1
|
Lee R, Ong J, Waisberg E, Mader T, Berdahl J, Suh A, Panzo N, Memon H, Sampige R, Katsev B, Kadipasaoglu CM, Mason CE, Beheshti A, Zwart SR, Smith SM, Lee AG. Potential Risks of Ocular Molecular and Cellular Changes in Spaceflight. Semin Ophthalmol 2025:1-11. [PMID: 40094398 DOI: 10.1080/08820538.2025.2471443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE Many fundamental cellular and molecular changes are known to occur in biological systems during spaceflight, including oxidative stress, DNA damage, mitochondrial damage, epigenetic factors, telomere lengthening, and microbial shifts. We can apply the consequences of these molecular changes in ocular cells, such as the retinal ganglion cells and corneal epithelium, to identify ophthalmologic risks during spaceflight. This review aims to discuss the potential molecular changes in greater detail and apply the principles to ocular cells and ophthalmic disease risk in astronauts. METHODS A targeted, relevant search of the literature on the topic and related topics of ocular surface and spaceflight was conducted with scholarly databases PubMed, Web of Science, and Embase from inception to July2024 with search terms "oxidative stress"; "DNA damage"; "Mitochondrial Dysfunction"; "Epigenetics"; "Telomeres"; "Microbiome"; "ocular cells"; "spaceflight"; "microgravity"; "radiation." RESULTS A total of 115 articles were included following screening and eligibility assessment. Key findings include molecular changes and their contributions to ophthalmic diseases like cataracts, spaceflight-associated neuro-ocular syndrome, and dry eye syndrome. CONCLUSION This review provides a comprehensive overview of risks to vision associated with long-duration spaceflight missions beyond low Earth orbit (LEO). Further investigation into targeted countermeasures is imperative to mitigate vision-threatening sequelae in astronauts undertaking deep-space exploration.
Collapse
Affiliation(s)
- Ryung Lee
- Touro College of Osteopathic Medicine, New York, NY, USA
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, USA
| | - Ethan Waisberg
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - John Berdahl
- Vance Thompson Vision, Sioux Falls, South Dakota, USA
| | - Alex Suh
- Tulane School of Medicine, New Orleans, Louisiana, USA
| | | | - Hamza Memon
- Texas A&M School of Medicine, Bryan, TX, USA
| | - Ritu Sampige
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Blake Katsev
- Department of Ophthalmology and Visual Sciences, Washington University, Saint Louis, MO, USA
| | | | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Afshin Beheshti
- Center for Space Biomedicine, McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sara R Zwart
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, USA
| | - Scott M Smith
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, USA
| | - Andrew G Lee
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, New York, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Kazmierska-Grebowska P, Jankowski MM, Obrador E, Kolodziejczyk-Czepas J, Litwinienko G, Grebowski J. Nanotechnology meets radiobiology: Fullerenols and Metallofullerenols as nano-shields in radiotherapy. Biomed Pharmacother 2025; 184:117915. [PMID: 39983431 DOI: 10.1016/j.biopha.2025.117915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025] Open
Abstract
Despite significant advances in the development of radioprotective measures, the clinical application of radioprotectors and radiomitigators remains limited due to insufficient efficacy and high toxicity of most agents. Additionally, in oncological radiotherapy, these compounds may interfere with the therapeutic effectiveness. Recent progress in nanotechnology highlights fullerenols (FulOHs) and metallofullerenols (Me@FulOHs) as promising candidates for next-generation radioprotectors. These nanostructures possess unique antioxidant properties, demonstrating greater efficacy in rediucing oxidative stress compared to conventional agents. Moreover, their potential to minimize pro-oxidative risks depends on the precise identification of cellular environments and irradiation conditions that optimize their radioprotective effects. In parallel, Me@FulOHs serve as powerful theranostic tools in oncology. Their strong imaging signals enable high-resolution PET and MRI, facilitating early detection and accurate localization of pathogenic alterations. This dual functionality positions Me@FulOHs as key components in advanced radiotherapy. By integrating these nanomaterials with modern theranostic approaches, it is possible to enhance the precision of treatment while minimizing side effects, addressing a critical need in contemporary oncology. This review emphasizes the importance of systematic evaluation of context-dependent effects of Me@FulOHs, particularly in pre- and post-irradiation scenarios, to optimize their clinical relevance. The dual role of Me@FulOHs as both radioprotectors and diagnostic agents distinguishes them from traditional compounds, paving the way for innovative practical applications. Their use in radiotherapy represents a significant step toward the development of safer and more effective strategies in radiation protection and cancer treatment. We also review ionizing radiation effects, classifications, cancer radiotherapy applications, and countermeasures.
Collapse
Affiliation(s)
- Paulina Kazmierska-Grebowska
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Maciej M Jankowski
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gabriela Narutowicza 11/12, Gdansk 80-233, Poland
| | - Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, Valencia 46010, Spain
| | - Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | | | - Jacek Grebowski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland; Military Institute of Medicine - National Research Institute, Szaserow 128, Warsaw 04-141, Poland.
| |
Collapse
|
3
|
Kumar VP, Kong Y, Dolland R, Brown SR, Wang K, Dolland D, Mu D, Brown ML. Exploring Angiotensin II and Oxidative Stress in Radiation-Induced Cataract Formation: Potential for Therapeutic Intervention. Antioxidants (Basel) 2024; 13:1207. [PMID: 39456460 PMCID: PMC11504979 DOI: 10.3390/antiox13101207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Radiation-induced cataracts (RICs) represent a significant public health challenge, particularly impacting individuals exposed to ionizing radiation (IR) through medical treatments, occupational settings, and environmental factors. Effective therapeutic strategies require a deep understanding of the mechanisms underlying RIC formation (RICF). This study investigates the roles of angiotensin II (Ang II) and oxidative stress in RIC development, with a focus on their combined effects on lens transparency and cellular function. Key mechanisms include the generation of reactive oxygen species (ROS) and oxidative damage to lens proteins and lipids, as well as the impact of Ang II on inflammatory responses and cellular apoptosis. While the generation of ROS from water radiolysis is well established, the impact of Ang II on RICs is less understood. Ang II intensifies oxidative stress by activating type 1 receptors (AT1Rs) on lens epithelial cells, resulting in increased ROS production and inflammatory responses. This oxidative damage leads to protein aggregation, lipid peroxidation, and apoptosis, ultimately compromising lens transparency and contributing to cataract formation. Recent studies highlight Ang II's dual role in promoting both oxidative stress and inflammation, which accelerates cataract development. RICs pose a substantial public health concern due to their widespread prevalence and impact on quality of life. Targeting Ang II signaling and oxidative stress simultaneously could represent a promising therapeutic approach. Continued research is necessary to validate these strategies and explore their efficacy in preventing or reversing RIC development.
Collapse
Affiliation(s)
- Vidya P. Kumar
- Armed Forces Radiobiology Research Institute, The Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA;
| | - Yali Kong
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (K.W.); (D.M.)
| | - Riana Dolland
- Trocar Pharma Inc., 8101 Sandy Spring Rd., Suite 300-W9, Laurel, MD 20707, USA; (R.D.); (D.D.)
| | - Sandra R. Brown
- LensCrafters, Inc., 110 Mall Circle, Suite 2001, Waldorf, MD 20603, USA;
| | - Kan Wang
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (K.W.); (D.M.)
| | - Damian Dolland
- Trocar Pharma Inc., 8101 Sandy Spring Rd., Suite 300-W9, Laurel, MD 20707, USA; (R.D.); (D.D.)
| | - David Mu
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (K.W.); (D.M.)
- Leroy T. Canoles, Jr. Cancer Research Center, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Milton L. Brown
- Department of Internal Medicine, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| |
Collapse
|
4
|
Vineyard K, Ong J, Soares B, Osteicoechea D, Kadipasaoglu CM, Waisberg E, Tavakkoli A, Vizzeri G, Lee AG. Refractive shifts in astronauts during spaceflight: mechanisms, countermeasures, and future directions for in-flight measurements. Eye (Lond) 2024; 38:2671-2673. [PMID: 38760461 PMCID: PMC11427682 DOI: 10.1038/s41433-024-03124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024] Open
Affiliation(s)
- Kelsey Vineyard
- Edward Via College of Osteopathic Medicine, Spartanburg, SC, USA
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA
| | - Benjamin Soares
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | | | | | - Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, UK.
| | - Alireza Tavakkoli
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Gianmarco Vizzeri
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew G Lee
- Texas A&M School of Medicine, Bryan, TX, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
5
|
Sampige R, Ong J, Waisberg E, Zaman N, Sarker P, Tavakkoli A, Lee AG. XR-SANS: a multi-modal framework for analyzing visual changes with extended reality (XR) in Spaceflight Associated Neuro-Ocular Syndrome (SANS). Eye (Lond) 2024; 38:2680-2685. [PMID: 38802484 PMCID: PMC11427693 DOI: 10.1038/s41433-024-03147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Ritu Sampige
- School of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA.
| | - Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, MA, USA
| | - Nasif Zaman
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Prithul Sarker
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Alireza Tavakkoli
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A&M College of Medicine, Bryan, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
6
|
Sampige R, Ong J, Waisberg E, Berdahl J, Lee AG. Accelerated aging in space and the ocular surface. Eye (Lond) 2024; 38:2674-2676. [PMID: 38789786 PMCID: PMC11427462 DOI: 10.1038/s41433-024-03143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Affiliation(s)
- Ritu Sampige
- School of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA
| | - Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, UK
| | | | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A&M College of Medicine, Bryan, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
7
|
Waisberg E, Ong J, Masalkhi M, Shimada K, Lee AG. Artificial gravity as a potential countermeasure for Spaceflight Associated Neuro-Ocular Syndrome. Eye (Lond) 2024; 38:2847-2848. [PMID: 38877205 PMCID: PMC11461887 DOI: 10.1038/s41433-024-03178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Affiliation(s)
- Ethan Waisberg
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Joshua Ong
- Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mouayad Masalkhi
- University College Dublin School of Medicine, Belfield, Dublin, Ireland
| | | | - Andrew G Lee
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A&M College of Medicine, Bryan, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
8
|
Waisberg E, Ong J, Lee AG. Google search spike of "My Eyes Hurt" in United States after solar eclipse: an analysis and future prevention. Eye (Lond) 2024; 38:2677-2679. [PMID: 38773259 PMCID: PMC11427567 DOI: 10.1038/s41433-024-03145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Affiliation(s)
- Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, UK.
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, , Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A&M College of Medicine, Bryan, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
9
|
Suh A, Ditelberg S, Szeto JJ, Kumar D, Ong J, Robert Gibson C, Mader TH, Waisberg E, Lee AG. Safety protocols, precautions, and countermeasures aboard the International Space Station to prevent ocular injury. Surv Ophthalmol 2024:S0039-6257(24)00097-3. [PMID: 39236988 DOI: 10.1016/j.survophthal.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
The International Space Station (ISS) is a $100 billion epicenter of human activity in the vacuum of space that displays mankind's collective endeavor to explore the cosmic frontier. Even within the marvels of technological sophistication aboard the ISS, the human eye remains a highly vulnerable structure. In the absence of multiple layers of protection and risk assessments, crewmembers would face a substantial increase in vulnerability to ocular injury. Aside from stringent preflight screening criteria for astronauts, the ISS is equipped with ophthalmic medications, environmental control and life support systems (e.g., humidity regulation, carbon dioxide removal, pressurized device regulators), and radiation protection to reduce ocular injury. Moreover, additional countermeasures are currently being developed to mitigate the effects of spaceflight-associated neuro-ocular syndrome (SANS) and lunar dust toxicity for the Artemis Program missions. The success of future endeavors hinges not only on continued technological innovation, but also respecting the intricate interplay between human physiology and the extraterrestrial environments. Establishing habitations on the Moon and Mars, as well as NASA's Gateway Program (humanity's first space station around the Moon), will introduce a new set of challenges, underscoring the necessity for continuous insights into ocular health in space. We discuss the safety protocols, precautions, and countermeasures implemented on the ISS to prevent ocular injury - an aspect often overshadowed by the grandeur of space exploration.
Collapse
Affiliation(s)
- Alex Suh
- Tulane University School of Medicine, New Orleans, LA, United States.
| | - Sarah Ditelberg
- Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| | - Jonathan J Szeto
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Divy Kumar
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | | | | | - Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States; Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, United States; The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States; Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, United States; Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, United States; University of Texas MD Anderson Cancer Center, Houston, TX, United States; Texas A&M College of Medicine, TX, United States; Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|
10
|
Suh A, Ong J, Waisberg E, Lee AG. Corneal thermal burn injuries during long-duration spaceflight: mechanisms, evaluation, and management. Eye (Lond) 2024; 38:2488-2490. [PMID: 38643267 PMCID: PMC11385971 DOI: 10.1038/s41433-024-03072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/12/2024] [Accepted: 04/05/2024] [Indexed: 04/22/2024] Open
Affiliation(s)
- Alex Suh
- Tulane University School of Medicine, New Orleans, LA, USA.
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA
| | - Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, USA
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A&M College of Medicine, Bryan, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
11
|
Waisberg E, Ong J, Lee AG. Coordinated lunar time (LTC): Implications of a lunar-centric time zone on astronaut health and space medicine. LIFE SCIENCES IN SPACE RESEARCH 2024; 42:72-73. [PMID: 39067993 DOI: 10.1016/j.lssr.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 07/30/2024]
Abstract
Lunar exploration offers an exciting opportunity for humanity to advance scientific knowledge and future potential economic growth and possibly allow humans to become a multi-planetary species. On April 2, 2024 the US Office of Science and Technology Policy released a memorandum outlining the current Biden-Harris Administration's policy on the need to establish time standards at celestial bodies other than Earth. This memorandum also introduced the need for Coordinated Lunar Time (CLT), the concept of having a reference time for the moon. The establishment of CLT would provide a multitude of benefits for astronaut health, from expedition planning, to maintaining a sense of order in an austere environment. International agreements and collaboration will be required prior to the recognition of CLT.
Collapse
Affiliation(s)
- Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, United Kingdom.
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States; Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, United States; The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States; Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, United States; Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, United States; University of Texas MD Anderson Cancer Center, Houston, TX, United States; Texas A&M College of Medicine, TX, United States; Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|
12
|
Masalkhi M, Ong J, Waisberg E, Lee AG. Ocular immunology and inflammation under microgravity conditions and the pathogenesis of spaceflight associated neuro-ocular syndrome (SANS). Eye (Lond) 2024; 38:1799-1801. [PMID: 38443543 PMCID: PMC11226705 DOI: 10.1038/s41433-024-03005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Affiliation(s)
- Mouayad Masalkhi
- University College Dublin School of Medicine, Belfield, Dublin, Ireland.
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA
| | - Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, UK
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A&M College of Medicine, Bryan, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
13
|
Waisberg E, Ong J, Masalkhi M, Mao XW, Beheshti A, Lee AG. Mitochondrial dysfunction in Spaceflight Associated Neuro-Ocular Syndrome (SANS): a molecular hypothesis in pathogenesis. Eye (Lond) 2024; 38:1409-1411. [PMID: 38326485 PMCID: PMC11126720 DOI: 10.1038/s41433-024-02951-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Affiliation(s)
- Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, UK.
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA
| | - Mouayad Masalkhi
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Xiao W Mao
- Division of Biomedical Engineering Sciences, Department of Basic Sciences, Loma Linda University Health, Loma Linda, CA, USA
| | - Afshin Beheshti
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A&M College of Medicine, Texas, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|