1
|
Li L, Cataisson C, Flowers B, Fraser E, Sanchez V, Day CP, Yuspa SH. Topical Application of a Dual ABC Transporter Substrate and NF-κB Inhibitor Blocks Multiple Sources of Cutaneous Inflammation in Mouse Skin. J Invest Dermatol 2019; 139:1506-1515.e7. [PMID: 30684549 DOI: 10.1016/j.jid.2018.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/21/2018] [Accepted: 12/30/2018] [Indexed: 12/16/2022]
Abstract
Among the molecular signals underlying cutaneous inflammation is the transcription complex NF-κB, its upstream modulators, and cytokines and chemokines that are the downstream proinflammatory effectors. Central to NF-κB activation is IκB kinase (IKK), which phosphorylates IκBα, releasing NF-κB to the nucleus. In a screening of a kinase inhibitor library, we identified two IKK inhibitors that were high-affinity substrates for p-glycoprotein (ABCB1), the multidrug resistance protein known to facilitate transdermal drug delivery. ACHP (2-amino-6-[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-(4-piperidinyl)-3-pyridinecarbonitrile) and IKK 16 prevented both nuclear translocation of NF-κB and activation of a NF-κB reporter and reduced the induction of cytokine and chemokine transcripts in human or mouse keratinocytes by IL-1α, tumor necrosis factor-α, and phorbol myristate acetate. ACHP, but not IKK 16, was nontoxic to mouse or human keratinocytes at any dose tested. In mice, topical ACHP prevented the cutaneous inflammation induced by topical phorbol myristate acetate or imiquimod, reduced the inflammation from erythema doses of artificial sunlight, and lowered the tumor incidence of mice treated with 7,12-dimethyl benzanthracene when applied before phorbol myristate acetate. Topical ACHP also reduced the NF-κB and IL-17 inflammatory signature after multiple doses of imiquimod. Thus, ACHP and IKK 16 hit their NF-κB target in mouse and human keratinocytes, and ACHP is an effective topical nonsteroidal anti-inflammatory in mice.
Collapse
Affiliation(s)
- Luowei Li
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Brittany Flowers
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Elise Fraser
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Vanesa Sanchez
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Stuart H Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
| |
Collapse
|
2
|
Roeleveld DM, van Nieuwenhuijze AEM, van den Berg WB, Koenders MI. The Th17 pathway as a therapeutic target in rheumatoid arthritis and other autoimmune and inflammatory disorders. BioDrugs 2014; 27:439-52. [PMID: 23620106 DOI: 10.1007/s40259-013-0035-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Production of the pro-inflammatory cytokine interleukin (IL)-17 by Th17 cells and other cells of the immune system protects the host against bacterial and fungal infections, but also promotes the development of rheumatoid arthritis (RA) and other autoimmune and inflammatory disorders. Several biologicals targeting IL-17, the IL-17 receptor, or IL-17-related pathways are being tested in clinical trials, and might ultimately lead to better treatment for patients suffering from various IL-17-mediated disorders. In this review, we provide a clear overview of current knowledge on Th17 cell regulation and the main Th17 effector cytokines in relation to IL-17-mediated conditions, as well as on recent IL-17-related drug developments. We demonstrate that targeting the Th17 pathway is a promising treatment for rheumatoid arthritis and various other autoimmune and inflammatory diseases. However, improvements in technical developments assisting in the identification of patients suffering from IL-17-driven disease are needed to enable the application of tailor-made, personalized medicine.
Collapse
|