Deng X, Chen D, Xie A, Li S, Chen A, Zhou Q, Yu R. Quercetin alleviates hyperoxia-induced bronchopulmonary dysplasia by inhibiting ferroptosis through the MAPK/PTGS2 pathway: Insights from network pharmacology, molecular docking, and experimental evaluations.
Chem Biol Drug Des 2024;
103:e14520. [PMID:
38570710 DOI:
10.1111/cbdd.14520]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Quercetin, a bioactive natural compound renowned for its potent anti-inflammatory, antioxidant, and antiviral properties, has exhibited therapeutic potential in various diseases. Given that bronchopulmonary dysplasia (BPD) development is closely linked to inflammation and oxidative stress, and quercetin, a robust antioxidant known to activate NRF2 and influence the ferroptosis pathway, offers promise for a wide range of age groups. Nonetheless, the specific role of quercetin in BPD remains largely unexplored. This study aims to uncover the target role of quercetin in BPD through a combination of network pharmacology, molecular docking, computer analyses, and experimental evaluations.
Collapse