1
|
El Khaled El Faraj R, Chakraborty S, Zhou M, Sobol M, Thiele D, Shatford-Adams LM, Correa Cassal M, Kaster AK, Dietrich S, Levkin PA, Popova AA. Drug-Induced Differential Gene Expression Analysis on Nanoliter Droplet Microarrays: Enabling Tool for Functional Precision Oncology. Adv Healthc Mater 2025; 14:e2401820. [PMID: 39444094 DOI: 10.1002/adhm.202401820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/01/2024] [Indexed: 10/25/2024]
Abstract
Drug-induced differential gene expression analysis (DGEA) is essential for uncovering the molecular basis of cell phenotypic changes and understanding individual tumor responses to anticancer drugs. Performing high throughput DGEA is challenging due to the high cost and labor-intensive multi-step sample preparation protocols. In particular, performing drug-induced DGEA on cancer cells derived from patient biopsies is even more challenging due to the scarcity of available cells. A novel, miniaturized, nanoliter-scale method for drug-induced DGEA is introduced, enabling high-throughput and parallel analysis of patient-derived cell drug responses, overcoming the limitations and laborious nature of traditional protocols. The method is based on the Droplet Microarray (DMA), a microscope glass slide with hydrophilic spots on a superhydrophobic background, facilitating droplet formation for cell testing. DMA allows microscopy-based phenotypic analysis, cDNA extraction, and DGEA. The procedure includes cell lysis for mRNA isolation and cDNA conversion followed by droplet pooling for qPCR analysis. In this study, the drug-induced DGEA protocol on the DMA platform is demonstrated using patient-derived chronic lymphocytic leukemia (CLL) cells. This methodology is critical for DGEA with limited cell numbers and promise for applications in functional precision oncology. This method enables molecular profiling of patient-derived samples after drug treatment, crucial for understanding individual tumor responses to anticancer drugs.
Collapse
Affiliation(s)
- Razan El Khaled El Faraj
- Institute of Biological and Chemical Systems-Functional Molecular Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Shraddha Chakraborty
- Institute of Biological and Chemical Systems-Functional Molecular Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Meijun Zhou
- Institute of Biological and Chemical Systems-Functional Molecular Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Morgan Sobol
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - David Thiele
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | | | - Maximiano Correa Cassal
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Sascha Dietrich
- Department for Hematology, Immunology and Clinical Oncology, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Pavel A Levkin
- Institute of Biological and Chemical Systems-Functional Molecular Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Anna A Popova
- Institute of Biological and Chemical Systems-Functional Molecular Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Zhang G, Sun N, Li X. Spleen tyrosine kinase inhibition mitigates radiation-induced lung injury through anti-inflammatory effects and downregulation of p38 MAPK and p53. Front Oncol 2024; 14:1406759. [PMID: 39575431 PMCID: PMC11578954 DOI: 10.3389/fonc.2024.1406759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/11/2024] [Indexed: 11/24/2024] Open
Abstract
Background To explore new modulatory intervention targets for radiation-induced lung injury, bioinformatics analysis technology was used to search for the core driving genes in the pathogenesis of radiation pneumonitis, and the results were verified by a radiation-induced murine lung injury model to find possible new targets for the treatment of radiation lung injury. Method Gene Expression Omnibus Database was used to identify differentially expressed genes in radiation pneumonitis. DAVID database was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) enrichment analysis. Gene Set Enrichment Analysis was used to analyze abnormal expressions. Protein-protein interaction networks were constructed using STRING and Cytoscape. Discovery Studio 4.5 software was used to find the preferred inhibitor of the specific gene. A radiation-induced lung injury model was induced in female C57BL/6N mice. The specific inhibitors were administered by intraperitoneal injection 24 h before and for 7 consecutive days after radiation. Lungs were harvested for further analysis 14 days and 10 weeks post-irradiation. Results We screened Syk as one of the most important driver genes of radiation pneumonitis by bioinformatics analysis and screened the preferred Syk inhibitor fostamatinib from the drug database. Syk was highly expressed in irradiated lung tissue, and fostamatinib inhibited the level of Syk expression. Syk inhibitor significantly alleviated the radiation-induced lung injury and downregulated the increased expression of p38 MAPK, p53, IL-1β, and IL-6 in lung tissue at 2 weeks after radiation. The levels of TGF-β, COL1A1, and α-SMA and degree of pulmonary fibrosis at 10 weeks after radiation were also decreased by Syk inhibitor. Conclusion Syk inhibitor may have a potential to be used as a targeted drug to mitigate radiation pneumonitis and inhibit radiation-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Guoxing Zhang
- Department of Intensive Care Unit, Jilin Province Tumor Hospital, Changchun, China
| | - Ni Sun
- Department of Intensive Care Unit, Jilin Province Tumor Hospital, Changchun, China
| | - Xiaohua Li
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Hermawan A, Putri H, Fatimah N, Prasetio HH. Transcriptomics analysis reveals distinct mechanism of breast cancer stem cells regulation in mammospheres from MCF-7 and T47D cells. Heliyon 2024; 10:e24356. [PMID: 38304813 PMCID: PMC10831612 DOI: 10.1016/j.heliyon.2024.e24356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Luminal A breast cancer, constituting 70 % of breast cancer cases, presents a challenge due to the development of resistance and recurrence caused by breast cancer stem cells (BCSC). Luminal breast tumors are characterized by TP53 expression, a tumor suppressor gene involved in maintaining stem cell attributes in cancer. Although a previous study successfully developed mammospheres (MS) from MCF-7 (with wild-type TP53) and T47D (with mutant TP53) luminal breast cancer cells for BCSC enrichment, their transcriptomic profiles remain unclear. We aimed to elucidate the transcriptomic disparities between MS of MCF-7 and T47D cells using bioinformatics analyses of differentially expressed genes (DEGs), including the KEGG pathway, Gene Ontology (GO), drug-gene association, disease-gene association, Gene Set Enrichment Analysis (GSEA), DNA methylation analysis, correlation analysis of DEGs with immune cell infiltration, and association analysis of genes and small-molecule compounds via the Connectivity Map (CMap). Upregulated DEGs were enriched in metabolism-related KEGG pathways, whereas downregulated DEGs were enriched in the MAPK signaling pathway. Drug-gene association analysis revealed that both upregulated and downregulated DEGs were associated with fostamatinib. The KEGG pathway GSEA results indicated that the DEGs were enriched for oxidative phosphorylation, whereas the downregulated DEGs were negatively enriched for the p53 signaling pathway. Examination of DNA methylation revealed a noticeable disparity in the expression patterns of the PKM2, ERO1L, SLC6A6, EPAS1, APLP2, RPL10L, and NEDD4 genes when comparing cohorts with low- and high-risk breast cancer. Furthermore, a significant positive correlation was identified between SLC6A6 expression and macrophage presence, as well as MSN, and AKR1B1 expression and neutrophil and dentritic cell infiltration. CMap analysis unveiled SA-83851 as a potential candidate to counteract the effects of DEGs, specifically in cells harbouring mutant TP53. Further research, including in vitro and in vivo validations, is warranted to develop drugs targeting BCSCs.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Herwandhani Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Nurul Fatimah
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Heri Himawan Prasetio
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| |
Collapse
|
4
|
Huang DY, Lu ST, Chen YS, Cheng CY, Lin WW. Epigenetic upregulation of spleen tyrosine kinase in cancer cells through p53-dependent downregulation of DNA methyltransferase. Exp Cell Res 2023; 425:113540. [PMID: 36889573 DOI: 10.1016/j.yexcr.2023.113540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/25/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
Syk is a tumor suppressor gene in some solid tumors. Currently, it remains unknown how Syk gene hypermethylation is controlled by DNA methyltransferase (DNMT) and p53. In colorectal cancer HCT116 cells, we found that protein and mRNA levels of Syk were much higher in WT than in p53-/- cells. Both p53 inhibitor PFT-α and p53 silencing can reduce the protein and mRNA expression of Syk in WT cells, while DNMT inhibitor 5-Aza-2'-dC can increase Syk expression in p53-/- cells. Interestingly, the DNMT expression in p53-/- HCT116 cells was higher than that in WT cells. PFT-α can not only enhance Syk gene methylation but also increase DNMT1 protein and mRNA levels in WT HCT116 cells. In metastatic lung cancer cell lines A549 and PC9, which express WT p53 and gain function of p53, respectively, PFT-α can also downregulate Syk mRNA and protein expression. However, the Syk methylation level was increased by PFT-α in A549 but not in PC9 cells. Likewise, 5-Aza-2'-dC transcriptionally increased Syk gene expression in A549 cells, but not in PC9 cells. In summary methylation of Syk promoter requires DNMT1, and p53 can upregulate Syk expression via downregulation of DNMT1 at the transcriptional level.
Collapse
Affiliation(s)
- Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shang-Te Lu
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Shen Chen
- Department of Neurosurgery, National Taiwan University Hospital Yunlin Branch, Douliu, 64041, Taiwan
| | - Ching-Yuan Cheng
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Sender S, Sekora A, Villa Perez S, Chabanovska O, Becker A, Ngezahayo A, Junghanss C, Murua Escobar H. Precursor B-ALL Cell Lines Differentially Respond to SYK Inhibition by Entospletinib. Int J Mol Sci 2021; 22:E592. [PMID: 33435587 PMCID: PMC7827334 DOI: 10.3390/ijms22020592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Impaired B-cell receptor (BCR) function has been associated with the progress of several B-cell malignancies. The spleen tyrosine kinase (SYK) represents a potential therapeutic target in a subset of B-cell neoplasias. In precursor B-acute lymphoblastic leukemia (B-ALL), the pathogenic role and therapeutic potential of SYK is still controversially discussed. We evaluate the application of the SYK inhibitor entospletinib (Ento) in pre- and pro-B-ALL cell lines, characterizing the biologic and molecular effects. METHODS SYK expression was characterized in pre-B-ALL (NALM-6) and pro-B-ALL cell lines (SEM and RS4;11). The cell lines were exposed to different Ento concentrations and the cell biological response analyzed by proliferation, metabolic activity, apoptosis induction, cell-cycle distribution and morphology. BCR pathway gene expression and protein modulations were further characterized. RESULTS Ento significantly induced anti-proliferative and pro-apoptotic effects in NALM-6 and SEM, while barely affecting RS4;11. Targeted RNAseq revealed pronounced gene expression modulation only in NALM-6, while Western Blot analyses demonstrated that vital downstream effector proteins, such as pAKT, pERK, pGSK3β, p53 and BCL-6, were affected by Ento exposure in the inhibitor-sensitive cell lines. CONCLUSION Different acting modes of Ento, independent of pre-BCR dependency, were characterized, unexpected in SEM. Accordingly, SYK classifies as a potential target structure in a subset of pro-B-ALLs.
Collapse
Affiliation(s)
- Sina Sender
- Division of Medicine, Department of Hematology, Oncology and Palliative Medicine, University of Rostock, 18057 Rostock, Germany; (S.S.); (A.S.); (S.V.P.); (O.C.); (C.J.)
| | - Anett Sekora
- Division of Medicine, Department of Hematology, Oncology and Palliative Medicine, University of Rostock, 18057 Rostock, Germany; (S.S.); (A.S.); (S.V.P.); (O.C.); (C.J.)
| | - Simon Villa Perez
- Division of Medicine, Department of Hematology, Oncology and Palliative Medicine, University of Rostock, 18057 Rostock, Germany; (S.S.); (A.S.); (S.V.P.); (O.C.); (C.J.)
| | - Oleksandra Chabanovska
- Division of Medicine, Department of Hematology, Oncology and Palliative Medicine, University of Rostock, 18057 Rostock, Germany; (S.S.); (A.S.); (S.V.P.); (O.C.); (C.J.)
| | - Annegret Becker
- Department of Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, 30419 Hannover, Germany; (A.B.); (A.N.)
| | - Anaclet Ngezahayo
- Department of Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, 30419 Hannover, Germany; (A.B.); (A.N.)
| | - Christian Junghanss
- Division of Medicine, Department of Hematology, Oncology and Palliative Medicine, University of Rostock, 18057 Rostock, Germany; (S.S.); (A.S.); (S.V.P.); (O.C.); (C.J.)
| | - Hugo Murua Escobar
- Division of Medicine, Department of Hematology, Oncology and Palliative Medicine, University of Rostock, 18057 Rostock, Germany; (S.S.); (A.S.); (S.V.P.); (O.C.); (C.J.)
| |
Collapse
|
6
|
Alwithenani AI, Althubiti MA. Systematic Analysis of Spleen Tyrosine Kinase Expression and its Clinical Outcomes in Various Cancers. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2020; 8:95-104. [PMID: 32587490 PMCID: PMC7305679 DOI: 10.4103/sjmms.sjmms_300_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/28/2019] [Accepted: 02/06/2020] [Indexed: 12/04/2022]
Abstract
Background: Spleen tyrosine kinase (SYK) is an important enzyme in the proliferation and differentiation of all hematopoietic tissues. Its role as a cancer driver is well documented in liquid tumors; however, cumulative evidence has suggested an opposite role in other tumor types. Objectives: To systematically assess the expression of SYK, its prognostic value and epigenetic status in different cancers using bioinformatics tools. Methods: In this bioinformatics study, Oncomine database and cBioPortal were used to study the SYK gene expression, Kaplan–Meier plotter to study its prognostic value and MethHC to assess the SYK gene methylation in various cancers. Results: From 542 unique analyses of the SYK gene, it was found to be overexpressed in bladder, breast and colon cancers but downregulated in leukemia, lymphoma and myeloma. Compared with normal tissues, breast and brain tumors showed an overexpression of the SYK gene, whereas lymphoma and leukemia had lower expression. The Kaplan–Meier survival analysis revealed that SYK expression in pancreatic, gastric, liver and lung patients were correlated with better overall survival. Using cBioPortal, prostate cancer was found to have the highest SYK gene mutation frequency, and the mean expression was highest in diffuse large B-cell lymphoma, acute myeloid leukemia and thymoma. Using the MethHC database, SYK promoter hypermethylation was found to be significantly higher in breast, renal, liver, lung, pancreatic, prostatic, skin and stomach cancers compared with the normal tissue (P < 0.005). Conclusion: The results of this study indicate the potential use of SYK as a diagnostic and therapeutic target for different type of cancers. However, further experimental data are required to validate these results before use of SYK in clinical settings.
Collapse
Affiliation(s)
- Akram I Alwithenani
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad A Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
7
|
Huang DY, Chen WY, Chen CL, Wu NL, Lin WW. Synergistic Anti-Tumour Effect of Syk Inhibitor and Olaparib in Squamous Cell Carcinoma: Roles of Syk in EGFR Signalling and PARP1 Activation. Cancers (Basel) 2020; 12:cancers12020489. [PMID: 32093123 PMCID: PMC7072502 DOI: 10.3390/cancers12020489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
Syk is a non-receptor tyrosine kinase involved in the signalling of immunoreceptors and growth factor receptors. Previously, we reported that Syk mediates epidermal growth factor receptor (EGFR) signalling and plays a negative role in the terminal differentiation of keratinocytes. To understand whether Syk is a potential therapeutic target of cancer cells, we further elucidated the role of Syk in disease progression of squamous cell carcinoma (SCC), which is highly associated with EGFR overactivation, and determined the combined effects of Syk and PARP1 inhibitors on SCC viability. We found that pharmacological inhibition of Syk could attenuate the EGF-induced phosphorylation of EGFR, JNK, p38 MAPK, STAT1, and STAT3 in A431, CAL27 and SAS cells. In addition, EGF could induce a Syk-dependent IL-8 gene and protein expression in SCC. Confocal microscopic data demonstrated the ability of the Syk inhibitor to change the subcellular distribution patterns of EGFR after EGF treatment in A431 and SAS cells. Moreover, according to Kaplan-Meier survival curve analysis, higher Syk expression is correlated with poorer patient survival rate and prognosis. Notably, both Syk and EGFR inhibitors could induce PARP activation, and synergistic cytotoxic actions were observed in SCC cells upon the combined treatment of the PARP1 inhibitor olaparib with Syk or the EGFR inhibitor. Collectively, we reported Syk as an important signalling molecule downstream of EGFR that plays crucial roles in SCC development. Combining Syk and PARP inhibition may represent an alternative therapeutic strategy for treating SCC.
Collapse
Affiliation(s)
- Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan;
| | - Chi-Long Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan;
- Department of Pathology, Taipei Medical University Hospital, Taipei 106, Taiwan
| | - Nan-Lin Wu
- Department of Medicine, Mackay Medical College, New Taipei City 251, Taiwan;
- Department of Dermatology, Mackay Memorial Hospital, Taipei 104, Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, New Taipei City 252, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 106, Taiwan
- Correspondence: ; Tel.: +886-223-123-456 (ext. 88315); Fax: +886-223-513-716
| |
Collapse
|