1
|
Requena MB, Corrêa TQ, Bejar DSL, Barreiro JC, de Paula KT, Bagnato VS. Ozone as a method for decontamination of dissolving microneedles for clinical use. Photochem Photobiol 2025. [PMID: 39888013 DOI: 10.1111/php.14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/27/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025]
Abstract
Dissolving microneedles (DMNs) is a promising technology for transdermal and intradermal drug delivery. However, effective decontamination protocols are necessary to ensure safety and efficacy in clinical applications. The challenge is to use a technique that preserves mechanical properties, does not introduce chemicals, and can decontaminate DMNs without affecting the drug. With its potent antimicrobial properties and minimal residual effects, ozone presents a novel and safe method for decontaminating DMNs. Specifically, the present study assesses ozone's efficacy in decontaminating DMNs loaded with aminolevulic acid, intended for photodynamic therapy in skin cancer treatment. The results showed that it effectively decontaminates E. coli and S. aureus without compromising the polymer properties or promoting drug degradation. Overall, ozone represents an approach that can be adopted to decontaminate DMNs, offering a safer and effective strategy that enhances their potential to translate to clinical application.
Collapse
Affiliation(s)
- Michelle B Requena
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Thaila Q Corrêa
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | | | - Juliana C Barreiro
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Kelly T de Paula
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Vanderlei S Bagnato
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Yu Q, Wu X, Lu Y, Chen Z, Zhu Q, Wu W. Ionic Liquid Pretreatment Enhances Skin Penetration of 5-Aminolevulinic Acid: A Promising Scheme for Photodynamic Therapy for Acne Vulgaris. ACS APPLIED BIO MATERIALS 2024; 7:2899-2910. [PMID: 38607995 DOI: 10.1021/acsabm.3c01295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Acne vulgaris is one of the most prevalent skin disorders; it affects up to 85% of adolescents and often persists into adulthood. Topical 5-aminolevulinic acid (ALA)-based photodynamic therapy (PDT) provides an alternative treatment for acne; however, its efficacy is greatly undermined by the limited skin permeability of ALA. Herein, biocompatible ionic liquids (ILs) based on aliphatic acid/choline were employed to enhance the dermal delivery of ALA, thereby improving the efficacy of PDT. In addition to the one-step delivery of ALA by utilizing ILs as carriers, a two-step strategy of pretreating the skin with blank ILs, followed by the administration of free ALA, was employed to test the IL-facilitated dermal delivery of ALA in vitro. The cumulative permeation of ALA through the excised rat skin after IL pretreatment was significantly greater than that in the untreated group, the 20% dimethyl sulfoxide (DMSO) penetration enhancer group, and the one-step group. The penetration efficiency was influenced by formulation and treatment factors, including the type of IL, pretreatment duration, water content in the ILs, and concentration of ALA. In rats, IL pretreatment facilitated faster, greater, and deeper ALA-induced protoporphyrin IX (PpIX) accumulation. Moreover, the IL pretreatment regimen significantly improved the efficacy of ALA-based PDT against acne vulgaris in a rat ear model. The model IL choline citrate ([Ch]3[Cit]1) had a moderate effect on the skin barrier. Trans-epidermal water loss could be recovered 1 h after IL treatment, but no irritation to the rat skin was detected after 7 days of consecutive treatment. It was concluded that biocompatible IL pretreatment enhances the penetration of ALA and thus facilitates the transformation of PpIX and improves the efficacy of PDT against acne vulgaris.
Collapse
Affiliation(s)
- Qin Yu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiying Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Shanghai 201399, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
3
|
Hashemkhani M, Celikbas E, Khan M, Sennaroglu A, Yagci Acar H. ALA/Ag 2S/MnO 2 Hybrid Nanoparticles for Near-Infrared Image-Guided Long-Wavelength Phototherapy of Breast Cancer. ACS Biomater Sci Eng 2023. [PMID: 37294926 DOI: 10.1021/acsbiomaterials.3c00105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) based on temperature increase and the formation of reactive oxygen species (ROS), respectively, is an exciting avenue to provide local and improved therapy of tumors with minimal off-site toxicity. 5-Aminolevulinic acid (ALA) is one of the most popular PDT pro-drugs, and its efficiency improves significantly when delivered to tumors with nanoparticles (NPs). But the tumor site's hypoxic environment is a handicap for the oxygen-consuming PDT process. In this work, highly stable, small, theranostic NPs composed of Ag2S quantum dots and MnO2, electrostatically loaded with ALA, were developed for enhanced PDT/PTT combination of tumors. MnO2 catalyzes endogenous H2O2 to O2 conversion and glutathione depletion, enhancing ROS generation and ALA-PDT efficiency. Ag2S quantum dots (AS QDs) conjugated with bovine serum albumin (BSA) support MnO2 formation and stabilization around Ag2S. AS-BSA-MnO2 provided a strong intracellular near-infrared (NIR) signal and increased the solution temperature by 15 °C upon laser irradiation at 808 nm (215 mW, 10 mg/mL), proving the hybrid NP as an optically trackable, long-wavelength PTT agent. In the in vitro studies, no significant cytotoxicity was observed in the absence of laser irradiation in healthy (C2C12) or breast cancer cell lines (SKBR3 and MDA-MB-231). The most effective phototoxicity was observed when AS-BSA-MnO2-ALA-treated cells were co-irradiated for 5 min with 640 nm (300 mW) and 808 nm (700 mW) due to enhanced ALA-PDT combined with PTT. The viability of cancer cells decreased to approximately 5-10% at 50 μg/mL [Ag], corresponding to 1.6 mM [ALA], whereas at the same concentration, individual PTT and PDT treatments decreased the viability to 55-35%, respectively. The late apoptotic death of the treated cells was mostly correlated with high ROS levels and lactate dehydrogenase. Overall, these hybrid NPs overcome tumor hypoxia, deliver ALA to tumor cells, and provide both NIR tracking and enhanced PDT + PTT combination therapy upon short, low-dose co-irradiation at long wavelengths. These agents that may be utilized for treating other cancer types are also highly suitable for in vivo investigations.
Collapse
Affiliation(s)
- Mahshid Hashemkhani
- Graduate School of Materials Science and Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Eda Celikbas
- Graduate School of Materials Science and Engineering, Department of Chemistry, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Minahil Khan
- Departments of Physics and Electrical and Electronical Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Alphan Sennaroglu
- Graduate School of Materials Science and Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Departments of Physics and Electrical and Electronical Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
- KUYTAM, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Havva Yagci Acar
- Graduate School of Materials Science and Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Graduate School of Materials Science and Engineering, Department of Chemistry, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| |
Collapse
|
4
|
Rahman KMM, Giram P, Foster BA, You Y. Photodynamic Therapy for Bladder Cancers, A Focused Review †. Photochem Photobiol 2023; 99:420-436. [PMID: 36138552 PMCID: PMC10421568 DOI: 10.1111/php.13726] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/18/2022] [Indexed: 02/02/2023]
Abstract
Bladder cancer is the first cancer for which PDT was clinically approved in 1993. Unfortunately, it was unsuccessful due to side effects like bladder contraction. Here, we summarized the recent progress of PDT for bladder cancers, focusing on photosensitizers and formulations. General strategies to minimize side effects are intravesical administration of photosensitizers, use of targeting strategies for photosensitizers and better control of light. Non-muscle invasive bladder cancers are more suitable for PDT than muscle invasive and metastatic bladder cancers. In 2010, the FDA approved blue light cystoscopy, using PpIX fluorescence, for photodynamic diagnosis of non-muscle invasive bladder cancer. PpIX produced from HAL was also used in PDT but was not successful due to low therapeutic efficacy. To enhance the efficacy of PpIX-PDT, we have been working on combining it with singlet oxygen-activatable prodrugs. The use of these prodrugs increases the therapeutic efficacy of the PpIX-PDT. It also improves tumor selectivity of the prodrugs due to the preferential formation of PpIX in cancer cells resulting in decreased off-target toxicity. Future challenges include improving prodrugs and light delivery across the bladder barrier to deeper tumor tissue and generating an effective therapeutic response in an In vivo setting without causing collateral damage to bladder function.
Collapse
Affiliation(s)
- Kazi Md Mahabubur Rahman
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| | - Prabhanjan Giram
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| | - Barbara A. Foster
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Youngjae You
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY
| |
Collapse
|
5
|
Mathematical modelling for antimicrobial photodynamic therapy mediated by 5-aminolaevulinic acid: An in vitro study. Photodiagnosis Photodyn Ther 2022; 40:103116. [PMID: 36100198 DOI: 10.1016/j.pdpdt.2022.103116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Antimicrobial photodynamic therapy (aPDT) using aminolaevulinic acid (ALA) is a promising alternative to antibiotic therapy. ALA administration induces protoporphyrin IX (PpIX) accumulation in bacteria, and light excitation of the accumulated PpIX generates singlet oxygen to bacterial toxicity. Several factors, including drug administration and light irradiation conditions, contribute to the antibiotic effect. Such multiple parameters should be determined moderately for effective aPDT in clinical practice. METHODS A mathematical model to predict bacterial dynamics in ALA-aPDT following clinical conditions was constructed. Applying a pharmacokineticspharmacodynamics (PK-PD) approach, which is widely used in antimicrobial drug evaluation, viable bacteria count by defining the bactericidal rate as the concentration of singlet oxygen produced when PpIX in bacteria is irradiated by light. RESULTS The in vitro experimental results of ALA-aPDT for Pseudomonas aeruginosa demonstrated the PK-PD model validity. The killing rate has an upper limit, and the lower power density for a long irradiation time can suppress the viable bacteria number when the light dosages are the same. CONCLUSIONS This study proposed a model of bacterial viability change in ALA-aPDT based on the PK-PD model and confirmed, by in vitro experiments using PA, that the variation of bacterial viability with light-sensitive substance concentration and light irradiation power densities could be expressed. Further validation of the PK-PD model with other gram negative and gram positive strains will be needed.
Collapse
|
6
|
Cellular Mechanisms in Acute and Chronic Wounds after PDT Therapy: An Update. Biomedicines 2022; 10:biomedicines10071624. [PMID: 35884929 PMCID: PMC9313247 DOI: 10.3390/biomedicines10071624] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/17/2022] Open
Abstract
PDT is a two-stage treatment that combines light energy with a photosensitizer designed to destroy cancerous and precancerous cells after light activation. Photosensitizers are activated by a specific wavelength of light energy, usually from a laser. The photosensitizer is nontoxic until it is activated by light. However, after light activation, the photosensitizer becomes toxic to the targeted tissue. Among sensitizers, the topical use of ALA, a natural precursor of protoporphyrin IX, a precursor of the heme group, and a powerful photosensitizing agent, represents a turning point for PDT in the dermatological field, as it easily absorbable by the skin. Wound healing requires a complex interaction and coordination of different cells and molecules. Any alteration in these highly coordinated events can lead to either delayed or excessive healing. The goal of this review is to elucidate the cellular mechanisms involved, upon treatment with ALA-PDT, in chronic wounds, which are often associated with social isolation and high costs in terms of care.
Collapse
|
7
|
Requena MB, Permana AD, Vollet-Filho JD, González-Vázquez P, Garcia MR, De Faria CMG, Pratavieira S, Donnelly RF, Bagnato VS. Dissolving microneedles containing aminolevulinic acid improves protoporphyrin IX distribution. JOURNAL OF BIOPHOTONICS 2021; 14:e202000128. [PMID: 32981235 DOI: 10.1002/jbio.202000128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
One important limitation of topical photodynamic therapy (PDT) is the limited tissue penetration of precursors. Microneedles (MNs) are minimally invasive devices used to promote intradermal drug delivery. Dissolving MNs contain drug-associated to polymer blends, dissolving after insertion into skin, allowing drug release. This study comprises development and characterization of a pyramidal model of dissolving MNs (500 μm) prepared with 5% wt/wt aminolevulinic acid and 20% wt/wt Gantrez AN-139 in aqueous blend. Protoporphyrin IX formation and distribution were evaluated in tumor mice model by using fluorescence widefield imaging, spectroscopy, and confocal microscopy. MNs demonstrated excellent mechanical resistance penetrating about 250 μm with minor size alteration in vitro, and fluorescence intensity was 5-times higher at 0.5 mm on average compared to cream in vivo (being 10 ± 5 a.u. for MNs and 2.4 ± 0.8 a.u. for cream). Dissolving MNs have overcome topical cream application, being extremely promising especially for thicker skin lesions treatment using PDT.
Collapse
Affiliation(s)
| | - Andi Dian Permana
- School of Pharmacy, Queen's University Belfast, Belfast, UK
- Department of Pharmaceutics, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | | | | | - Marlon Rodrigues Garcia
- Department of Mechanical Engineering, University of São Paulo, São Carlos, São Paulo, Brazil
| | | | - Sebastião Pratavieira
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | | | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
- Hagler Institute for Advanced Studies,Texas A&M University, College Station, Texas, USA
| |
Collapse
|
8
|
Raber HF, Heerde T, El Din SN, Flaig C, Hilgers F, Bitzenhofer N, Jäger KE, Drepper T, Gottschalk KE, Bodenberger NE, Weil T, Kubiczek DH, Rosenau F. Azulitox—A Pseudomonas aeruginosa P28-Derived Cancer-Cell-Specific Protein Photosensitizer. Biomacromolecules 2020; 21:5067-5076. [DOI: 10.1021/acs.biomac.0c01216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Heinz Fabian Raber
- Institute for Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Thomas Heerde
- Institute for Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Suzanne Nour El Din
- Institute for Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Carolin Flaig
- Institute for Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Institute for Experimental Physics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426 Jülich, Germany
| | - Nora Bitzenhofer
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426 Jülich, Germany
| | - Karl-Erich Jäger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426 Jülich, Germany
- Institute of Bio- and Geosciences (IBG-1: Biotechnology) Forschungszentrum Jülich, Stetternicher Forst, 52426 Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426 Jülich, Germany
| | - Kay-Eberhard Gottschalk
- Institute for Experimental Physics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | - Tanja Weil
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
| | - Dennis Horst Kubiczek
- Institute for Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Frank Rosenau
- Institute for Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
9
|
Champeau M, Jary D, Mortier L, Mordon S, Vignoud S. A facile fabrication of dissolving microneedles containing 5-aminolevulinic acid. Int J Pharm 2020; 586:119554. [DOI: 10.1016/j.ijpharm.2020.119554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 01/30/2023]
|
10
|
Tripetch P, Borompichaichartkul C, Duangmal K, Srzednicki G. Entrapment of 5‐aminolevulinic acid under edible composite film of konjac glucomannan and chitosan. Eng Life Sci 2016. [DOI: 10.1002/elsc.201500111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Phattanit Tripetch
- Program in Biotechnology Faculty of Science Chulalongkorn University Bangkok Thailand
| | | | - Kiattisak Duangmal
- Department of Food Technology Faculty of Science Chulalongkorn University Bangkok Thailand
| | - George Srzednicki
- Food Science and Technology School of Chemical Engineering University of New South Wales Sydney Australia
| |
Collapse
|
11
|
Saboktakin MR, Tabatabaee RM. The novel polymeric systems for photodynamic therapy technique. Int J Biol Macromol 2014; 65:398-414. [DOI: 10.1016/j.ijbiomac.2014.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/05/2014] [Accepted: 01/06/2014] [Indexed: 11/26/2022]
|
12
|
Salas-García I, Fanjul-Vélez F, Arce-Diego JL. Photosensitizer absorption coefficient modeling and necrosis prediction during Photodynamic Therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 114:79-86. [PMID: 22704663 DOI: 10.1016/j.jphotobiol.2012.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/09/2012] [Accepted: 05/21/2012] [Indexed: 11/18/2022]
Abstract
The development of accurate predictive models for Photodynamic Therapy (PDT) has emerged as a valuable tool to adjust the current therapy dosimetry to get an optimal treatment response, and definitely to establish new personal protocols. Several attempts have been made in this way, although the influence of the photosensitizer depletion on the optical parameters has not been taken into account so far. We present a first approach to predict the spatio-temporal variation of the photosensitizer absorption coefficient during PDT applied to dermatological diseases, taking into account the photobleaching of a topical photosensitizer. This permits us to obtain the photons density absorbed by the photosensitizer molecules as the treatment progresses and to determine necrosis maps to estimate the short term therapeutic effects in the target tissue. The model presented also takes into account an inhomogeneous initial photosensitizer distribution, light propagation in biological media and the evolution of the molecular concentrations of different components involved in the photochemical reactions. The obtained results allow to investigate how the photosensitizer depletion during the photochemical reactions affects light absorption by the photosensitizer molecules as the optical radiation propagates through the target tissue, and estimate the necrotic tumor area progression under different treatment conditions.
Collapse
Affiliation(s)
- Irene Salas-García
- Applied Optical Techniques Group, TEISA Department, University of Cantabria, Av. de los Castros S/N, 39005 Santander, Spain
| | | | | |
Collapse
|