1
|
Cold plasma as a pre-treatment for processing improvement in food: A review. Food Res Int 2023; 167:112663. [PMID: 37087253 DOI: 10.1016/j.foodres.2023.112663] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/13/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Thermal processes can be very damaging to the nutritional and sensory quality of foods. Non-thermal technologies have been applied to reduce the impact of heat on food, reducing processing time and increasing its efficiency. Among many non-thermal technologies, cold plasma is an emerging technology with several potential applications in food processing. This technique can be used to preserve and sanitize food products, and act as a pre-treatment for drying, extraction, cooking, curing, and hydrogenation of foods. Furthermore, the reacting plasma species formed during the plasma application can change positively the sensory and nutritional aspects of foods. The aim of this review is to analyze the main findings on the application of cold plasma as a pre-treatment technology to improve food processing. In its current maturity stage, the cold plasma technology is suitable for reducing drying time, increasing extraction efficiency, as well as curing meats. This technology can convert unsaturated into saturated fats, without forming trans isomers, which can be an alternative to healthier foods. Although many advantages come from cold plasma applications, this technology still has several challenges, such as the scaling up, especially in increasing productivity and treating foods with large formats. Optimization and control of the effects of plasma on nutritional and sensory quality are still under investigation. Further improvement of the technology will come with a higher knowledge of the effects of plasma on the different chemical groups present in foods, and with the development of bigger or more powerful plasma systems.
Collapse
|
2
|
Zhang Z, Liu B, Liu X, Hu W, Zhang C, Guo Y, Wu W. Effects of Steaming on Sweet Potato Soluble Dietary Fiber: Content, Structure, and Lactobacillus Proliferation In Vitro. Foods 2023; 12:foods12081620. [PMID: 37107415 PMCID: PMC10138094 DOI: 10.3390/foods12081620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The influence of steaming treatment on the soluble dietary fiber (SDF) of sweet potato was investigated. The SDF content increased from 2.21 to 4.04 g/100 g (in dry basis) during 20 min of steaming. The microcosmic morphology of the fractured cell wall indicated the release of SDF components during steaming. The SDF from fresh (SDF-F) and 20 min steamed (SDF-S) sweet potato was characterized. The neutral carbohydrates and uronic acid levels in SDF-S were significantly higher than SDF-F (59.31% versus 46.83%, and 25.36% versus 9.60%, respectively) (p < 0.05). The molecular weight of SDF-S was smaller than SDF-F (5.32 kDa versus 28.79 kDa). The probiotic property was evaluated by four Lactobacillus spp. fermentation in vitro with these SDF as carbon source, using inulin as the references. SDF-F showed the best proliferation effects on the four Lactobacillus spp. in terms of the OD600 and pH in cultures, and the highest production of propanoic acid and butyric acid after 24 h fermentation. SDF-S presented higher Lactobacillus proliferation effects, but slight lower propanoic acid and butyric acid production than inulin. It was concluded that 20 min of steaming released SDF with inferior probiotic properties, which might derive from the degraded pectin, cell wall components, and resistant dextrin.
Collapse
Affiliation(s)
- Zhiguo Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Buyu Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xingquan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Weiwei Hu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chengcheng Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yang Guo
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weicheng Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
3
|
Karimi R, Homayoonfal M, Malekjani N, Kharazmi MS, Jafari SM. Interaction between β-glucans and gut microbiota: a comprehensive review. Crit Rev Food Sci Nutr 2023; 64:7804-7835. [PMID: 36975759 DOI: 10.1080/10408398.2023.2192281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Gut microbiota (GMB) in humans plays a crucial role in health and diseases. Diet can regulate the composition and function of GMB which are associated with different human diseases. Dietary fibers can induce different health benefits through stimulation of beneficial GMB. β-glucans (BGs) as dietary fibers have gained much interest due to their various functional properties. They can have therapeutic roles on gut health based on modulation of GMB, intestinal fermentation, production of different metabolites, and so on. There is an increasing interest in food industries in commercial application of BG as a bioactive substance into food formulations. The aim of this review is considering the metabolizing of BGs by GMB, effects of BGs on the variation of GMB population, influence of BGs on the gut infections, prebiotic effects of BGs in the gut, in vivo and in vitro fermentation of BGs and effects of processing on BG fermentability.
Collapse
Affiliation(s)
- Reza Karimi
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
4
|
Zheng H, Sun Y, Zheng T, Zeng Y, Fu L, Zhou T, Jia F, Xu Y, He K, Yang Y. Effects of shear emulsifying/ball milling/autoclave modification on structure, physicochemical properties, phenolic compounds, and antioxidant capacity of lotus ( Nelumbo) leaves dietary fiber. Front Nutr 2023; 10:1064662. [PMID: 36908912 PMCID: PMC9995909 DOI: 10.3389/fnut.2023.1064662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Lotus (Nelumbo) leaves are rich in polyphenols and dietary fiber, which have the potential as a high-quality fiber material in functional food. However, lotus leaves exhibit dense structure and poor taste, it is vital to develop appropriate modification methods to improve the properties of lotus leaves dietary fiber. In this study, the effects of three modification methods with shear emulsifying (SE), ball milling (BM), and autoclave treatment (AT) on structure, physicochemical properties, phenolic compounds, and antioxidant capacity of lotus leave dietary fiber (LDF) were evaluated. SEM indicated that there were significant differences in the microstructure of modified LDFs. FT-IR spectra and X-ray diffraction pattern of modified LDFs revealed similar shapes, while the peak intensity and crystalline region changed by modification. SE showed the greatest effect on crystallization index. SE-LDF had the highest water holding capacity, water swelling capacity, and bound phenolic content in LDFs, which increased by 15.69, 12.02, and 31.81%, respectively, compared with the unmodified LDF. BM exhibited the most dramatic effect on particle size. BM-LDF had the highest free phenolic and total phenolic contents in LDFs, which increased by 32.20 and 29.05% respectively, compared with the unmodified LDF. Phenolic compounds in LDFs were mainly free phenolic, and modifications altered the concents of flavonoids. The BM-LDF and SE-LDF exhibited higher antioxidant capacity than that of AT-LDF. Overall, SE-LDF showed better physical properties, and BM-LDF showed better bioactive components. SE and BM were considered to be appropriate modification methods to enhance the properties of LDF with their own advantages.
Collapse
Affiliation(s)
- Hui Zheng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yan Sun
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Tao Zheng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yiqiong Zeng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Liping Fu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Tingting Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Fan Jia
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yao Xu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Kai He
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Yong Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Fang F, He Y, Zhao J, Zhang Y, Chen C, He H, Wu Q, Hu M, Nie S, Xie M, Hu J. Effects of boiling and steaming process on dietary fiber components and in vitro fermentation characteristics of 9 kinds of whole grains. Food Res Int 2023; 164:112328. [PMID: 36737921 DOI: 10.1016/j.foodres.2022.112328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Whole grains (WGs) are considered as the representative sources of dietary fiber (DF). Thermal treatments can change the properties of DF, and potentially affecting the gut microbiota as well as human health. In this study, DF content and in vitro fermentation characteristics of 9 kinds of WGs (highland barley, barley, buckwheat, proso millet, quinoa, sorghum, coix seed, foxtail millet, and oats) after boiling and steaming treatments were compared. It was found that boiling and steaming treatments could both increase DF content in these grains, except for barley and foxtail millet. Processed WGs could regulate beneficial microbial genus, such as Bifidobacterium, Prevotella, Megamona and Megasphaera. Oats, quinoa, highland barley, and buckwheat after boiling treatment can produce more total short-chain fatty acids (SCFAs) than steaming treatment (p < 0.05), while barley, foxtail millet and coix seed showed opposite results. This study can provide data support for the design of WGs diets and the development of WGs products which are beneficial for gut health.
Collapse
Affiliation(s)
- Fang Fang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yuxin He
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Jutang Zhao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yanli Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Chunhua Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Huijun He
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Quanyong Wu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Mengwei Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
6
|
Gu Y, Qian X, Sun B, Tian X, Wang X, Ma S. Effect of roasting treatment on the micromorphology, gelatinization, structure, and digestibility of whole oat flour. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Yang C, Si J, Chen Y, Xie J, Tian S, Cheng Y, Hu X, Yu Q. Physicochemical structure and functional properties of soluble dietary fibers obtained by different modification methods from Mesona chinensis Benth. residue. Food Res Int 2022; 157:111489. [PMID: 35761712 DOI: 10.1016/j.foodres.2022.111489] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 11/16/2022]
Abstract
Alkaline hydrogen peroxide (AHP), high-temperature cooking combined with ultrasonic (HTCU) and high-temperature cooking combined with complex enzyme hydrolysis (HTCE) were used to modify soluble dietary fiber (SDF) in Mesona chinensis Benth. residue (MCBR), then the structural and in vitro functional properties of A-SDF, HU-SDF and HE-SDF were investigated. Results showed that the three treatments significantly increased the yield of SDF. Scanning electron microscopy, FT-IR, monosaccharide composition, X-ray diffraction, molecular weight distribution and thermal stability analysis were employed to determine the structural changes. Compared with the control SDF (CK-SDF), HE-SDF and HU-SDF had looser and more porous microstructure, as well as lower crystallinity. In contrast to HE-SDF and HU-SDF, A-SDF exhibited a dense wavy microstructure, and elevated crystallinity and thermal stability. In addition, the monosaccharide composition and molecular weight of HU-SDF, HE-SDF and A-SDF were significantly altered as compared to CK-SDF. Moreover, the functional properties of HE-SDF and HU-SDF, including water holding capacity (WHC), oil holding capacity (OHC), glucose adsorption capacity (GAC), α-amylase activity inhibition ratio (α-AAIR), cholesterol adsorption capacity (CAC) and nitrite ion adsorption capacity (NIAC), were significantly higher than those of CK-SDF. However, the dense structure and high crystallinity of A-SDF resulted in a significantly lower GAC and NIAC than that of CK-SDF, with only WHC and α-AAIR being improved. Overall, this study showed that HTCU and HTCE could be used as ideal modification methods for MCBR SDF, HE-SDF and HU-SDF have potential as functional additives in food.
Collapse
Affiliation(s)
- Chaoran Yang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jingyu Si
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shenglan Tian
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yanan Cheng
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
8
|
The contribution of intact structure and food processing to functionality of plant cell wall-derived dietary fiber. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Tang Q, Huang G. Improving method, properties and application of polysaccharide as emulsifier. Food Chem 2021; 376:131937. [PMID: 34968911 DOI: 10.1016/j.foodchem.2021.131937] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/28/2021] [Accepted: 12/20/2021] [Indexed: 11/04/2022]
Abstract
At present, there are still some problems for the emulsification of polysaccharides such as lack of green, efficient and industrialized methods, lack of systematic and in-depth structure-activity relationship, and need of expanding its application scope. The physical, chemical and biological methods for improving the emulsifying of polysaccharides, the emulsifying properties and influencing factors of polysaccharides and application in food were reviewed herein. It was pointed out that the future research should focus on the effect of physical-biological synergistic function on the emulsification of polysaccharides, the effect of processing process on the structure and emulsification mechanism of polysaccharides, and further expanding the application field of polysaccharides with emulsification activity to improve the quality of products.
Collapse
Affiliation(s)
- Qilin Tang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
10
|
The regulatory roles of dietary fibers on host health via gut microbiota-derived short chain fatty acids. Curr Opin Pharmacol 2021; 62:36-42. [PMID: 34896759 DOI: 10.1016/j.coph.2021.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022]
Abstract
As a component of nutraceuticals, dietary fibers (DFs) are essential for maintain human growth and health via the regulation of gut microbiota in the digestive tract. In this review, we summarize food-derived DFs and their effect on gut microbiota-derived short-chain fatty acids (SCFAs). DFs accelerate the production of SCFAs mainly by stimulating intestinal Lactobacillus, Bifidobacterium and Akkermansia to treat diabetes, obesity, cancer, inflammation and immunodeficiency. Further studies should focus on clarifying the detailed mechanism between DFs and diseases associated with gut microbiota-mediated SCFAs.
Collapse
|
11
|
|
12
|
Mensi A, Udenigwe CC. Emerging and practical food innovations for achieving the Sustainable Development Goals (SDG) target 2.2. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Dong JL, Yang M, Zhu YY, Shen RL, Zhang KY. Comparative study of thermal processing on the physicochemical properties and prebiotic effects of the oat β-glucan by in vitro human fecal microbiota fermentation. Food Res Int 2020; 138:109818. [DOI: 10.1016/j.foodres.2020.109818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 01/01/2023]
|
14
|
Lauková M, Karovičová J, Minarovičová L, Kohajdová Z. Effect of thermal stabilization on physico-chemical parameters and functional properties of wheat bran. POTRAVINARSTVO 2020. [DOI: 10.5219/1321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The food industry also focuses on the use of by-products from food processing. Wheat bran is a valuable by-product of the wheat milling process, which is rich in dietary fiber. In addition to nutritional value, dietary fiber has a functional potential in the production of novel foods. Pre-treatment of the dietary fiber using different methods can change its functional properties. The objective of this study was to evaluate the effect of stabilization process on physico-chemical parameters and functional properties of wheat bran. Wheat bran from two wheat variety was treated using microwave and hot air heating. It was observed that wheat bran included more than 45% of total dietary fiber. Results suggested that treatment of bran using both method increased total dietary fiber content. Thermal treatment process decreased the anti-nutritional agent in bran samples. Phytic acid content diminishing of 44% and 49% was observed in microwave treated bran samples. Moreover, treatment of bran using a hot air heating improved the hydration properties (water holding, water retention and swelling capacity), while oil holding capacity was not significantly altered. Treatment decreased the antioxidant activity of treated bran samples. It was observed that thermal treatment modified the color parameters of bran (lightness, yellowness and hue angle decreased and redness and Chroma increased).
Collapse
|