1
|
Lu Y, Xing S, He L, Li C, Wang X, Zeng X, Dai Y. Characterization, High-Density Fermentation, and the Production of a Directed Vat Set Starter of Lactobacilli Used in the Food Industry: A Review. Foods 2022; 11:3063. [PMID: 36230139 PMCID: PMC9563398 DOI: 10.3390/foods11193063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Lactobacilli have been widely concerned for decades. Bacteria of the genus Lactobacillus have been commonly employed in fermented food to improve the appearance, smell, and taste of food or prolong its shelf-life. They comprise 261 species (by March 2020) that are highly diverse at the phenotypic, ecological, and genotypic levels. Some Lactobacilli strains have been documented to be essential probiotics, which are defined as a group of living microorganisms that are beneficial to the health of the host when ingested in sufficiency. However, the characterization, high-density fermentation, and the production of a directed vat set (DVS) starter of Lactobacilli strains used in the food industry have not been systematically reported. This paper mainly focuses on reviewing Lactobacilli as functional starter cultures in the food industry, including different molecular techniques for identification at the species and strain levels, methods for evaluating Lactobacilli properties, enhancing their performance and improving the cell density of Lactobacilli, and the production techniques of DVS starter of Lactobacilli strains. Moreover, this review further discussed the existing problems and future development prospects of Lactobacilli in the food industry. The viability and stability of Lactobacilli in the food industry and gastrointestinal environment are critical challenges at the industrial scale. The new production equipment and technology of DVS starter of Lactobacilli strains will have the potential for large-scale application, for example, developing low-temperature spray drying, freezing granulation drying, and spray freeze-drying.
Collapse
Affiliation(s)
- Yun Lu
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- Department of Brewing Engineering, Moutai University, Renhuai 564507, China
| | - Shuqi Xing
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Xiao Wang
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yifeng Dai
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Hacıoglu S, Kunduhoglu B. Probiotic Characteristics of Lactobacillus brevis KT38-3 Isolated from an Artisanal Tulum Cheese. Food Sci Anim Resour 2021; 41:967-982. [PMID: 34796324 PMCID: PMC8564325 DOI: 10.5851/kosfa.2021.e49] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/10/2021] [Accepted: 08/31/2021] [Indexed: 11/06/2022] Open
Abstract
Probiotics are living microorganisms that, when administered in adequate amounts,
provide a health benefit to the host and are considered safe. Most probiotic
strains that are beneficial to human health are included in the “Lactic
acid bacteria” (LAB) group. The positive effects of probiotic bacteria on
the host’s health are species-specific and even strain-specific.
Therefore, evaluating the probiotic potential of both wild and novel strains is
essential. In this study, the probiotic characteristics of Lactobacillus
brevis KT38-3 were determined. The strain identification was
achieved by 16S rRNA sequencing. API-ZYM test kits were used to determine the
enzymatic capacity of the strain. L. brevis KT38-3 was able to
survive in conditions with a broad pH range (pH 2–7), range of bile salts
(0.3%–1%) and conditions that simulated gastric juice and
intestinal juice. The percentage of autoaggregation (59.4%),
coaggregation with E. coli O157:H7 (37.4%) and
hydrophobicity were determined to be 51.1%, 47.4%, and
52.7%, respectively. L. brevis KT38-3 produced
β-galactosidase enzymes and was able ferment lactose. In addition, this
strain was capable of producing antimicrobial peptides against the bacteria
tested, including methicillin and/or vancomycin-resistant bacteria. The
cell-free supernatants of the strain had high antioxidant activities (DPPH:
54.9% and ABTS: 48.7%). Therefore, considering these many
essential in vitro probiotic properties, L.
brevis KT38-3 has the potential to be used as a probiotic
supplement. Supporting these findings with in vivo experiments
to evaluate the potential health benefits will be the subject of our future
work.
Collapse
Affiliation(s)
- Seda Hacıoglu
- Institute of Science, University of Eskişehir Osmangazi, Eskişehir 26040, Turkey
| | - Buket Kunduhoglu
- Department of Biology, Faculty of Science and Letters, University of Eskişehir Osmangazi, Eskişehir 26040, Turkey
| |
Collapse
|
3
|
Sharma A, Lee S, Park YS. Molecular typing tools for identifying and characterizing lactic acid bacteria: a review. Food Sci Biotechnol 2020; 29:1301-1318. [PMID: 32995049 PMCID: PMC7492335 DOI: 10.1007/s10068-020-00802-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023] Open
Abstract
Identification and classification of beneficial microbes is of the highest significance in food science and related industries. Conventional phenotypic approaches pose many challenges, and they may misidentify a target, limiting their use. Genotyping tools show comparatively better prospects, and they are widely used for distinguishing microorganisms. The techniques already employed in genotyping of lactic acid bacteria (LAB) are slightly different from one another, and each tool has its own advantages and disadvantages. This review paper compiles the comprehensive details of several fingerprinting tools that have been used for identifying and characterizing LAB at the species, sub-species, and strain levels. Notably, most of these approaches are based on restriction digestion, amplification using polymerase chain reaction, and sequencing. Nowadays, DNA sequencing technologies have made considerable progress in terms of cost, throughput, and methodology. A research journey to develop improved versions of generally applicable and economically viable tools for fingerprinting analysis is ongoing globally.
Collapse
Affiliation(s)
- Anshul Sharma
- Department of Food and Nutrition, Gachon University, Seongnam, 13120 Republic of Korea.,Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229 India
| | - Sulhee Lee
- Research Group of Healthcare, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| |
Collapse
|