1
|
Kaszycki J, Kim M. Epigenetic regulation of transcription factors involved in NLRP3 inflammasome and NF-kB signaling pathways. Front Immunol 2025; 16:1529756. [PMID: 40046056 PMCID: PMC11879833 DOI: 10.3389/fimmu.2025.1529756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/03/2025] [Indexed: 05/13/2025] Open
Abstract
The NLRP3 inflammasome and NF-κB signaling pathways play crucial roles in orchestrating inflammation and immune defense. This review explores the intricate relationship between these pathways and epigenetic regulation, a field of growing importance in understanding immune responses. Epigenetic modifications, including DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), significantly influence the activity of genes involved in these pathways, thereby modulating inflammatory responses. The review provides a comprehensive overview of current research on how epigenetic mechanisms interact with and regulate the NLRP3 inflammasome and NF-κB signaling pathways. It delves into advanced epigenetic concepts such as RNA modifications and 3D genome organization, and their impact on immune regulation. Furthermore, the implications of these findings for developing novel therapeutic strategies targeting epigenetic regulators in inflammatory diseases are discussed. By synthesizing recent advancements in this rapidly evolving field, this review underscores the critical role of epigenetic regulation in immune signaling and highlights the potential for epigenetic-based therapies in treating a wide range of inflammatory conditions, including autoimmune disorders and cancer.
Collapse
Affiliation(s)
- John Kaszycki
- Department of Biological Sciences, University of Connecticut, Storrs, CT, United States
| | - Minji Kim
- School of Pharmacy, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
2
|
Li H, Jin L, Wang Y, Hu S, Long K, Li M. Identification and analysis of circRNAs in the prefrontal cortices of wild boar and domestic pig. Anim Biotechnol 2023; 34:2596-2607. [PMID: 35960868 DOI: 10.1080/10495398.2022.2109040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Domestication caused significant differences in morphology and behavior between wild and domestic pigs. However, the regulatory role of circRNA in this event is unclear. Here, we analyzed circRNA expression patterns in the prefrontal cortices of wild boar and domestic pigs to determine the potential role of circRNAs in domestication. We identified a total of 11,375 circRNAs and found that 349 and 354 circRNAs were up-regulated in wild boar and Rongchang pig, respectively. Functional enrichment analysis showed that host genes of significantly highly-expressed circRNAs in wild boar were significantly enriched in neural synapse-related categories and the categories of 'regulation of defense response (p = 0.028)' and 'neural retina development (p = 4.32 × 10-3)'. Host genes of significantly highly-expressed circRNAs in Rongchang pig were specifically involved in 'chordate embryonic development (p = 2.38 × 10-4)'. Additionally, we constructed circRNA-miRNA-mRNA regulatory axes in wild boar and Rongchang pig and found more regulatory axes in wild boar that potentially regulate synaptic activities. We identified multiple circRNAs that may be related to domesticated characteristics, such as ssc_circ_6179 (ssc_circ_6179-ssc-miR-9847-HRH3, related to aggression) and ssc_circ_3027 (ssc_circ_3027-ssc-miR-4334-5p-HCRTR1, related to attention). This study provides a resource for further investigation of the molecular basis of pig domestication.
Collapse
Affiliation(s)
- Hengkuan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yuhao Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Daws SE, Gillespie A. Circular RNA regulation and function in drug seeking phenotypes. Mol Cell Neurosci 2023; 125:103841. [PMID: 36935046 PMCID: PMC10247439 DOI: 10.1016/j.mcn.2023.103841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Drug overdoses have increased dramatically in the United States over the last decade where they are now the leading cause of accidental death. To develop efficient therapeutic options for decreasing drug consumption and overdose risk, it is critical to understand the neurobiological changes induced by drug exposure. Chronic systemic exposure to all drug classes, including opioids, psychostimulants, nicotine, cannabis, and alcohol, induces profound molecular neuroadaptations within the central nervous system that may reveal crucial information about the lasting effects that these substances impart on brain cells. Transcriptome analyses of messenger RNAs (mRNAs) have identified gene patterns in the brain that result from exposure to various classes of drugs. However, mRNAs represent only a small fraction of the RNA within the cell, and drug exposure also impacts other classes of RNA that are largely understudied, especially circular RNAs. Circular RNAs (circRNAs) are a naturally occurring RNA species formed from back-splicing events during mRNA processing and are enriched in the nervous system. circRNAs are a pleiotropic class of RNAs and have a diverse impact on cellular function, with putative functions including regulation of mRNA transcription, protein translation, microRNA sponging, and sequestration of RNA-binding proteins. Recent studies have demonstrated that circRNAs can modulate cognition and are regulated in the brain in response to drug exposure, yet very few studies have explored the contribution of circRNAs to drug seeking phenotypes. In this review, we will provide an overview of the mechanisms of circRNA function in the cell to highlight how drug-induced circRNA dysregulation may impact the molecular substrates that mediate drug seeking behavior and the current studies that have reported drug-induced dysregulation of circRNAs in the brain. Furthermore, we will discuss how principles of circRNA biology can be adapted to study circRNAs in models of drug exposure and seek to provide further insight into the neurobiology of addiction.
Collapse
Affiliation(s)
- Stephanie E Daws
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Temple University, Philadelphia, PA, USA.
| | - Aria Gillespie
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Piwecka M, Luisier R, Andreassi C. Editorial: RNA at a breaking point? Cytoplasmic cleavage and other post-transcriptional RNA processing in neurodevelopment and disease. Front Mol Neurosci 2023; 16:1214853. [PMID: 37324586 PMCID: PMC10265624 DOI: 10.3389/fnmol.2023.1214853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Affiliation(s)
- Monika Piwecka
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Raphaelle Luisier
- Genomics and Health Informatics Group, Idiap Research Institute, Martigny, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Catia Andreassi
- UCL Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
5
|
Zhang M, Suo Z, Qu Y, Zheng Y, Xu W, Zhang B, Wang Q, Wu L, Li S, Cheng Y, Xiao T, Zheng H, Ni C. Construction and analysis of circular RNA-associated competing endogenous RNA network in the hippocampus of aged mice for the occurrence of postoperative cognitive dysfunction. Front Aging Neurosci 2023; 15:1098510. [PMID: 37051377 PMCID: PMC10084838 DOI: 10.3389/fnagi.2023.1098510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Circular RNAs are highly stable single-stranded circular RNAs and enriched in the brain. Previous studies showed that circRNAs, as part of competing endogenous RNAs (ceRNAs) network, play an important role in neurodegenerative and psychiatric diseases. However, the mechanism of circRNA-related ceRNA networks in postoperative cognitive dysfunction (POCD) has not been elucidated yet. POCD usually occurs in elderly patients and is characterized by hippocampal dysfunction. Here, aged C57BL/6 mice were subjected to exploratory laparotomy under sevoflurane anesthesia, and this POCD model was verified by Morris water maze test. Whole-transcriptome sequencing was performed on the hippocampus of control group (Con) and surgery group. One hundred and seventy-seven DEcircRNAs, 221 DEmiRNAs and 2,052 DEmRNAs were identified between two groups. A ceRNA network was established with 92 DEcircRNAs having binding sites with 76 DEmiRNAs and 549 target DEmRNAs. In functional enrichment analysis, a pathological pattern of POCD was highlighted in the ceRNA network: Abnormal metabolic process in neural cells, including oxygen metabolism, could promote apoptosis and then affect the synaptic function, which may undermine the neural plasticity and eventually lead to changes in cognitive function and other behavioral patterns. In conclusion, this specific ceRNA network of circRNAs–miRNAs–mRNAs has provided novel insights into the regulatory mechanisms of POCD and revealed potential therapeutic gene targets.
Collapse
Affiliation(s)
- Mingzhu Zhang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zizheng Suo
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinyin Qu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yuxiang Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjie Xu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bowen Zhang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linxin Wu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaozhong Cheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Hui Zheng,
| | - Cheng Ni
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Cheng Ni,
| |
Collapse
|
6
|
Yu X, Liu H, Chang N, Fu W, Guo Z, Wang Y. Circular RNAs: New players involved in the regulation of cognition and cognitive diseases. Front Neurosci 2023; 17:1097878. [PMID: 36816112 PMCID: PMC9932922 DOI: 10.3389/fnins.2023.1097878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Circular RNAs (circRNAs), a type of covalently closed endogenous single-stranded RNA, have been regarded as the byproducts of the aberrant splicing of genes without any biological functions. Recently, with the development of high-throughput sequencing and bioinformatics, thousands of circRNAs and their differential biological functions have been identified. Except for the great advances in identifying circRNA roles in tumor progression, diagnosis, and treatment, accumulated evidence shows that circRNAs are enriched in the brain, especially in the synapse, and dynamically change with the development or aging of organisms. Because of the specific roles of synapses in higher-order cognitive functions, circRNAs may not only participate in cognitive functions in normal physiological conditions but also lead to cognition-related diseases after abnormal regulation of their expression or location. Thus, in this review, we summarized the progress of studies looking at the role of circRNA in cognitive function, as well as their involvement in the occurrence, development, prognosis, and treatment of cognitive-related diseases, including autism, depression, and Alzheimer's diseases.
Collapse
Affiliation(s)
- Xiaohan Yu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Haoyu Liu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ning Chang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Weijia Fu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhiwen Guo
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yue Wang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Yue Wang,
| |
Collapse
|
7
|
Recent insights into the roles of circular RNAs in human brain development and neurologic diseases. Int J Biol Macromol 2023; 225:1038-1048. [PMID: 36410538 DOI: 10.1016/j.ijbiomac.2022.11.166] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022]
Abstract
Circular RNAs (circRNAs) are a novel class of non-coding RNAs. They are single-stranded RNA transcripts characterized with a closed loop structure making them resistant to degrading enzymes. Recently, circRNAs have been suggested with regulatory roles in gene expression involved in controlling various biological processes. Notably, they have demonstrated abundance, dynamic expression, back-splicing events, and spatiotemporally regulation in the human brain. Accordingly, they are expected to be involved in brain functions and related diseases. Studies in animals and human brain have revealed differential expression of circRNAs in brain compartments. Interestingly, contributing roles of circRNAs in the regulation of central nervous system (CNS) development have been demonstrated in a number of studies. It has been proposed that circRNAs play role in substantial neurological functions like neurotransmitter-associated tasks, neural cells maturation, and functions of synapses. Furthermore, 3 main pathways have been identified in association with circRNAs's host genes including axon guidance, Wnt signaling, and transforming growth factor beta (TGF-β) signaling pathways, which are known to be involved in substantial functions like migration and differentiation of neurons and specification of axons, and thus play role in brain development. In this review, we have an overview to the biogenesis, biological functions of circRNAs, and particularly their roles in human brain development and the pathogenesis of neurodegenerative diseases including Alzheimer's diseases, multiple sclerosis, Parkinson's disease and brain tumors.
Collapse
|
8
|
Su J, Li P, Zhuang Q, Chen X, Zhang X, Li X, Wang J, Yu X, Wang Y. Identification of the Similarities and Differences of Molecular Networks Associated With Fear Memory Formation, Extinction, and Updating in the Amygdala. Front Mol Neurosci 2021; 14:778170. [PMID: 34924954 PMCID: PMC8675638 DOI: 10.3389/fnmol.2021.778170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Abnormality of fear memory is one of the important pathogenic factors leading to post-traumatic stress disorder (PTSD), anxiety disorder, and other mental disorders. Clinically, although exposure therapy, which is based on the principle of fear memory extinction, has a certain effect on these diseases, it still relapses frequently in some cases. These troubles can be effectively solved by retrieving the memory in a certain time window before the extinction of fear memory. Therefore, it is generally believed that the extinction of fear memory is the result of forming new safe memory to competitively inhibit the original fear memory, while the retrieval-extinction operation is the updating or erasure of the original fear memory, thus, which has greater clinical therapeutic potential. However, what are the detailed molecular networks, specifically the circular RNAs (circRNAs), involved in fear memory updating, and the differences with fear extinction, are still unknown. In this study, we systematically observed the expression of mRNAs, microRNAs (miRNA), long non-coding RNAs (lncRNAs), and circRNAs in the basolateral amygdala of mice after fear memory formation, extinction, and updating by whole-transcriptional sequencing, then a variety of inter-group comparison and bioinformatics analysis were used to find the differential expressed RNAs, enrich the function of them, and construct the molecular interaction networks. Moreover, competing endogenous RNA (ceRNA) molecular networks and transcriptional regulatory networks for the candidate circRNAs were constructed. Through these analyses, we found that about 10% of molecules were both involved in the fear memory extinction and formation, but the molecules and their signaling pathways were almost completely different between fear memory extinction and updating. This study describes a relatively detailed molecular network for fear memory updating, which might provide some novel directions for further mechanism research, and help to develop a specific physical method for fear memory intervention, based on the regulation of these key molecules.
Collapse
Affiliation(s)
- Jinfeng Su
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Pingping Li
- Department of Vip Center, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qishuai Zhuang
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xing Chen
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoning Zhang
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaobing Li
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jingxian Wang
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaohan Yu
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yue Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
9
|
Zhu M, Lian C, Chen G, Zou P, Qin BG. CircRNA FUT10 regulates the regenerative potential of aged skeletal muscle stem cells by targeting HOXA9. Aging (Albany NY) 2021; 13:17428-17441. [PMID: 34257163 PMCID: PMC8312443 DOI: 10.18632/aging.203233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Skeletal muscle is capable of repairing itself after injury to maintain the stability of its own tissue, but this ability declines with aging. Circular RNAs (circRNAs) are involved in cell aging. However, there is little research into their role and underlying mechanisms, especially in skeletal muscle stem cells (SkMSCs). In this study, we assessed circRNA FUT10 expression in aged and adult SkMSCs. We observed that circRNA FUT10 was upregulated in aged SkMSCs compared with that in adult SkMSCs. Furthermore, we identified putative miR-365-3p binding sites on circRNA FUT10, suggesting that this circRNA sponges miR-365a-3p. We also found that HOXA9 is a downstream target of miR-365a-3p and confirmed that miR-365a-3p can bind to circRNA FUT10 and the 3′-untranslated region of HOXA9 mRNA. This finding indicated that miR-365a-3p might serve as a “bridge” between circRNA FUT10 and HOXA9. Finally, we found that the circRNA FUT10/miR365a-3p/HOXA9 axis is involved in SkMSC aging. Collectively, our results show that the circRNA FUT10/miR365a-3p/HOXA9 axis is a promising therapeutic target and are expected to facilitate the development of therapeutic strategies to improve the prognosis of degenerative muscle disease.
Collapse
Affiliation(s)
- Menghai Zhu
- Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, PR. China
| | - Chong Lian
- Department of Orthopedic, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR. China
| | - Gang Chen
- Department of Orthopedic, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR. China
| | - Peng Zou
- Department of Orthopedic, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR. China
| | - Beng Gang Qin
- Department of Orthopedic, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR. China
| |
Collapse
|
10
|
Xu K, Zhang Y, Li J. Expression and function of circular RNAs in the mammalian brain. Cell Mol Life Sci 2021; 78:4189-4200. [PMID: 33558994 PMCID: PMC11071837 DOI: 10.1007/s00018-021-03780-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/07/2021] [Accepted: 01/27/2021] [Indexed: 01/19/2023]
Abstract
Mammalian brain presents extraordinary complexity reflected in the structure, function, and dynamic changes in the biological and physiological processes of development, maturity, and aging. Recent transcriptomic profiles from the brain tissues of distinct species have described a novel class of transcripts with a covalently closed-loop structure, called circular RNAs (circRNAs), which are produced by alternative back-splicing and derived from genes associated with synaptogenesis and neural activities. Brain is a tightly regulated and largely unexplored organ where circRNAs are highly enriched and expressed in the cell type-, spatiotemporal-specific, sex-biased, and age-related manner. Although the biological functions of most of the circRNAs in the brain remain elusive, increased evidence suggests that dynamic changes in circRNA expression are critical for brain function and the maintenance of physiological homeostasis in the brain. Here, we review the latest immense progresses in the understanding of circRNA expression and function in the mammalian brain. We also discuss possibly biological functions of circRNAs in the brain, which may provide new sights of understanding brain development and aging, as well as the pathogenesis of mental diseases.
Collapse
Affiliation(s)
- Kaiyu Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ying Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jiali Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- National Institute on Drug Dependence, Peking University, Beijing, China.
- PKU/McGovern Institute for Brain Research, Peking University, Beijing, China.
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|