1
|
Wojcieszyńska D, Guzik H, Guzik U. Non-steroidal anti-inflammatory drugs in the era of the Covid-19 pandemic in the context of the human and the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155317. [PMID: 35452725 PMCID: PMC9015952 DOI: 10.1016/j.scitotenv.2022.155317] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 05/23/2023]
Abstract
From 2019, life in the world has mainly been determined by successive waves of the COVID-19 epidemic. During this time, the virus structure, action, short- and long-term effects of the infection were discovered, and treatments were developed. This epidemic undoubtedly affected people's lives, but increasing attention is also being paid to the effects of the epidemic on the environment. Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines, a global scoping review of peer-reviewed information has been conducted on the use of over-the-counter non-steroidal anti-inflammatory drugs in the treatment of symptoms of SARS-CoV-2 infections and their positive and negative effects on the human body, the effects of non-steroidal anti-inflammatory drugs (NSAIDs) on aquatic organisms, and their adverse effects on non-target organisms. The literature from 1998 to 2021 was analysed using the Scopus®, Web of Science™ (WoS) and Google Scholar databases. As non-steroidal anti-inflammatory drugs place a heavy burden on the environment, all reports of the presence of these drugs in the environment during the pandemic period have been thoroughly analysed. Of the 70 peer-reviewed records within the scope, only 14% (n = 10) focussed on the analysis of non-steroidal anti-inflammatory drugs concentrations in wastewater and surface waters during the pandemic period. The percentage of these works indicates that it is still an open topic, and this issue should be supplemented with further reports in which the results obtained during the pandemic, which has been going on for several years, will be published. The authors hope this review will inspire scientists to investigate the problem of non-steroidal anti-inflammatory drugs in the environment to protect them for the next generation.
Collapse
Affiliation(s)
- Danuta Wojcieszyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Henryk Guzik
- Department of Orthopaedics and Traumatology, Medical University of Silesia, Ziołowa 45/47, 40-635 Katowice, Poland
| | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| |
Collapse
|
2
|
Iturricastillo G, Ávalos Pérez-Urría E, Couñago F, Landete P. Scientific evidence in the COVID-19 treatment: A comprehensive review. World J Virol 2021; 10:217-228. [PMID: 34631473 PMCID: PMC8474978 DOI: 10.5501/wjv.v10.i5.217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/12/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
In December 2019, cases of unknown origin pneumonia appeared in Wuhan, China; the causal agent of this pneumonia was a new virus of the coronaviridae family called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). According to the clinical severity, symptoms and response to the different treatments, the evolution of the disease is divided in three phases. We analysed the most used treatments for coronavirus disease 2019 and the phase in which they are supposed to be effective. In the viral phase, remdesivir has demonstrated reduction in recovery time but no mortality reduction. Other drugs proposed for viral phase such as convalescent plasma and lopinavir/ritonavir did not demonstrate to be effective. In the inflammatory phase, corticosteroids demonstrated reduction of 28-d mortality in patients who needed oxygen, establishing that a corticosteroid regimen should be part of the standard treatment of critically ill patients. There are other immunosuppressive and immunomodulatory treatments such as anakinra, sarilumab, tocilizumab, colchicine or baricitinib that are being studied. Other treatments that were proposed at the beginning, like hydroxichloroquine or azithromycin, demonstrated no efficacy and increased mortality when combined.
Collapse
Affiliation(s)
- Gorane Iturricastillo
- Department of Pulmonology, Hospital Universitario de La Princesa, Madrid 28006, Spain
| | | | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, Pozuelo de Alarcón 28223, Spain
- Department of Radiation Oncology, Hospital La Luz, Madrid 28003, Spain
- Department of Radiation Oncology Universidad Europea de Madrid, Madrid 28670, Spain
| | - Pedro Landete
- Department of Pulmonology, Hospital Universitario de La Princesa, Madrid 28006, Spain
- Department of Pulmonology, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Department of Pulmonology, Instituto Investigación Princesa, Madrid 28006, Spain
| |
Collapse
|
3
|
Tai W, Chow MYT, Chang RYK, Tang P, Gonda I, MacArthur RB, Chan HK, Kwok PCL. Nebulised Isotonic Hydroxychloroquine Aerosols for Potential Treatment of COVID-19. Pharmaceutics 2021; 13:1260. [PMID: 34452220 PMCID: PMC8399722 DOI: 10.3390/pharmaceutics13081260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) is an unprecedented pandemic that has severely impacted global public health and the economy. Hydroxychloroquine administered orally to COVID-19 patients was ineffective, but its antiviral and anti-inflammatory actions were observed in vitro. The lack of efficacy in vivo could be due to the inefficiency of the oral route in attaining high drug concentration in the lungs. Delivering hydroxychloroquine by inhalation may be a promising alternative for direct targeting with minimal systemic exposure. This paper reports on the characterisation of isotonic, pH-neutral hydroxychloroquine sulphate (HCQS) solutions for nebulisation for COVID-19. They can be prepared, sterilised, and nebulised for testing as an investigational new drug for treating this infection. The 20, 50, and 100 mg/mL HCQS solutions were stable for at least 15 days without refrigeration when stored in darkness. They were atomised from Aerogen Solo Ultra vibrating mesh nebulisers (1 mL of each of the three concentrations and, in addition, 1.5 mL of 100 mg/mL) to form droplets having a median volumetric diameter of 4.3-5.2 µm, with about 50-60% of the aerosol by volume < 5 µm. The aerosol droplet size decreased (from 4.95 to 4.34 µm) with increasing drug concentration (from 20 to 100 mg/mL). As the drug concentration and liquid volume increased, the nebulisation duration increased from 3 to 11 min. The emitted doses ranged from 9.1 to 75.9 mg, depending on the concentration and volume nebulised. The HCQS solutions appear suitable for preclinical and clinical studies for potential COVID-19 treatment.
Collapse
Affiliation(s)
- Waiting Tai
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (W.T.); (M.Y.T.C.); (R.Y.K.C.); (P.T.); (H.-K.C.)
| | - Michael Yee Tak Chow
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (W.T.); (M.Y.T.C.); (R.Y.K.C.); (P.T.); (H.-K.C.)
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (W.T.); (M.Y.T.C.); (R.Y.K.C.); (P.T.); (H.-K.C.)
| | - Patricia Tang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (W.T.); (M.Y.T.C.); (R.Y.K.C.); (P.T.); (H.-K.C.)
| | - Igor Gonda
- Pulmoquine Therapeutics, Inc., 1155 Camino Del Mar Suite 481, Del Mar, CA 92014, USA; (I.G.); (R.B.M.)
| | - Robert B. MacArthur
- Pulmoquine Therapeutics, Inc., 1155 Camino Del Mar Suite 481, Del Mar, CA 92014, USA; (I.G.); (R.B.M.)
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (W.T.); (M.Y.T.C.); (R.Y.K.C.); (P.T.); (H.-K.C.)
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (W.T.); (M.Y.T.C.); (R.Y.K.C.); (P.T.); (H.-K.C.)
| |
Collapse
|