1
|
Yalcin EB, Tong M, Delikkaya B, Pelit W, Yang Y, de la Monte SM. Differential effects of moderate chronic ethanol consumption on neurobehavior, white matter glial protein expression, and mTOR pathway signaling with adolescent brain maturation. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024; 50:492-516. [PMID: 38847790 PMCID: PMC11824867 DOI: 10.1080/00952990.2024.2355540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 09/06/2024]
Abstract
Background: Adolescent brains are highly vulnerable to heavy alcohol exposure. Increased understanding of how alcohol adversely impacts brain maturation may improve treatment outcomes.Objectives: This study characterizes short-term versus long-term effects of ethanol feeding on behavior, frontal lobe glial proteins, and mTOR signaling.Methods: Adolescent rats (8/group) were fed liquid diets containing 26% or 0% ethanol for 2 or 9 weeks, then subjected to novel object recognition (NOR) and open field (OF) tests. Frontal lobes were used for molecular assays.Results: Significant ethanol effects on OF performance occurred in the 2-week model (p < .0001). Further shifts in OF and NOR performance were unrelated to ethanol exposure in the 9-week models (p < .05 to p < .0001). Ethanol inhibited MAG1 (p < .01) and MBP (p < .0001) after 2 but not 9 weeks. However, both control and ethanol 9-week models had significantly reduced MAG1 (p < .001-0.0001), MBP (p < .0001), PDGFRA (p < .05-0.01), and PLP (p < .001-0.0001) relative to the 2-week models. GFAP was the only glial protein significantly inhibited by ethanol in both 2- (p < .01) and 9-week (p < .05) models. Concerning the mTOR pathway, ethanol reduced IRS-1 (p < .05) and globally inhibited mTOR (p < .01 or p < .001) in the 9- but not the 2-week model.Conclusions: Short-term versus long-term ethanol exposures differentially alter neurobehavioral function, glial protein expression, and signaling through IRS-1 and mTOR, which have known roles in myelination during adolescence. These findings suggest that strategies to prevent chronic alcohol-related brain pathology should consider the increased maturation-related vulnerability of adolescent brains.
Collapse
Affiliation(s)
- Emine B. Yalcin
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Lifespan Academic Institutions, The Providence VA Medical Center, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, Lifespan Academic Institutions, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Busra Delikkaya
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Lifespan Academic Institutions, The Providence VA Medical Center, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - William Pelit
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Yiwen Yang
- Biotechnology Graduate Program, Brown University, Providence, RI, USA
| | - Suzanne M. de la Monte
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Lifespan Academic Institutions, The Providence VA Medical Center, The Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Medicine, Rhode Island Hospital, Lifespan Academic Institutions, The Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Neurology and Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
2
|
Gameiro-Ros I, Noble L, Tong M, Yalcin EB, de la Monte SM. Tissue Microarray Lipidomic Imaging Mass Spectrometry Method: Application to the Study of Alcohol-Related White Matter Neurodegeneration. APPLIED BIOSCIENCES 2023; 2:173-193. [PMID: 38384722 PMCID: PMC10880182 DOI: 10.3390/applbiosci2020013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Central nervous system (CNS) white matter pathologies accompany many diseases across the lifespan, yet their biochemical bases, mechanisms, and consequences have remained poorly understood due to the complexity of myelin lipid-based research. However, recent advances in matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS) have minimized or eliminated many technical challenges that previously limited progress in CNS disease-based lipidomic research. MALDI-IMS can be used for lipid identification, semi-quantification, and the refined interpretation of histopathology. The present work illustrates the use of tissue micro-arrays (TMAs) for MALDI-IMS analysis of frontal lobe white matter biochemical lipidomic pathology in an experimental rat model of chronic ethanol feeding. The use of TMAs combines workload efficiency with the robustness and uniformity of data acquisition. The methods described for generating TMAs enable simultaneous comparisons of lipid profiles across multiple samples under identical conditions. With the methods described, we demonstrate significant reductions in phosphatidylinositol and increases in phosphatidylcholine in the frontal white matter of chronic ethanol-fed rats. Together with the use of a novel rapid peak alignment protocol, this approach facilitates reliable inter- and intra-group comparisons of MALDI-IMS data from experimental models and could be extended to human disease states, including using archival specimens.
Collapse
Affiliation(s)
- Isabel Gameiro-Ros
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
| | - Lelia Noble
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Emine B. Yalcin
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Suzanne M. de la Monte
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
- Departments of Neurology & Neurosurgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
3
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
4
|
Baltan S, Sandau US, Brunet S, Bastian C, Tripathi A, Nguyen H, Liu H, Saugstad JA, Zarnegarnia Y, Dutta R. Identification of miRNAs That Mediate Protective Functions of Anti-Cancer Drugs During White Matter Ischemic Injury. ASN Neuro 2021; 13:17590914211042220. [PMID: 34619990 PMCID: PMC8642107 DOI: 10.1177/17590914211042220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have previously shown that two anti-cancer drugs, CX-4945 and MS-275, protect and preserve white matter (WM) architecture and improve functional recovery in a model of WM ischemic injury. While both compounds promote recovery, CX-4945 is a selective Casein kinase 2 (CK2) inhibitor and MS-275 is a selective Class I histone deacetylase (HDAC) inhibitor. Alterations in microRNAs (miRNAs) mediate some of the protective actions of these drugs. In this study, we aimed to (1) identify miRNAs expressed in mouse optic nerves (MONs); (2) determine which miRNAs are regulated by oxygen glucose deprivation (OGD); and (3) determine the effects of CX-4945 and MS-275 treatment on miRNA expression. RNA isolated from MONs from control and OGD-treated animals with and without CX-4945 or MS-275 treatment were quantified using NanoString nCounter® miRNA expression profiling. Comparative analysis of experimental groups revealed that 12 miRNAs were expressed at high levels in MONs. OGD upregulated five miRNAs (miR-1959, miR-501-3p, miR-146b, miR-201, and miR-335-3p) and downregulated two miRNAs (miR-1937a and miR-1937b) compared to controls. OGD with CX-4945 upregulated miR-1937a and miR-1937b, and downregulated miR-501-3p, miR-200a, miR-1959, and miR-654-3p compared to OGD alone. OGD with MS-275 upregulated miR-2134, miR-2141, miR-2133, miR-34b-5p, miR-153, miR-487b, miR-376b, and downregulated miR-717, miR-190, miR-27a, miR-1959, miR-200a, miR-501-3p, and miR-200c compared to OGD alone. Interestingly, miR-501-3p and miR-1959 were the only miRNAs upregulated by OGD, and downregulated by OGD plus CX-4945 and MS-275. Therefore, we suggest that protective functions of CX-4945 or MS-275 against WM injury maybe mediated, in part, through miRNA expression.
Collapse
Affiliation(s)
- Selva Baltan
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Selva Baltan, Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Mackenzie Hall 2140A, L459, 3181 S.W. Sam Jackson Park Rd., Portland, OR 97239, USA.
| | - Ursula S. Sandau
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sylvain Brunet
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Chinthasagar Bastian
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Ajai Tripathi
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Hung Nguyen
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Helen Liu
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Julie A. Saugstad
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yalda Zarnegarnia
- Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ranjan Dutta
- Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
5
|
Todorović Z, Đurašević S, Stojković M, Grigorov I, Pavlović S, Jasnić N, Tosti T, Macut JB, Thiemermann C, Đorđević J. Lipidomics Provides New Insight into Pathogenesis and Therapeutic Targets of the Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 22:2798. [PMID: 33801983 PMCID: PMC7999969 DOI: 10.3390/ijms22062798] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
Lipids play an essential role in both tissue protection and damage. Tissue ischemia creates anaerobic conditions in which enzyme inactivation occurs, and reperfusion can initiate oxidative stress that leads to harmful changes in membrane lipids, the formation of aldehydes, and chain damage until cell death. The critical event in such a series of harmful events in the cell is the unwanted accumulation of fatty acids that leads to lipotoxicity. Lipid analysis provides additional insight into the pathogenesis of ischemia/reperfusion (I/R) disorders and reveals new targets for drug action. The profile of changes in the composition of fatty acids in the cell, as well as the time course of these changes, indicate both the mechanism of damage and new therapeutic possibilities. A therapeutic approach to reperfusion lipotoxicity involves attenuation of fatty acids overload, i.e., their transport to adipose tissue and/or inhibition of the adverse effects of fatty acids on cell damage and death. The latter option involves using PPAR agonists and drugs that modulate the transport of fatty acids via carnitine into the interior of the mitochondria or the redirection of long-chain fatty acids to peroxisomes.
Collapse
Affiliation(s)
- Zoran Todorović
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.S.); (J.B.M.)
- University Medical Centre “Bežanijska kosa”, 11080 Belgrade, Serbia
| | - Siniša Đurašević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (S.Đ.); (N.J.); (J.Đ.)
| | - Maja Stojković
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.S.); (J.B.M.)
| | - Ilijana Grigorov
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (I.G.); (S.P.)
| | - Slađan Pavlović
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (I.G.); (S.P.)
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (S.Đ.); (N.J.); (J.Đ.)
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| | - Jelica Bjekić Macut
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.S.); (J.B.M.)
- University Medical Centre “Bežanijska kosa”, 11080 Belgrade, Serbia
| | - Christoph Thiemermann
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Jelena Đorđević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (S.Đ.); (N.J.); (J.Đ.)
| |
Collapse
|
6
|
Rapid Peak Alignment for MALDI-TOF Lipid Analysis. JOURNAL OF BIOANALYTICAL METHODS AND TECHNIQUES 2021; 1:104. [PMID: 36848295 PMCID: PMC9948349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The ability to measure structural and functional alterations in cellular and tissue lipids with small footprint, accessible instrumentation has sparked interest in their role in disease pathology. However, various lipidomic analytical tools tend to be cumbersome and time-consuming. A rapid, accurate, and straight forward peak alignment software routine would greatly facilitate the analysis of large datasets, such as those produced by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Herein, we describe a novel Rapid Peak Alignment Method (RPAM) which allows untargeted analysis of lipids expressed in brain white matter following chronic ethanol exposure in an established experimental model. The RPAM outputs data comparable to manual peak alignments but the processing time requires only 90 minutes instead of 8-10 hours. This method is readily adapted to a broad range of models, tissue types, and human diseases.
Collapse
|
7
|
de la Monte SM, Gallucci GM, Lin A, Tong M, Chen X, Stonestreet BS. Critical Shifts in Cerebral White Matter Lipid Profiles After Ischemic-Reperfusion Brain Injury in Fetal Sheep as Demonstrated by the Positive Ion Mode MALDI-Mass Spectrometry. CELL MEDICINE 2020; 12:2155179019897002. [PMID: 34557326 PMCID: PMC8454457 DOI: 10.1177/2155179019897002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ischemic-reperfusion (I/R) injury to cerebral white matter during the perinatal period leads to long-term cognitive and motor disabilities in children. Immature white matter oligodendrocytes are especially vulnerable to metabolic insults such as those caused by hypoxic, ischemic, and reperfusion injury. Consequences include an impaired capacity of oligodendrocytes to generate and maintain mature lipid-rich myelin needed for efficient neuronal conductivity. Further research is needed to increase an understanding of the early, possibly reversible myelin-associated pathologies that accompany I/R white matter injury. This experiment characterized I/R time-dependent alterations in cerebral white matter lipid profiles in an established fetal sheep model. Fetal sheep (127 days gestation) were subjected to 30 min of bilateral carotid artery occlusion followed by 4 h (n = 5), 24 h (n = 7), 48 h (n = 3), or 72 h (n = 5) of reperfusion, or sham treatment (n = 5). Supraventricular cerebral white matter lipids were analyzed using the positive ionization mode matrix-assisted laser desorption/ionization mass spectrometry. Striking I/R-associated shifts in phospholipid (PL) and sphingolipid expression with a prominent upregulation of cardiolipin, phosphatidylcholine, phosphatidylinositol monomannoside, sphingomyelin, sulfatide, and ambiguous or unidentified lipids were observed to occur mainly at I/R-48 and normalized or suppressed responses at I/R-72. In fetal sheep, cerebral I/R caused major shifts in white matter myelin lipid composition favoring the upregulated expression of diverse PLs and sphingolipids which are needed to support neuronal membrane, synaptic, metabolic, and cell signaling functions.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Department of Pathology and Laboratory Medicine, Providence VA Medical Center and the Women & Infants Hospital of Rhode Island, RI, USA,Department of Neurology, Rhode Island Hospital, Providence, RI, USA,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA, Department of Medicine, Rhode Island Hospital, Providence, RI, USA, Alpert Medical School of Brown University, Providence, RI, USA,Suzanne M. de la Monte, Rhode Island Hospital, 55 Claverick Street, Room 419, Providence, RI 02903, USA;
| | - Gina M. Gallucci
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Amy Lin
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA, Alpert Medical School of Brown University, Providence, RI, USA
| | - Xiaodi Chen
- Alpert Medical School of Brown University, Providence, RI, USA, Division of Neonatology, Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Barbara S. Stonestreet
- Alpert Medical School of Brown University, Providence, RI, USA, Division of Neonatology, Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| |
Collapse
|
8
|
Wang T, Wang F, Yu L, Li Z. Nobiletin alleviates cerebral ischemic-reperfusion injury via MAPK signaling pathway. Am J Transl Res 2019; 11:5967-5977. [PMID: 31632564 PMCID: PMC6789284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Nobiletin (NOB), isolated from Citrus nobilis, has been reported to inhibit cerebral ischemia/reperfusion (I/R) induced cell apoptosis in the brain. The mechanisms and the protective ability of NOB on cerebral I/R rats are unclear. METHODS A middle cerebral artery occlusion (MCAO) rat model was established and treated with different doses of NOB. The neurological deficits, brain water content and brain index were explored after reperfusion, and TTC staining was applied to assess the infarct area. The production of reactive oxygen species (ROS) related enzymes in the ischemic cortex samples from each group was measured. TUNEL staining was performed to evaluate neuronal cell apoptosis in brain tissues. The expression of cell apoptosis related proteins, p-p38 and MAPKAP-2 and the levels of inflammatory factors were examined by western blotting assay and ELISA. RESULTS NOB treatment notably improved the neurological deficits, brain water content and brain index in an MCAO model, accompanied by decreased infarct area in the brain tissue. Apoptosis induced by cerebral I/R was also decreased by NOB administration via upregulating Bcl-2 and downregulating Bax and caspase3. The levels of pro-inflammatory mediators TNF-α, IL-6 were reduced and anti-inflammatory cytokine IL-10 was increased by NOB treatment in MCAO rats. Further, we found that the expression of p-p38 and MAPKAP-2 was reduced by NOB treatment in MCAO rats. CONCLUSION The present results suggest that NOB serves a protective role in I/R-induced cerebral-neuron injury. The mechanisms underlying these effects may be associated with the MAPK signaling pathway.
Collapse
Affiliation(s)
- Tao Wang
- Department of Neurology, Wuxi People's Hospital Wuxi 214036, Jiangsu, China
| | - Feng Wang
- Department of Neurology, Wuxi People's Hospital Wuxi 214036, Jiangsu, China
| | - Lu Yu
- Department of Neurology, Wuxi People's Hospital Wuxi 214036, Jiangsu, China
| | - Zaiwang Li
- Department of Neurology, Wuxi People's Hospital Wuxi 214036, Jiangsu, China
| |
Collapse
|