater functional connectivity of the ipsilesional fronto-parietal network and higher fractional anisotropy of the ipsilesional rostral superior longitudinal fasciculus. CONCLUSIONS Stroke survivors with extensive CST damage have greater resting state functional connectivity of an ipsilesional fronto-parietal network that appears to be a behaviorally relevant neural mechanism that improves upper-limb motor performance.
Collapse
Affiliation(s)
- Brenton Hordacre
- University of South Australia, IIMPACT in Health, Adelaide, Australia.
| | - Martín Lotze
- Functional Imaging Unit, Center for Diagnostic Radiology, University Medicine Greifswald, Greifswald, Germany
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alberto Lazari
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Christen D Barras
- South Australian Health and Medical Research Institute, Adelaide, Australia; The University of Adelaide, Adelaide, Australia
| | - Lara Boyd
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Susan Hillier
- University of South Australia, IIMPACT in Health, Adelaide, Australia
| |
Collapse
|
25
|
Lioi G, Butet S, Fleury M, Bannier E, Lécuyer A, Bonan I, Barillot C. A Multi-Target Motor Imagery Training Using Bimodal EEG-fMRI Neurofeedback: A Pilot Study in Chronic Stroke Patients. Front Hum Neurosci 2020; 14:37. [PMID: 32132910 PMCID: PMC7040168 DOI: 10.3389/fnhum.2020.00037] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/27/2020] [Indexed: 01/08/2023] Open
Abstract
Traditional rehabilitation techniques present limitations and the majority of patients show poor 1-year post-stroke recovery. Thus, Neurofeedback (NF) or Brain-Computer-Interface applications for stroke rehabilitation purposes are gaining increased attention. Indeed, NF has the potential to enhance volitional control of targeted cortical areas and thus impact on motor function recovery. However, current implementations are limited by temporal, spatial or practical constraints of the specific imaging modality used. In this pilot work and for the first time in literature, we applied bimodal EEG-fMRI NF for upper limb stroke recovery on four stroke-patients with different stroke characteristics and motor impairment severity. We also propose a novel, multi-target training approach that guides the training towards the activation of the ipsilesional primary motor cortex. In addition to fMRI and EEG outcomes, we assess the integrity of the corticospinal tract (CST) with tractography. Preliminary results suggest the feasibility of our approach and show its potential to induce an augmented activation of ipsilesional motor areas, depending on the severity of the stroke deficit. Only the two patients with a preserved CST and subcortical lesions succeeded in upregulating the ipsilesional primary motor cortex and exhibited a functional improvement of upper limb motricity. These findings highlight the importance of taking into account the variability of the stroke patients' population and enabled to identify inclusion criteria for the design of future clinical studies.
Collapse
Affiliation(s)
- Giulia Lioi
- Univ Rennes, Inria, CNRS, Inserm, IRISA, Rennes, France
| | - Simon Butet
- Departement of Physical and Rehabilitation Medicine, Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Mathis Fleury
- Univ Rennes, Inria, CNRS, Inserm, IRISA, Rennes, France
| | - Elise Bannier
- Univ Rennes, Inria, CNRS, Inserm, IRISA, Rennes, France
- Departement of Radiology, CHU Rennes, Rennes, France
| | | | - Isabelle Bonan
- Univ Rennes, Inria, CNRS, Inserm, IRISA, Rennes, France
- Departement of Physical and Rehabilitation Medicine, Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | | |
Collapse
|
26
|
Adam R, Johnston K, Menon RS, Everling S. Functional reorganization during the recovery of contralesional target selection deficits after prefrontal cortex lesions in macaque monkeys. Neuroimage 2020; 207:116339. [DOI: 10.1016/j.neuroimage.2019.116339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/08/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023] Open
|
27
|
Boccuni L, Meyer S, D'cruz N, Kessner SS, Marinelli L, Trompetto C, Peeters A, Van Pesch V, Duprez T, Sunaert S, Feys H, Thijs V, Nieuwboer A, Verheyden G. Premotor dorsal white matter integrity for the prediction of upper limb motor impairment after stroke. Sci Rep 2019; 9:19712. [PMID: 31873186 PMCID: PMC6928144 DOI: 10.1038/s41598-019-56334-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/08/2019] [Indexed: 01/01/2023] Open
Abstract
Corticospinal tract integrity after stroke has been widely investigated through the evaluation of fibres descending from the primary motor cortex. However, about half of the corticospinal tract is composed by sub-pathways descending from premotor and parietal areas, to which damage may play a more specific role in motor impairment and recovery, particularly post-stroke. Therefore, the main aim of this study was to investigate lesion load within corticospinal tract sub-pathways as predictors of upper limb motor impairment after stroke. Motor impairment (Fugl-Meyer Upper Extremity score) was evaluated in 27 participants at one week and six months after stroke, together with other clinical and demographic data. Neuroimaging data were obtained within the first week after stroke. Univariate regression analysis indicated that among all neural correlates, lesion load within premotor fibres explained the most variance in motor impairment at six months (R2 = 0.44, p < 0.001). Multivariable regression analysis resulted in three independent, significant variables explaining motor impairment at six months; Fugl-Meyer Upper Extremity score at one week, premotor dorsal fibre lesion load at one week, and age below or above 70 years (total R2 = 0.81; p < 0.001). Early examination of premotor dorsal fibre integrity may be a promising biomarker of upper limb motor impairment after stroke.
Collapse
Affiliation(s)
- Leonardo Boccuni
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium. .,University of Genova, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Genova, Italy.
| | - Sarah Meyer
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Nicholas D'cruz
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Simon S Kessner
- University Medical Center Hamburg-Eppendorf, Department of Neurology, Hamburg, Germany
| | - Lucio Marinelli
- University of Genova, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Genova, Italy
| | - Carlo Trompetto
- University of Genova, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Genova, Italy
| | - André Peeters
- Cliniques Universitaires Saint-Luc, Department of Neurology, Brussels, Belgium
| | - Vincent Van Pesch
- Cliniques Universitaires Saint-Luc, Department of Neurology, Brussels, Belgium
| | - Thierry Duprez
- Cliniques Universitaires Saint-Luc, Department of Radiology, Brussels, Belgium
| | - Stefan Sunaert
- KU Leuven - University of Leuven, Department of Imaging and Pathology, Leuven, Belgium
| | - Hilde Feys
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Vincent Thijs
- Florey Institute of Neuroscience and Mental Health, Stroke Division, Melbourne, Australia.,Austin Health, Department of Neurology, Melbourne, Australia
| | - Alice Nieuwboer
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Geert Verheyden
- KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| |
Collapse
|
28
|
Allart E, Viard R, Lopes R, Devanne H, Delval A. Influence of Motor Deficiency and Spatial Neglect on the Contralesional Posterior Parietal Cortex Functional and Structural Connectivity in Stroke Patients. Brain Topogr 2019; 33:176-190. [PMID: 31832813 DOI: 10.1007/s10548-019-00749-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023]
Abstract
The posterior parietal cortex (PPC) is a key structure for visual attention and upper limb function, two features that could be impaired after stroke, and could be implied in their recovery. If it is well established that stroke is responsible for intra- and interhemispheric connectivity troubles, little is known about those existing for the contralesional PPC. In this study, we aimed at mapping the functional (using resting state fMRI) and structural (using diffusion tensor imagery) networks from 3 subparts of the PPC of the contralesional hemisphere (the anterior intraparietal sulcus), the posterior intraparietal sulcus and the superior parieto-occipital cortex to bilateral frontal areas and ipsilesional homologous PPC parts in 11 chronic stroke patients compared to 13 healthy controls. We also aimed at assessing the relationship between connectivity and the severity of visuospatial and motor deficiencies. We showed that interhemispheric functional and structural connectivity between PPCs was altered in stroke patients compared to controls, without any specificity among seeds. Alterations of parieto-frontal intra- and interhemispheric connectivity were less observed. Neglect severity was associated with several alterations in intra- and interhemispheric connectivity, whereas we did not find any behavioral/connectivity correlations for motor deficiency. The results of this exploratory study shed a new light on the influence of the contralesional PPC in post-stroke patients, they have to be confirmed and refined in further larger studies.
Collapse
Affiliation(s)
- Etienne Allart
- Neurorehabilitation Unit, Lille University Medical Center, 59000, Lille, France. .,Inserm U1171-Degenerative and Vascular Cognitive Disorders, University Lille, 59000, Lille, France.
| | - Romain Viard
- Inserm U1171-Degenerative and Vascular Cognitive Disorders, University Lille, 59000, Lille, France.,Clinical Imaging Core FaCility, Lille University Medical Center, 59000, Lille, France
| | - Renaud Lopes
- Inserm U1171-Degenerative and Vascular Cognitive Disorders, University Lille, 59000, Lille, France.,Clinical Imaging Core FaCility, Lille University Medical Center, 59000, Lille, France
| | - Hervé Devanne
- Department of Clinical Neurophysiology, Lille University Medical Center, 59000, Lille, France.,URePSSS Unité de Recherche Pluridisciplinaire Sport Santé Société (EA7369), ULCO, 62228, Calais, France
| | - Arnaud Delval
- Inserm U1171-Degenerative and Vascular Cognitive Disorders, University Lille, 59000, Lille, France.,Department of Clinical Neurophysiology, Lille University Medical Center, 59000, Lille, France
| |
Collapse
|
29
|
Cunningham DA, Knutson JS, Sankarasubramanian V, Potter-Baker KA, Machado AG, Plow EB. Bilateral Contralaterally Controlled Functional Electrical Stimulation Reveals New Insights Into the Interhemispheric Competition Model in Chronic Stroke. Neurorehabil Neural Repair 2019; 33:707-717. [PMID: 31315515 DOI: 10.1177/1545968319863709] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background. Upper-limb chronic stroke hemiplegia was once thought to persist because of disproportionate amounts of inhibition imposed from the contralesional on the ipsilesional hemisphere. Thus, one rehabilitation strategy involves discouraging engagement of the contralesional hemisphere by only engaging the impaired upper limb with intensive unilateral activities. However, this premise has recently been debated and has been shown to be task specific and/or apply only to a subset of the stroke population. Bilateral rehabilitation, conversely, engages both hemispheres and has been shown to benefit motor recovery. To determine what neurophysiological strategies bilateral therapies may engage, we compared the effects of a bilateral and unilateral based therapy using transcranial magnetic stimulation. Methods. We adopted a peripheral electrical stimulation paradigm where participants received 1 session of bilateral contralaterally controlled functional electrical stimulation (CCFES) and 1 session of unilateral cyclic neuromuscular electrical stimulation (cNMES) in a repeated-measures design. In all, 15 chronic stroke participants with a wide range of motor impairments (upper extremity Fugl-Meyer score: 15 [severe] to 63 [mild]) underwent single 1-hour sessions of CCFES and cNMES. We measured whether CCFES and cNMES produced different effects on interhemispheric inhibition (IHI) to the ipsilesional hemisphere, ipsilesional corticospinal output, and ipsilateral corticospinal output originating from the contralesional hemisphere. Results. CCFES reduced IHI and maintained ipsilesional output when compared with cNMES. We found no effect on ipsilateral output for either condition. Finally, the less-impaired participants demonstrated a greater increase in ipsilesional output following CCFES. Conclusions. Our results suggest that bilateral therapies are capable of alleviating inhibition on the ipsilesional hemisphere and enhancing output to the paretic limb.
Collapse
Affiliation(s)
- David A Cunningham
- 1 Case Western Reserve University, Cleveland, OH, USA.,2 MetroHealth Medical Center, Cleveland, OH, USA.,3 Cleveland Functional Electrical Stimulation Center, OH, USA
| | - Jayme S Knutson
- 1 Case Western Reserve University, Cleveland, OH, USA.,2 MetroHealth Medical Center, Cleveland, OH, USA.,3 Cleveland Functional Electrical Stimulation Center, OH, USA
| | | | - Kelsey A Potter-Baker
- 5 Louis Stokes Cleveland Department of Veteran's Affairs, Cleveland, OH, USA.,6 Cleveland Clinic, OH, USA
| | | | | |
Collapse
|
30
|
Morecraft RJ, Ge J, Stilwell-Morecraft KS, Rotella DL, Pizzimenti MA, Darling WG. Terminal organization of the corticospinal projection from the lateral premotor cortex to the cervical enlargement (C5-T1) in rhesus monkey. J Comp Neurol 2019; 527:2761-2789. [PMID: 31032921 DOI: 10.1002/cne.24706] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/06/2019] [Accepted: 04/18/2019] [Indexed: 11/08/2022]
Abstract
High-resolution tract tracing and stereology were used to study the terminal organization of the corticospinal projection (CSP) from the ventral (v) and dorsal (d) regions of the lateral premotor cortex (LPMC) to spinal levels C5-T1. The LPMCv CSP originated from the postarcuate sulcus region, was bilateral, sparse, and primarily targeted the dorsolateral and ventromedial sectors of contralateral lamina VII. The convexity/lateral part of LPMCv did not project below C2. Thus, very little LPMCv corticospinal output reaches the cervical enlargement. In contrast, the LPMCd CSP was 5× more prominent in terminal density. Bilateral terminal labeling occurred in the medial sectors of lamina VII and adjacent lamina VIII, where propriospinal neurons with long-range bilateral axon projections reside. Notably, lamina VIII also harbors axial motoneurons. Contralateral labeling occurred in the lateral sectors of lamina VII and the dorsomedial quadrant of lamina IX, noted for harboring proximal upper limb flexor motoneurons. Segmentally, the CSP to contralateral laminae VII and IX preferentially innervated C5-C7, which supplies shoulder, elbow, and wrist musculature. In contrast, terminations in axial-related lamina VIII were distributed bilaterally throughout all cervical enlargement levels, including C8 and T1. These findings demonstrate the LPMCd CSP is structured to influence axial and proximal upper limb movements, supporting Kuypers conceptual view of the LPMCd CSP being a major component of the medial motor control system. Thus, distal upper extremity control influenced by LPMC, including grasping and manipulation, must occur through indirect neural network connections such as corticocortical, subcortical, or intrinsic spinal circuits.
Collapse
Affiliation(s)
- Robert J Morecraft
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota
| | - Jizhi Ge
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota
| | - Kim S Stilwell-Morecraft
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota
| | - Diane L Rotella
- Department of Health and Human Physiology, Motor Control Laboratories, The University of Iowa, Iowa City, Iowa
| | - Marc A Pizzimenti
- Department of Health and Human Physiology, Motor Control Laboratories, The University of Iowa, Iowa City, Iowa.,Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Warren G Darling
- Department of Health and Human Physiology, Motor Control Laboratories, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
31
|
Rahayu UB, Wibowo S, Setyopranoto I. The Effectiveness of Early Mobilization Time on Balance and Functional Ability after Ischemic Stroke. Open Access Maced J Med Sci 2019; 7:1088-1092. [PMID: 31049086 PMCID: PMC6490474 DOI: 10.3889/oamjms.2019.269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND: Early mobilisation (EM) after-ischemic stroke is a motor learning intervention aimed to restore nerve cells and to improve balance and functional ability. Unfortunately, the study of when this intervention began has not been widely studied. AIM: On this study was compared the effect of EM started at 24 hours and 48 hours after an ischemic stroke on balance and functional ability. MATERIAL AND METHODS: Randomized controlled trial involving 40 patients on 2 groups meeting predefined inclusion criteria. The levels of balance were measured using the Berg Balance Scale, and the functional ability was measured using the Barthel Index, at 5th and 7th day. RESULTS: A significant difference was observed in both balance (p = 0.038) and functional ability (p = 0.021) obtained on the 7th day of assessment between both groups. A significant difference on the 5th day was observed only in the functional ability (p = 0.002) and not in the balance (p = 0.147), between the groups. CONCLUSION: EM started at 24 hours after the ischemic stroke has been found to have a better impact on balance and functional ability compared to that at 48 hours.
Collapse
Affiliation(s)
- Umi Budi Rahayu
- Department of Physiotherapy, Faculty of Health Science, Universitas Muhammadiyah Surakarta, Indonesia
| | - Samekto Wibowo
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ismail Setyopranoto
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
32
|
Transcranial Direct Current Stimulation (tDCS) Paired with Occupation-Centered Bimanual Training in Children with Unilateral Cerebral Palsy: A Preliminary Study. Neural Plast 2018; 2018:9610812. [PMID: 30627151 PMCID: PMC6304908 DOI: 10.1155/2018/9610812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/18/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
Objective We investigated the preliminary efficacy of cathodal transcranial direct current stimulation (tDCS) combined with bimanual training in children and young adults with unilateral cerebral palsy based on the principle of exaggerated interhemispheric inhibition (IHI). Methods Eight participants with corticospinal tract (CST) connectivity from the lesioned hemisphere participated in an open-label study of 10 sessions of cathodal tDCS to the nonlesioned hemisphere (20 minutes) concurrently with bimanual, goal-directed training (120 minutes). We measured the frequency of adverse events and intervention efficacy with performance (bimanual-Assisting Hand Assessment (AHA)-and unimanual-Box and Blocks), self-report (Canadian Occupational Performance Measure (COPM), ABILHAND), and neurophysiologic (motor-evoked potential amplitude, cortical silent period (CSP) duration, and motor mapping) assessments. Results All participants completed the study with no serious adverse events. Three of 8 participants showed gains on the AHA, and 4 of 8 participants showed gains in Box and Blocks (more affected hand). Nonlesioned CSP duration decreased in 6 of 6 participants with analyzable data. Cortical representation of the first dorsal interosseous expanded in the nonlesioned hemisphere in 4 of 6 participants and decreased in the lesioned hemisphere in 3 of 4 participants with analyzable data. Conclusions While goal achievement was observed, objective measures of hand function showed inconsistent gains. Neurophysiologic data suggests nonlinear responses to cathodal stimulation of the nonlesioned hemisphere. Future studies examining the contributions of activity-dependent competition and cortical excitability imbalances are indicated.
Collapse
|
33
|
Ferris JK, Neva JL, Francisco BA, Boyd LA. Bilateral Motor Cortex Plasticity in Individuals With Chronic Stroke, Induced by Paired Associative Stimulation. Neurorehabil Neural Repair 2018; 32:671-681. [DOI: 10.1177/1545968318785043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: In the chronic phase after stroke, cortical excitability differs between the cerebral hemispheres; the magnitude of this asymmetry depends on degree of motor impairment. It is unclear whether these asymmetries also affect capacity for plasticity in corticospinal tract excitability or whether hemispheric differences in plasticity are related to chronic sensorimotor impairment. Methods: Response to paired associative stimulation (PAS) was assessed bilaterally in 22 individuals with chronic hemiparesis. Corticospinal excitability was measured as the area under the motor-evoked potential (MEP) recruitment curve (AUC) at baseline, 5 minutes, and 30 minutes post-PAS. Percentage change in contralesional AUC was calculated and correlated with paretic motor and somatosensory impairment scores. Results: PAS induced a significant increase in AUC in the contralesional hemisphere ( P = .041); in the ipsilesional hemisphere, there was no significant effect of PAS ( P = .073). Contralesional AUC showed significantly greater change in individuals without an ipsilesional MEP ( P = .029). Percentage change in contralesional AUC between baseline and 5 m post-PAS correlated significantly with FM score ( r = −0.443; P = .039) and monofilament thresholds ( r = 0.444, P = .044). Discussion: There are differential responses to PAS within each cerebral hemisphere. Contralesional plasticity was increased in individuals with more severe hemiparesis, indicated by both the absence of an ipsilesional MEP and a greater degree of motor and somatosensory impairment. These data support a body of research showing compensatory changes in the contralesional hemisphere after stroke; new therapies for individuals with chronic stroke could exploit contralesional plasticity to help restore function.
Collapse
Affiliation(s)
| | - Jason L. Neva
- University of British Columbia, Vancouver, BC, Canada
| | | | - Lara A. Boyd
- University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Archer DB, Vaillancourt DE, Coombes SA. A Template and Probabilistic Atlas of the Human Sensorimotor Tracts using Diffusion MRI. Cereb Cortex 2018; 28:1685-1699. [PMID: 28334314 PMCID: PMC5907352 DOI: 10.1093/cercor/bhx066] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/27/2017] [Accepted: 02/28/2017] [Indexed: 12/26/2022] Open
Abstract
The purpose of this study was to develop a high-resolution sensorimotor area tract template (SMATT) which segments corticofugal tracts based on 6 cortical regions in primary motor cortex, dorsal premotor cortex, ventral premotor cortex, supplementary motor area (SMA), pre-supplementary motor area (preSMA), and primary somatosensory cortex using diffusion tensor imaging. Individual probabilistic tractography analyses were conducted in 100 subjects using the highest resolution data currently available. Tractography results were refined using a novel algorithm to objectively determine slice level thresholds that best minimized overlap between tracts while preserving tract volume. Consistent with tracing studies in monkey and rodent, our observations show that cortical topography is generally preserved through the internal capsule, with the preSMA tract remaining most anterior and the primary somatosensory tract remaining most posterior. We combine our results into a freely available white matter template named the SMATT. We also provide a probabilistic SMATT that quantifies the extent of overlap between tracts. Finally, we assess how the SMATT operates at the individual subject level in another independent data set, and in an individual after stroke. The SMATT and probabilistic SMATT provide new tools that segment and label sensorimotor tracts at a spatial resolution not previously available.
Collapse
Affiliation(s)
- Derek B Archer
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - David E Vaillancourt
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Stephen A Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
35
|
Dynamic Network Analysis Reveals Altered Temporal Variability in Brain Regions after Stroke: A Longitudinal Resting-State fMRI Study. Neural Plast 2018; 2018:9394156. [PMID: 29849574 PMCID: PMC5907391 DOI: 10.1155/2018/9394156] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/18/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
Recent fMRI studies have demonstrated that resting-state functional connectivity (FC) is of nonstationarity. Temporal variability of FC reflects the dynamic nature of brain activity. Exploring temporal variability of FC offers a new approach to investigate reorganization and integration of brain networks after stroke. Here, we examined longitudinal alterations of FC temporal variability in brain networks after stroke. Nineteen stroke patients underwent resting fMRI scans across the acute stage (within-one-week after stroke), subacute stage (within-two-weeks after stroke), and early chronic stage (3-4 months after stroke). Nineteen age- and sex-matched healthy individuals were enrolled. Compared with the controls, stroke patients exhibited reduced regional temporal variability during the acute stages, which was recovered at the following two stages. Compared with the acute stage, the subacute stage exhibited increased temporal variability in the primary motor, auditory, and visual cortices. Across the three stages, the temporal variability in the ipsilesional precentral gyrus (PreCG) was increased first and then reduced. Increased temporal variability in the ipsilesional PreCG from the acute stage to the subacute stage was correlated with motor recovery from the acute stage to the early chronic stage. Our results demonstrated that temporal variability of brain network might be a potential tool for evaluating and predicting motor recovery after stroke.
Collapse
|
36
|
Interhemispheric Pathways Are Important for Motor Outcome in Individuals with Chronic and Severe Upper Limb Impairment Post Stroke. Neural Plast 2017; 2017:4281532. [PMID: 29348943 PMCID: PMC5733869 DOI: 10.1155/2017/4281532] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/27/2017] [Accepted: 08/08/2017] [Indexed: 11/17/2022] Open
Abstract
Background Severity of arm impairment alone does not explain motor outcomes in people with severe impairment post stroke. Objective Define the contribution of brain biomarkers to upper limb motor outcomes in people with severe arm impairment post stroke. Methods Paretic arm impairment (Fugl-Meyer upper limb, FM-UL) and function (Wolf Motor Function Test rate, WMFT-rate) were measured in 15 individuals with severe (FM-UL ≤ 30/66) and 14 with mild–moderate (FM-UL > 40/66) impairment. Transcranial magnetic stimulation and diffusion weight imaging indexed structure and function of the corticospinal tract and corpus callosum. Separate models of the relationship between possible biomarkers and motor outcomes at a single chronic (≥6 months) time point post stroke were performed. Results Age (ΔR20.365, p = 0.017) and ipsilesional-transcallosal inhibition (ΔR20.182, p = 0.048) explained a 54.7% (p = 0.009) variance in paretic WMFT-rate. Prefrontal corpus callous fractional anisotropy (PF-CC FA) alone explained 49.3% (p = 0.007) variance in FM-UL outcome. The same models did not explain significant variance in mild–moderate stroke. In the severe group, k-means cluster analysis of PF-CC FA distinguished two subgroups, separated by a clinically meaningful and significant difference in motor impairment (p = 0.049) and function (p = 0.006) outcomes. Conclusion Corpus callosum function and structure were identified as possible biomarkers of motor outcome in people with chronic and severe arm impairment.
Collapse
|
37
|
Schulz R, Park E, Lee J, Chang WH, Lee A, Kim YH, Hummel FC. Interactions Between the Corticospinal Tract and Premotor-Motor Pathways for Residual Motor Output After Stroke. Stroke 2017; 48:2805-2811. [PMID: 28904231 DOI: 10.1161/strokeaha.117.016834] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/07/2017] [Accepted: 07/06/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Brain imaging has continuously enhanced our understanding how different brain networks contribute to motor recovery after stroke. However, the present models are still incomplete and do not fit for every patient. The interaction between the degree of damage of the corticospinal tract (CST) and of corticocortical motor connections, that is, the influence of the microstructural state of one connection on the importance of another has been largely neglected. METHODS Applying diffusion-weighted imaging and probabilistic tractography, we investigated cross-network interactions between the integrity of ipsilesional CST and ipsilesional corticocortical motor pathways for variance in residual motor outcome in 53 patients with subacute stroke. RESULTS The main finding was a significant interaction between the CST and corticocortical connections between the primary motor and ventral premotor cortex in relation to residual motor output. More specifically, the data indicate that the microstructural state of the connection primary motor-ventral premotor cortex plays only a role in patients with significant damage to the CST. In patients with slightly affected CST, this connection did not explain a relevant amount of variance in motor outcome. CONCLUSIONS The present data show that patients with stroke with different degree of CST disruption differ in their dependency on structural premotor-motor connections for residual motor output. This finding might have important implications for future research on recovery prediction models and on responses to treatment strategies.
Collapse
Affiliation(s)
- Robert Schulz
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (R.S.); Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (J.L., W.H.C., Y.-H.K.); Department of Physical and Rehabilitation Medicine, Kyungpook National University Medical Center, Daegu, Republic of Korea (E.P.); Department of Health Sciences and Technology, Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea (J.L., A.L., Y.-H.K.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland (F.C.H.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL Valais), CRR (Clinique Romande de Réadaptation), Sion, Switzerland (F.C.H.); and Department of Clinical Neurosciences, Geneva University Hospital, Switzerland (F.C.H.)
| | - Eunhee Park
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (R.S.); Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (J.L., W.H.C., Y.-H.K.); Department of Physical and Rehabilitation Medicine, Kyungpook National University Medical Center, Daegu, Republic of Korea (E.P.); Department of Health Sciences and Technology, Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea (J.L., A.L., Y.-H.K.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland (F.C.H.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL Valais), CRR (Clinique Romande de Réadaptation), Sion, Switzerland (F.C.H.); and Department of Clinical Neurosciences, Geneva University Hospital, Switzerland (F.C.H.)
| | - Jungsoo Lee
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (R.S.); Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (J.L., W.H.C., Y.-H.K.); Department of Physical and Rehabilitation Medicine, Kyungpook National University Medical Center, Daegu, Republic of Korea (E.P.); Department of Health Sciences and Technology, Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea (J.L., A.L., Y.-H.K.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland (F.C.H.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL Valais), CRR (Clinique Romande de Réadaptation), Sion, Switzerland (F.C.H.); and Department of Clinical Neurosciences, Geneva University Hospital, Switzerland (F.C.H.)
| | - Won Hyuk Chang
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (R.S.); Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (J.L., W.H.C., Y.-H.K.); Department of Physical and Rehabilitation Medicine, Kyungpook National University Medical Center, Daegu, Republic of Korea (E.P.); Department of Health Sciences and Technology, Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea (J.L., A.L., Y.-H.K.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland (F.C.H.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL Valais), CRR (Clinique Romande de Réadaptation), Sion, Switzerland (F.C.H.); and Department of Clinical Neurosciences, Geneva University Hospital, Switzerland (F.C.H.)
| | - Ahee Lee
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (R.S.); Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (J.L., W.H.C., Y.-H.K.); Department of Physical and Rehabilitation Medicine, Kyungpook National University Medical Center, Daegu, Republic of Korea (E.P.); Department of Health Sciences and Technology, Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea (J.L., A.L., Y.-H.K.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland (F.C.H.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL Valais), CRR (Clinique Romande de Réadaptation), Sion, Switzerland (F.C.H.); and Department of Clinical Neurosciences, Geneva University Hospital, Switzerland (F.C.H.)
| | - Yun-Hee Kim
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (R.S.); Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (J.L., W.H.C., Y.-H.K.); Department of Physical and Rehabilitation Medicine, Kyungpook National University Medical Center, Daegu, Republic of Korea (E.P.); Department of Health Sciences and Technology, Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea (J.L., A.L., Y.-H.K.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland (F.C.H.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL Valais), CRR (Clinique Romande de Réadaptation), Sion, Switzerland (F.C.H.); and Department of Clinical Neurosciences, Geneva University Hospital, Switzerland (F.C.H.)
| | - Friedhelm C Hummel
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (R.S.); Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (J.L., W.H.C., Y.-H.K.); Department of Physical and Rehabilitation Medicine, Kyungpook National University Medical Center, Daegu, Republic of Korea (E.P.); Department of Health Sciences and Technology, Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea (J.L., A.L., Y.-H.K.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland (F.C.H.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL Valais), CRR (Clinique Romande de Réadaptation), Sion, Switzerland (F.C.H.); and Department of Clinical Neurosciences, Geneva University Hospital, Switzerland (F.C.H.).
| |
Collapse
|
38
|
Cirstea CM, Lee P, Craciunas SC, Choi IY, Burris JE, Nudo RJ. Pre-therapy Neural State of Bilateral Motor and Premotor Cortices Predicts Therapy Gain After Subcortical Stroke: A Pilot Study. Am J Phys Med Rehabil 2017; 97:23-33. [PMID: 28737516 DOI: 10.1097/phm.0000000000000791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The aim of the study was to examine whether neural state of spared motor and premotor cortices captured before a therapy predicts therapy-related motor gains in chronic subcortical stroke. DESIGN Ten survivors, presenting chronic moderate upper limb impairment, underwent proton magnetic resonance spectroscopy, magnetic resonance imaging, clinical, and kinematics assessments before a 4-wk impairment-oriented training. Clinical/kinematics assessments were repeated after therapy, and motor gain was defined as positive values of clinical upper limb/elbow motion changes and negative values of trunk motion changes. Candidate predictors were N-acetylaspartate-neuronal marker, glutamate-glutamine-indicator of glutamatergic neurotransmission, and myo-inositol-glial marker, measured bilaterally within the upper limb territory in motor and premotor (premotor cortex, supplementary motor area) cortices. Traditional predictors (age, stroke length, pre-therapy upper limb clinical impairment, infarct volume) were also investigated. RESULTS Poor motor gain was associated with lower glutamate-glutamine levels in ipsilesional primary motor cortex and premotor cortex (r = 0.77, P = 0.01 and r = 0.78, P = 0.008, respectively), lower N-acetylaspartate in ipsilesional premotor cortex (r = 0.69, P = 0.02), higher glutamate-glutamine in contralesional primary motor cortex (r = -0.68, P = 0.03), and lower glutamate-glutamine in contralesional supplementary motor area (r = 0.64, P = 0.04). These predictors outperformed myo-inositol metrics and traditional predictors (P ≈ 0.05-1.0). CONCLUSIONS Glutamatergic state of bilateral motor and premotor cortices and neuronal state of ipsilesional premotor cortex may be important for predicting motor outcome in the context of a restorative therapy.
Collapse
Affiliation(s)
- Carmen M Cirstea
- From the Departments of Neurology (CMC, I-YC), Molecular & Integrative Physiology (PL), Physical Medicine & Rehabilitation (RJN); Hoglund Brain Imaging Center (CMC, PL, SCC, I-YC), Landon Center on Aging (RJN), University of Kansas Medical Center, Kansas City, Kansas; and Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, Missouri (CMC, JEB)
| | | | | | | | | | | |
Collapse
|
39
|
Archer DB, Patten C, Coombes SA. Free-water and free-water corrected fractional anisotropy in primary and premotor corticospinal tracts in chronic stroke. Hum Brain Mapp 2017; 38:4546-4562. [PMID: 28590584 DOI: 10.1002/hbm.23681] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/08/2017] [Accepted: 05/26/2017] [Indexed: 12/13/2022] Open
Abstract
Measures from diffusion MRI have been used to characterize the corticospinal tract in chronic stroke. However, diffusivity can be influenced by partial volume effects from free-water, region of interest placement, and lesion masking. We collected diffusion MRI from a cohort of chronic stroke patients and controls and used a bitensor model to calculate free-water corrected fractional anisotropy (FAT ) and free water (FW) in the primary motor corticospinal tract (M1-CST) and the dorsal premotor corticospinal tract (PMd-CST). Region of interest analyses and whole-tract slice-by-slice analyses were used to assess between-group differences in FAT and FW in each tract. Correlations between FAT and FW and grip strength were also examined. Following lesion masking and correction for multiple comparisons, relative increases in FW were found for the stroke group in large portions of the M1-CST and PMd-CST in the lesioned hemisphere. FW in cortical regions was the strongest predictor of grip strength in the stroke group. Our findings also demonstrated that FAT is sensitive to the direct effects of the lesion itself, thus after controlling for the lesion, differences in FAT in nonlesioned tissue were small and generally similar between hemispheres and groups. Our observations suggest that FW may be a robust biological measurement that can be used to assess microstructure in residual white matter after stroke. Hum Brain Mapp 38:4546-4562, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Derek B Archer
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Carolynn Patten
- Rehabilitation Sciences Ph.D. Program, Department of Physical Therapy, University of Florida, Gainesville, Florida.,Neural Control of Movement Lab, Malcolm Randall VA Medical Center, Gainesville, Florida.,Department of Neurology, University of Florida, Gainesville, Florida
| | - Stephen A Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| |
Collapse
|
40
|
Stewart JC, O'Donnell M, Handlery K, Winstein CJ. Skilled Reach Performance Correlates With Corpus Callosum Structural Integrity in Individuals With Mild Motor Impairment After Stroke: A Preliminary Investigation. Neurorehabil Neural Repair 2017; 31:657-665. [PMID: 28587545 DOI: 10.1177/1545968317712467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Recovery of arm function after stroke is often incomplete. An improved understanding of brain structure-motor behavior relationships is needed for the development of novel and targeted rehabilitation interventions. OBJECTIVE To examine the relationship between skilled reach performance and the integrity of two putative white matter motor pathways, corticospinal tract and corpus callosum, after stroke. METHODS Eleven individuals with chronic stroke (poststroke duration, mean 62.5 ± 42.4 months) and mild motor impairment (upper extremity Fugl-Meyer score, mean 54.2 ± 7.6) reached to six targets presented at three distances and two directions. Fractional anisotropy (FA) obtained from diffusion tensor imaging was used to determine the structural integrity of the corticospinal tract and the corpus callosum. RESULTS Overall reach performance was decreased in the paretic arm compared with the nonparetic arm. While FA was decreased in the ipsilesional corticospinal tract, FA in the corticospinal tract did not correlate with variability in reach performance between individuals. Instead, FA in the premotor section of the corpus callosum correlated with reach performance; individuals with higher FA in premotor corpus callosum tended to reach faster with both the paretic and nonparetic arms. CONCLUSIONS The structural connections between the two premotor and supplemental cortices that traverse the premotor corpus callosum may play an important role in supporting motor control and could become a target for interventions aimed at improved arm function in this population.
Collapse
|
41
|
Abstract
Recent advancements in stem cell biology and neuromodulation have ushered in a battery of new neurorestorative therapies for ischemic stroke. While the understanding of stroke pathophysiology has matured, the ability to restore patients' quality of life remains inadequate. New therapeutic approaches, including cell transplantation and neurostimulation, focus on reestablishing the circuits disrupted by ischemia through multidimensional mechanisms to improve neuroplasticity and remodeling. The authors provide a broad overview of stroke pathophysiology and existing therapies to highlight the scientific and clinical implications of neurorestorative therapies for stroke.
Collapse
Affiliation(s)
- Tej D Azad
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Anand Veeravagu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
42
|
Lefebvre S, Liew SL. Anatomical Parameters of tDCS to Modulate the Motor System after Stroke: A Review. Front Neurol 2017; 8:29. [PMID: 28232816 PMCID: PMC5298973 DOI: 10.3389/fneur.2017.00029] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/23/2017] [Indexed: 01/19/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method to modulate the local field potential in neural tissue and consequently, cortical excitability. As tDCS is relatively portable, affordable, and accessible, the applications of tDCS to probe brain-behavior connections have rapidly increased in the last 10 years. One of the most promising applications is the use of tDCS to modulate excitability in the motor cortex after stroke and promote motor recovery. However, the results of clinical studies implementing tDCS to modulate motor excitability have been highly variable, with some studies demonstrating that as many as 50% or more of patients fail to show a response to stimulation. Much effort has therefore been dedicated to understand the sources of variability affecting tDCS efficacy. Possible suspects include the placement of the electrodes, task parameters during stimulation, dosing (current amplitude, duration of stimulation, frequency of stimulation), individual states (e.g., anxiety, motivation, attention), and more. In this review, we first briefly review potential sources of variability specific to stroke motor recovery following tDCS. We then examine how the anatomical variability in tDCS placement [e.g., neural target(s) and montages employed] may alter the neuromodulatory effects that tDCS exerts on the post-stroke motor system.
Collapse
Affiliation(s)
- Stephanie Lefebvre
- Neural Plasticity and Neurorehabilitation Laboratory, Chan Division of Occupational Science and Occupational Therapy, Division of Biokinesiology and Physical Therapy, Department of Neurology, Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Sook-Lei Liew
- Neural Plasticity and Neurorehabilitation Laboratory, Chan Division of Occupational Science and Occupational Therapy, Division of Biokinesiology and Physical Therapy, Department of Neurology, Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
43
|
Constraint-Induced Movement Therapy Combined with Transcranial Direct Current Stimulation over Premotor Cortex Improves Motor Function in Severe Stroke: A Pilot Randomized Controlled Trial. Rehabil Res Pract 2017; 2017:6842549. [PMID: 28250992 PMCID: PMC5303863 DOI: 10.1155/2017/6842549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/24/2016] [Accepted: 12/19/2016] [Indexed: 12/16/2022] Open
Abstract
Objective. We compared the effects of transcranial direct current stimulation at different cortical sites (premotor and motor primary cortex) combined with constraint-induced movement therapy for treatment of stroke patients. Design. Sixty patients were randomly distributed into 3 groups: Group A, anodal stimulation on premotor cortex and constraint-induced movement therapy; Group B, anodal stimulation on primary motor cortex and constraint-induced movement therapy; Group C, sham stimulation and constraint-induced movement therapy. Evaluations involved analysis of functional independence, motor recovery, spasticity, gross motor function, and muscle strength. Results. A significant improvement in primary outcome (functional independence) after treatment in the premotor group followed by primary motor group and sham group was observed. The same pattern of improvement was highlighted among all secondary outcome measures regarding the superior performance of the premotor group over primary motor and sham groups. Conclusions. Premotor cortex can contribute to motor function in patients with severe functional disabilities in early stages of stroke. This study was registered in ClinicalTrials.gov database (NCT 02628561).
Collapse
|
44
|
Neural network remodeling underlying motor map reorganization induced by rehabilitative training after ischemic stroke. Neuroscience 2016; 339:338-362. [PMID: 27725217 DOI: 10.1016/j.neuroscience.2016.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/29/2016] [Accepted: 10/02/2016] [Indexed: 12/20/2022]
Abstract
Motor map reorganization is believed to be one mechanism underlying rehabilitation-induced functional recovery. Although the ipsilesional secondary motor area has been known to reorganize motor maps and contribute to rehabilitation-induced functional recovery, it is unknown how the secondary motor area is reorganized by rehabilitative training. In the present study, using skilled forelimb reaching tasks, we investigated neural network remodeling in the rat rostral forelimb area (RFA) of the secondary motor area during 4weeks of rehabilitative training. Following photothrombotic stroke in the caudal forelimb area (CFA), rehabilitative training led to task-specific recovery and motor map reorganization in the RFA. A second injury to the RFA resulted in reappearance of motor deficits. Further, when both the CFA and RFA were destroyed simultaneously, rehabilitative training no longer improved task-specific recovery. In neural tracer studies, although rehabilitative training did not alter neural projection to the RFA from other brain areas, rehabilitative training increased neural projection from the RFA to the lower spinal cord, which innervates the muscles in the forelimb. Double retrograde tracer studies revealed that rehabilitative training increased the neurons projecting from the RFA to both the upper cervical cord, which innervates the muscles in the neck, trunk, and part of the proximal forelimb, and the lower cervical cord. These results suggest that neurons projecting to the upper cervical cord provide new connections to the denervated forelimb area of the spinal cord, and these new connections may contribute to rehabilitation-induced task-specific recovery and motor map reorganization in the secondary motor area.
Collapse
|
45
|
Cunningham DA, Varnerin N, Machado A, Bonnett C, Janini D, Roelle S, Potter-Baker K, Sankarasubramanian V, Wang X, Yue G, Plow EB. Stimulation targeting higher motor areas in stroke rehabilitation: A proof-of-concept, randomized, double-blinded placebo-controlled study of effectiveness and underlying mechanisms. Restor Neurol Neurosci 2016; 33:911-26. [PMID: 26484700 DOI: 10.3233/rnn-150574] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To demonstrate, in a proof-of-concept study, whether potentiating ipsilesional higher motor areas (premotor cortex and supplementary motor area) augments and accelerates recovery associated with constraint induced movement. METHODS In a randomized, double-blinded pilot clinical study, 12 patients with chronic stroke were assigned to receive anodal transcranial direct current stimulation (tDCS) (n = 6) or sham (n = 6) to the ipsilesional higher motor areas during constraint-induced movement therapy. We assessed functional and neurophysiologic outcomes before and after 5 weeks of therapy. RESULTS Only patients receiving tDCS demonstrated gains in function and dexterity. Gains were accompanied by an increase in excitability of the contralesional rather than the ipsilesional hemisphere. CONCLUSIONS Our proof-of-concept study provides early evidence that stimulating higher motor areas can help recruit the contralesional hemisphere in an adaptive role in cases of greater ipsilesional injury. Whether this early evidence of promise translates to remarkable gains in functional recovery compared to existing approaches of stimulation remains to be confirmed in large-scale clinical studies that can reasonably dissociate stimulation of higher motor areas from that of the traditional primary motor cortices.
Collapse
Affiliation(s)
- David A Cunningham
- Department of Biomedical Engineering, Lerner Research Inst., Cleveland Clinic, Cleveland, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Nicole Varnerin
- Department of Biomedical Engineering, Lerner Research Inst., Cleveland Clinic, Cleveland, OH, USA
| | - Andre Machado
- Center for Neurological Restoration, Neurosurgery, Neurological Inst., Cleveland Clinic, Cleveland, OH, USA
| | - Corin Bonnett
- Department of Biomedical Engineering, Lerner Research Inst., Cleveland Clinic, Cleveland, OH, USA
| | - Daniel Janini
- Department of Biomedical Engineering, Lerner Research Inst., Cleveland Clinic, Cleveland, OH, USA
| | - Sarah Roelle
- Department of Biomedical Engineering, Lerner Research Inst., Cleveland Clinic, Cleveland, OH, USA
| | - Kelsey Potter-Baker
- Department of Biomedical Engineering, Lerner Research Inst., Cleveland Clinic, Cleveland, OH, USA
| | | | - Xiaofeng Wang
- Department of Quantitative Health Sciences, Cleveland Clinic, OH, USA
| | - Guang Yue
- Human Performance & Engineering Laboratory, Kessler Foundation Research Center, West Orange, NJ, USA
| | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Inst., Cleveland Clinic, Cleveland, OH, USA.,Center for Neurological Restoration, Neurosurgery, Neurological Inst., Cleveland Clinic, Cleveland, OH, USA.,Department of Physical Medicine & Rehab, Neurological Inst., Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Recent developments in functional magnetic resonance imaging (fMRI) have catalyzed a new field of translational neuroscience. Using fMRI to monitor the aspects of task-related changes in neural activation or brain connectivity, investigators can offer feedback of simple or complex neural signals/patterns back to the participant on a quasireal-time basis [real-time-fMRI-based neurofeedback (rt-fMRI-NF)]. Here, we introduce some background methodology of the new developments in this field and give a perspective on how they may be used in neurorehabilitation in the future. RECENT FINDINGS The development of rt-fMRI-NF has been used to promote self-regulation of activity in several brain regions and networks. In addition, and unlike other noninvasive techniques, rt-fMRI-NF can access specific subcortical regions and in principle any region that can be monitored using fMRI including the cerebellum, brainstem and spinal cord. In Parkinson's disease and stroke, rt-fMRI-NF has been demonstrated to alter neural activity after the self-regulation training was completed and to modify specific behaviours. SUMMARY Future exploitation of rt-fMRI-NF could be used to induce neuroplasticity in brain networks that are involved in certain neurological conditions. However, currently, the use of rt-fMRI-NF in randomized, controlled clinical trials is in its infancy.
Collapse
Affiliation(s)
- David E.J. Linden
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, and Cardiff University Brain Imaging Centre, Cardiff
| | - Duncan L. Turner
- Neurorehabilitation Unit, School of Health, Sport and Bioscience, University of East London, London, UK
| |
Collapse
|
47
|
Kubis N. Non-Invasive Brain Stimulation to Enhance Post-Stroke Recovery. Front Neural Circuits 2016; 10:56. [PMID: 27512367 PMCID: PMC4961863 DOI: 10.3389/fncir.2016.00056] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/14/2016] [Indexed: 12/22/2022] Open
Abstract
Brain plasticity after stroke remains poorly understood. Patients may improve spontaneously within the first 3 months and then more slowly in the coming year. The first day, decreased edema and reperfusion of the ischemic penumbra may possibly account for these phenomena, but the improvement during the next weeks suggests plasticity phenomena and cortical reorganization of the brain ischemic areas and of more remote areas. Indeed, the injured ischemic motor cortex has a reduced cortical excitability at the acute phase and a suspension of the topographic representation of affected muscles, whereas the contralateral motor cortex has an increased excitability and an enlarged somatomotor representation; furthermore, contralateral cortex exerts a transcallosal interhemispheric inhibition on the ischemic cortex. This results from the imbalance of the physiological reciprocal interhemispheric inhibition of each hemisphere on the other, contributing to worsening of neurological deficit. Cortical excitability is measurable through transcranial magnetic stimulation (TMS) and prognosis has been established according to the presence of motor evoked potentials (MEP) at the acute phase of stroke, which is predictive of better recovery. Conversely, the lack of response to early stimulation is associated with a poor functional outcome. Non-invasive stimulation techniques such as repetitive TMS (rTMS) or transcranial direct current stimulation (tDCS) have the potential to modulate brain cortical excitability with long lasting effects. In the setting of cerebrovascular disease, around 1000 stroke subjects have been included in placebo-controlled trials so far, most often with an objective of promoting motor recovery of the upper limb. High frequency repetitive stimulation (>3 Hz) rTMS, aiming to increase excitability of the ischemic cortex, or low frequency repetitive stimulation (≤1 Hz), aiming to reduce excitability of the contralateral homonymous cortex, or combined therapies, have shown various effects on the functional disability score and neurological scales of treated patients and on the duration of the treatment. We review here the patients’ characteristics and parameters of stimulation that could predict a good response, as well as safety issues. At last, we review what we have learnt from experimental studies and discuss potential directions to conduct future studies.
Collapse
Affiliation(s)
- Nathalie Kubis
- Service de Physiologie Clinique, AP-HP, Hôpital LariboisièreParis, France; Université Paris Diderot, Sorbonne Paris Cité, CART, INSERM U965Paris, France
| |
Collapse
|
48
|
Cunningham DA. Noninvasive brain stimulation enhances sustained muscle contractions by reducing neuromuscular fatigue: implications for rehabilitation. J Neurophysiol 2016; 117:1215-1217. [PMID: 27440245 DOI: 10.1152/jn.00468.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/13/2016] [Indexed: 01/01/2023] Open
Abstract
Neuromuscular fatigue is due, in part, to central processes that involve failure of the nervous system to drive muscles maximally during exercise. A recent study by Abdelmoula, Baudry, and Duchateau (Neuroscience 322: 94-103, 2016) showed that noninvasive brain stimulation can mitigate neuromuscular fatigue, however, does not rely on enhanced corticospinal excitability of the primary motor cortex. These findings are of high clinical importance because rehabilitative therapies are necessary to mitigate neuromuscular fatigue for patients with central nervous system disorders.
Collapse
Affiliation(s)
- David A Cunningham
- Human Performance and Engineering Research, Kessler Foundation, West Orange, New Jersey
| |
Collapse
|
49
|
Kuceyeski A, Navi BB, Kamel H, Raj A, Relkin N, Toglia J, Iadecola C, O'Dell M. Structural connectome disruption at baseline predicts 6-months post-stroke outcome. Hum Brain Mapp 2016; 37:2587-601. [PMID: 27016287 DOI: 10.1002/hbm.23198] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/17/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022] Open
Abstract
In this study, models based on quantitative imaging biomarkers of post-stroke structural connectome disruption were used to predict six-month outcomes in various domains. Demographic information and clinical MRIs were collected from 40 ischemic stroke subjects (age: 68.1 ± 13.2 years, 17 female, NIHSS: 6.8 ± 5.6). Diffusion-weighted images were used to create lesion masks, which were uploaded to the Network Modification (NeMo) Tool. The NeMo Tool, using only clinical MRIs, allows estimation of connectome disruption at three levels: whole brain, individual gray matter regions and between pairs of gray matter regions. Partial Least Squares Regression models were constructed for each level of connectome disruption and for each of the three six-month outcomes: applied cognitive, basic mobility and daily activity. Models based on lesion volume were created for comparison. Cross-validation, bootstrapping and multiple comparisons corrections were implemented to minimize over-fitting and Type I errors. The regional disconnection model best predicted applied cognitive (R(2) = 0.56) and basic mobility outcomes (R(2) = 0.70), while the pairwise disconnection model best predicted the daily activity measure (R(2) = 0.72). These results demonstrate that models based on connectome disruption metrics were more accurate than ones based on lesion volume and that increasing anatomical specificity of disconnection metrics does not always increase model accuracy, likely due to statistical adjustments for concomitant increases in data dimensionality. This work establishes that the NeMo Tool's measures of baseline connectome disruption, acquired using only routinely collected MRI scans, can predict 6-month post-stroke outcomes in various functional domains including cognition, motor function and daily activities. Hum Brain Mapp, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amy Kuceyeski
- Department of Radiology, Weill Cornell Medical College, New York, New York.,Feil Family Brain and Mind Research Institute, New York, New York
| | - Babak B Navi
- Feil Family Brain and Mind Research Institute, New York, New York.,Department of Neurology, Weill Cornell Medical College, New York, New York
| | - Hooman Kamel
- Feil Family Brain and Mind Research Institute, New York, New York.,Department of Neurology, Weill Cornell Medical College, New York, New York
| | - Ashish Raj
- Department of Radiology, Weill Cornell Medical College, New York, New York.,Feil Family Brain and Mind Research Institute, New York, New York
| | - Norman Relkin
- Feil Family Brain and Mind Research Institute, New York, New York.,Department of Neurology, Weill Cornell Medical College, New York, New York
| | - Joan Toglia
- Rehabilitation Medicine, New York, New York.,School of Health and Natural Sciences, Mercy College, New York, New York
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, New York, New York.,Department of Neurology, Weill Cornell Medical College, New York, New York
| | - Michael O'Dell
- Department of Neurology, Weill Cornell Medical College, New York, New York.,Rehabilitation Medicine, New York, New York
| |
Collapse
|
50
|
Potter-Baker KA, Varnerin NM, Cunningham DA, Roelle SM, Sankarasubramanian V, Bonnett CE, Machado AG, Conforto AB, Sakaie K, Plow EB. Influence of Corticospinal Tracts from Higher Order Motor Cortices on Recruitment Curve Properties in Stroke. Front Neurosci 2016; 10:79. [PMID: 27013942 PMCID: PMC4781847 DOI: 10.3389/fnins.2016.00079] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/18/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Recruitment curves (RCs) acquired using transcranial magnetic stimulation are commonly used in stroke to study physiologic functioning of corticospinal tracts (CST) from M1. However, it is unclear whether CSTs from higher motor cortices contribute as well. OBJECTIVE To explore whether integrity of CST from higher motor areas, besides M1, relates to CST functioning captured using RCs. METHODS RCs were acquired for a paretic hand muscle in patients with chronic stroke. Metrics describing gain and overall output of CST were collected. CST integrity was defined by diffusion tensor imaging. For CST emerging from M1 and higher motor areas, integrity (fractional anisotropy) was evaluated in the region of the posterior limb of the internal capsule, the length of CST and in the region of the stroke lesion. RESULTS We found that output and gain of RC was related to integrity along the length of CST emerging from higher motor cortices but not the M1. CONCLUSIONS Our results suggest that RC parameters in chronic stroke infer function primarily of CST descending from the higher motor areas but not M1. RCs may thus serve as a simple, in-expensive means to assess re-mapping of alternate areas that is generally studied with resource-intensive neuroimaging in stroke.
Collapse
Affiliation(s)
- Kelsey A Potter-Baker
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation Cleveland, OH, USA
| | - Nicole M Varnerin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation Cleveland, OH, USA
| | - David A Cunningham
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic FoundationCleveland, OH, USA; School of Biomedical Sciences, Department of Neuroscience, Kent State UniversityKent, OH, USA
| | - Sarah M Roelle
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation Cleveland, OH, USA
| | | | - Corin E Bonnett
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation Cleveland, OH, USA
| | - Andre G Machado
- Center for Neurological Restoration, Neurosurgery, Neurological Institute, Cleveland Clinic Foundation Cleveland, OH, USA
| | - Adriana B Conforto
- Neurology Clinical Division, Neurology Department, Clinics Hospital, São Paulo UniversitySão Paulo, Brazil; Hospital Israelita Albert EinsteinSão Paulo, Brazil
| | - Ken Sakaie
- Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic Foundation Cleveland, OH, USA
| | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic FoundationCleveland, OH, USA; Center for Neurological Restoration, Neurosurgery, Neurological Institute, Cleveland Clinic FoundationCleveland, OH, USA; Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic FoundationCleveland, OH, USA
| |
Collapse
|