1
|
O’Brien J, Mitchell C, Auerbach S, Doonan L, Ewald J, Everett L, Faranda A, Johnson K, Reardon A, Rooney J, Shao K, Stainforth R, Wheeler M, Dalmas Wilk D, Williams A, Yauk C, Costa E. Bioinformatic workflows for deriving transcriptomic points of departure: current status, data gaps, and research priorities. Toxicol Sci 2025; 203:147-159. [PMID: 39499193 PMCID: PMC11775421 DOI: 10.1093/toxsci/kfae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
There is a pressing need to increase the efficiency and reliability of toxicological safety assessment for protecting human health and the environment. Although conventional toxicology tests rely on measuring apical changes in vertebrate models, there is increasing interest in the use of molecular information from animal and in vitro studies to inform safety assessment. One promising and pragmatic application of molecular information involves the derivation of transcriptomic points of departure (tPODs). Transcriptomic analyses provide a snapshot of global molecular changes that reflect cellular responses to stressors and progression toward disease. A tPOD identifies the dose level below which a concerted change in gene expression is not expected in a biological system in response to a chemical. A common approach to derive such a tPOD consists of modeling the dose-response behavior for each gene independently and then aggregating the gene-level data into a single tPOD. Although different implementations of this approach are possible, as discussed in this manuscript, research strongly supports the overall idea that reference doses produced using tPODs are health protective. An advantage of this approach is that tPODs can be generated in shorter term studies (e.g. days) compared with apical endpoints from conventional tests (e.g. 90-d subchronic rodent tests). Moreover, research strongly supports the idea that reference doses produced using tPODs are health protective. Given the potential application of tPODs in regulatory toxicology testing, rigorous and reproducible wet and dry laboratory methodologies for their derivation are required. This review summarizes the current state of the science regarding the study design and bioinformatics workflows for tPOD derivation. We identify standards of practice and sources of variability in tPOD generation, data gaps, and areas of uncertainty. We provide recommendations for research to address barriers and promote adoption in regulatory decision making.
Collapse
Affiliation(s)
- Jason O’Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON J8X 4C6, Canada
| | - Constance Mitchell
- Health and Environmental Sciences Institute, Washington, DC 22205, United States
| | - Scott Auerbach
- Predictive Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, NC 27709, United States
| | - Liam Doonan
- Syngenta International Research Centre, Berkshire RG42 6EY, United Kingdom
| | - Jessica Ewald
- Institute of Parasitology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Logan Everett
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, United States
| | - Adam Faranda
- FMC Agricultural Solutions, Newark, DE 19711, United States
| | - Kamin Johnson
- Corteva Agriscience, Indianapolis, IN 46268, United States
| | - Anthony Reardon
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
- Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - John Rooney
- Syngenta Crop Protection, LLC, Greensboro, NC 27409, United States
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health—Bloomington, Indiana University, Bloomington, IN 47405, United States
| | - Robert Stainforth
- Radiation Protection Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Matthew Wheeler
- Predictive Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, NC 27709, United States
| | | | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | |
Collapse
|
2
|
Janyasupab P, Singhanat K, Warnnissorn M, Thuwajit P, Suratanee A, Plaimas K, Thuwajit C. Identification of Tumor Budding-Associated Genes in Breast Cancer through Transcriptomic Profiling and Network Diffusion Analysis. Biomolecules 2024; 14:896. [PMID: 39199284 PMCID: PMC11352152 DOI: 10.3390/biom14080896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Breast cancer has the highest diagnosis rate among all cancers. Tumor budding (TB) is recognized as a recent prognostic marker. Identifying genes specific to high-TB samples is crucial for hindering tumor progression and metastasis. In this study, we utilized an RNA sequencing technique, called TempO-Seq, to profile transcriptomic data from breast cancer samples, aiming to identify biomarkers for high-TB cases. Through differential expression analysis and mutual information, we identified seven genes (NOL4, STAR, C8G, NEIL1, SLC46A3, FRMD6, and SCARF2) that are potential biomarkers in breast cancer. To gain more relevant proteins, further investigation based on a protein-protein interaction network and the network diffusion technique revealed enrichment in the Hippo signaling and Wnt signaling pathways, promoting tumor initiation, invasion, and metastasis in several cancer types. In conclusion, these novel genes, recognized as overexpressed in high-TB samples, along with their associated pathways, offer promising therapeutic targets, thus advancing treatment and diagnosis for breast cancer.
Collapse
Affiliation(s)
- Panisa Janyasupab
- Advance Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Kodchanan Singhanat
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.S.); (P.T.)
| | - Malee Warnnissorn
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.S.); (P.T.)
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
- Intelligent and Nonlinear Dynamics Innovations Research Center, Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Kitiporn Plaimas
- Advance Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.S.); (P.T.)
| |
Collapse
|
3
|
Carels N. Assessing RNA-Seq Workflow Methodologies Using Shannon Entropy. BIOLOGY 2024; 13:482. [PMID: 39056677 PMCID: PMC11274087 DOI: 10.3390/biology13070482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
RNA-seq faces persistent challenges due to the ongoing, expanding array of data processing workflows, none of which have yet achieved standardization to date. It is imperative to determine which method most effectively preserves biological facts. Here, we used Shannon entropy as a tool for depicting the biological status of a system. Thus, we assessed the measurement of Shannon entropy by several RNA-seq workflow approaches, such as DESeq2 and edgeR, but also by combining nine normalization methods with log2 fold change on paired samples of TCGA RNA-seq representing datasets of 515 patients and spanning 12 different cancer types with 5-year overall survival rates ranging from 20% to 98%. Our analysis revealed that TPM, RLE, and TMM normalization, coupled with a threshold of log2 fold change ≥1, for identifying differentially expressed genes, yielded the best results. We propose that Shannon entropy can serve as an objective metric for refining the optimization of RNA-seq workflows and mRNA sequencing technologies.
Collapse
Affiliation(s)
- Nicolas Carels
- Laboratory of Biological System Modeling, Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
4
|
Pannala VR, Wallqvist A. High-Throughput Transcriptomics Differentiates Toxic versus Non-Toxic Chemical Exposures Using a Rat Liver Model. Int J Mol Sci 2023; 24:17425. [PMID: 38139254 PMCID: PMC10743995 DOI: 10.3390/ijms242417425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
To address the challenge of limited throughput with traditional toxicity testing, a newly developed high-throughput transcriptomics (HTT) platform, together with a 5-day in vivo rat model, offers an alternative approach to estimate chemical exposures and provide reasonable estimates of toxicological endpoints. This study contains an HTT analysis of 18 environmental chemicals with known liver toxicity. They were evaluated using male Sprague Dawley rats exposed to various concentrations daily for five consecutive days via oral gavage, with data collected on the sixth day. Here, we further explored the 5-day rat model to identify potential gene signatures that can differentiate between toxic and non-toxic liver responses and provide us with a potential histopathological endpoint of chemical exposure. We identified a distinct gene expression pattern that differentiated non-hepatotoxic compounds from hepatotoxic compounds in a dose-dependent manner, and an analysis of the significantly altered common genes indicated that toxic chemicals predominantly upregulated most of the genes and several pathways in amino acid and lipid metabolism. Finally, our liver injury module analysis revealed that several liver-toxic compounds showed similarities in the key injury phenotypes of cellular inflammation and proliferation, indicating potential molecular initiating processes that may lead to a specific end-stage liver disease.
Collapse
Affiliation(s)
- Venkat R. Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
5
|
Reardon AJF, Farmahin R, Williams A, Meier MJ, Addicks GC, Yauk CL, Matteo G, Atlas E, Harrill J, Everett LJ, Shah I, Judson R, Ramaiahgari S, Ferguson SS, Barton-Maclaren TS. From vision toward best practices: Evaluating in vitro transcriptomic points of departure for application in risk assessment using a uniform workflow. FRONTIERS IN TOXICOLOGY 2023; 5:1194895. [PMID: 37288009 PMCID: PMC10242042 DOI: 10.3389/ftox.2023.1194895] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023] Open
Abstract
The growing number of chemicals in the current consumer and industrial markets presents a major challenge for regulatory programs faced with the need to assess the potential risks they pose to human and ecological health. The increasing demand for hazard and risk assessment of chemicals currently exceeds the capacity to produce the toxicity data necessary for regulatory decision making, and the applied data is commonly generated using traditional approaches with animal models that have limited context in terms of human relevance. This scenario provides the opportunity to implement novel, more efficient strategies for risk assessment purposes. This study aims to increase confidence in the implementation of new approach methods in a risk assessment context by using a parallel analysis to identify data gaps in current experimental designs, reveal the limitations of common approaches deriving transcriptomic points of departure, and demonstrate the strengths in using high-throughput transcriptomics (HTTr) to derive practical endpoints. A uniform workflow was applied across six curated gene expression datasets from concentration-response studies containing 117 diverse chemicals, three cell types, and a range of exposure durations, to determine tPODs based on gene expression profiles. After benchmark concentration modeling, a range of approaches was used to determine consistent and reliable tPODs. High-throughput toxicokinetics were employed to translate in vitro tPODs (µM) to human-relevant administered equivalent doses (AEDs, mg/kg-bw/day). The tPODs from most chemicals had AEDs that were lower (i.e., more conservative) than apical PODs in the US EPA CompTox chemical dashboard, suggesting in vitro tPODs would be protective of potential effects on human health. An assessment of multiple data points for single chemicals revealed that longer exposure duration and varied cell culture systems (e.g., 3D vs. 2D) lead to a decreased tPOD value that indicated increased chemical potency. Seven chemicals were flagged as outliers when comparing the ratio of tPOD to traditional POD, thus indicating they require further assessment to better understand their hazard potential. Our findings build confidence in the use of tPODs but also reveal data gaps that must be addressed prior to their adoption to support risk assessment applications.
Collapse
Affiliation(s)
- Anthony J. F. Reardon
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Reza Farmahin
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Matthew J. Meier
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Gregory C. Addicks
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Carole L. Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Geronimo Matteo
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
- Department of Biochemistry, University of Ottawa, Ottawa, ON, Canada
| | - Joshua Harrill
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Logan J. Everett
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Imran Shah
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Richard Judson
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, United States
| | - Sreenivasa Ramaiahgari
- Division of Translational Toxicology, Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Stephen S. Ferguson
- Division of Translational Toxicology, Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Tara S. Barton-Maclaren
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| |
Collapse
|