1
|
Aksu S, Indahlastari A, O'Shea A, Marsiske M, Cohen R, Alexander GE, DeKosky ST, Hishaw GA, Dai Y, Wu SS, Woods AJ. Effect of transcranial direct current stimulation with cognitive training on executive functions in healthy older adults: a secondary analysis from the ACT trial. GeroScience 2025; 47:1361-1380. [PMID: 39614040 PMCID: PMC11872955 DOI: 10.1007/s11357-024-01455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
Cognitive aging has become a public health concern as the mean age of the population is ever-increasing. It is a naturalistic and common process of degenerative and compensatory changes that may result in neurocognitive disorders. While heterogeneous, cognitive aging mostly affects executive functions that may be associated with functional losses during activities of daily living. Cognition-oriented treatments like cognitive training and transcranial direct current stimulation (tDCS) have garnered considerable attention in the past few decades while the exact picture regarding their efficacy in healthy older adults has not been determined yet. The present paper aimed to evaluate the effects of a 3-month intervention of tDCS over the dorsolateral prefrontal cortex (DLPFC) with multimodal cognitive training on the Stroop test and Trail Making Tests A and B performance. One hundred and ninety-three healthy older adults from 2 sites were administered repeated sessions of active/sham tDCS with cognitive training. Baseline, post-intervention, and 1-year performance results between groups were compared using multiple linear regressions. Active tDCS resulted in better Stroop test performance at post-intervention (p = 0.033) but not at 1-year follow-up while no differences between groups were observed in Trail Making Tests A & B performance. The present results may correspond to a modest improvement in conflict monitoring, potentially due to modulation of prefrontal regions, without changing shifting performance. Further investigation is warranted to draw an interference regarding the subdomain-specific impact of repeated tDCS with multimodal cognitive training on executive functions.
Collapse
Affiliation(s)
- Serkan Aksu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA.
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA.
- Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey.
| | - Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA
| | - Michael Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA
| | - Gene E Alexander
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Steven T DeKosky
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Georg A Hishaw
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Yunfeng Dai
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Samuel S Wu
- Department of Biostatistics, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, 1225 Center Dr, PO Box 100165, Gainesville, FL, 32610, USA
| |
Collapse
|
2
|
Bao Z, Burhan A, Frewen P. Transcranial direct current stimulation over medial prefrontal cortex reduced alpha power and functional connectivity during somatic but not semantic self-referential processing. Neuroscience 2024; 553:185-196. [PMID: 38944148 DOI: 10.1016/j.neuroscience.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Past self-report and cognitive-behavioural studies of the effects of transcranial direct current stimulation (tDCS) targeting the medial prefrontal cortex (mPFC) on semantic self-referential processing (SRP) have yielded mixed results. Meanwhile, electroencephalography (EEG) studies show that alpha oscillation (8-12 Hz) may be involved during both semantic and somatic SRP, although the effect of tDCS on alpha-EEG during SRP remains unknown. The current study assessed the EEG and subjective effects of 2 mA tDCS over the mPFC while participants were SRP either on semantic (life roles, e.g., "friend") or somatic (outer body, e.g., "arms") self-referential stimuli compared to resting state and an external attention memory task in 52 young adults. Results showed that whereas mPFC-tDCS did not yield significant changes in participants' mood or experienced attention or pleasantness levels during the SRP task, EEG source analysis indicated, compared to sham stimulation, that tDCS reduced alpha power during somatic but not semantic SRP in the posterior cingulate cortex (PCC), and the frontal, parietal, temporal, and somatosensory cortex, and reduced the functional connectivity between the left inferior parietal lobule and the ventral PCC, but only when mPFC-tDCS was applied at the second while not the first experimental session. Our results suggest that while mPFC-tDCS may be insufficient to alter immediate subjective experience during SRP, mPFC-tDCS may modulate the power and functional connectivity of the brain's alpha oscillations during somatic SRP. Future research directions are discussed.
Collapse
Affiliation(s)
- Zhongjie Bao
- Interdisciplinary Program in Neuroscience, Western University, London, ON, Canada
| | - Amer Burhan
- Interdisciplinary Program in Neuroscience, Western University, London, ON, Canada; Ontario Shores Centre for Mental Health Sciences, Whitby, ON, Canada; Department of Psychiatry, Temerty School of Medicine, University of Toronto, Whitby, ON, Canada
| | - Paul Frewen
- Interdisciplinary Program in Neuroscience, Western University, London, ON, Canada; Department of Psychiatry, Schulich School of Medicine and Dentistry, London, ON, Canada.
| |
Collapse
|
3
|
Yang CL, Qu Y, Huang JP, Wang TT, Zhang H, Chen Y, Tan YC. Efficacy and safety of transcranial direct current stimulation in the treatment of fibromyalgia: A systematic review and meta-analysis. Neurophysiol Clin 2024; 54:102944. [PMID: 38387108 DOI: 10.1016/j.neucli.2024.102944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 02/24/2024] Open
Abstract
OBJECTIVES To update a systematic review of the efficacy and safety of transcranial direct current stimulation (tDCS) for analgesia, for antidepressant effects, and to reduce the impact of fibromyalgia (FM), looking for optimal areas of stimulation. METHODS We searched five databases to identify randomized controlled trials comparing active and sham tDCS for FM. The primary outcome was pain intensity, and secondary outcome measures included FM Impact Questionnaire (FIQ) and depression score. Meta-analysis was conducted using standardized mean difference (SMD). Subgroup analysis was performed to determine the effects of different regional stimulation, over the primary motor cortex (M1), dorsolateral prefrontal cortex (DLPFC), opercular-insular cortex (OIC), and occipital nerve (ON) regions. We analyzed the minimal clinically important difference (MCID) by the value of the mean difference (MD) for an 11-point scale for pain, the Beck Depressive Inventory-II (BDI-II), and the Fibromyalgia Impact Questionnaire (FIQ) score. We described the certainty of the evidence (COE) using the tool GRADE profile. RESULTS Twenty studies were included in the analysis. Active tDCS had a positive effect on pain (SMD= -1.04; 95 % CI -1.38 to -0.69), depression (SMD= -0.46; 95 % CI -0.64 to -0.29), FIQ (SMD= -0.73; 95 % CI -1.09 to -0.36), COE is moderate. Only group M1 (SD=-1.57) and DLPFC (SD=-1.44) could achieve MCID for analgesia; For BDI-II, only group DLPFC (SD=-5.36) could achieve an MCID change. Adverse events were mild. CONCLUSION tDCS is a safe intervention that relieves pain intensity, reduces depression, and reduces the impact of FM on life. Achieving an MCID is related to the stimulation site and the target symptom.
Collapse
Affiliation(s)
- Chun-Lan Yang
- Minda Hospital of Hubei Minzu University, Enshi 445000, Hubei, China; Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jia-Peng Huang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ting-Ting Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Han Zhang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yin Chen
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ying-Chao Tan
- Enshi Prefecture Central Hospital, Enshi 445000, Hubei, China.
| |
Collapse
|
4
|
Sun W, Song J, Dong X, Kang X, He B, Zhao W, Li Z, Feng Z, Chen X. Bibliometric and visual analysis of transcranial direct current stimulation in the web of science database from 2000 to 2022 via CiteSpace. Front Hum Neurosci 2022; 16:1049572. [PMID: 36530203 PMCID: PMC9751488 DOI: 10.3389/fnhum.2022.1049572] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
Objective This study aimed to evaluate the current research hotspots and development tendency of Transcranial Direct Current Stimulation (tDCS) in the field of neurobiology from a bibliometric perspective by providing visualized information to scientists and clinicians. Materials and methods Publications related to tDCS published between 2000 and 2022 were retrieved from the Web of Science Core Collection (WOSCC) on May 5, 2022. Bibliometric features including the number of publications and citations, citation frequency, H-index, journal impact factors, and journal citation reports were summarized using Microsoft Office Excel. Co-authorship, citation, co-citation, and co-occurrence analyses among countries, institutions, authors, co-authors, journals, publications, references, and keywords were analyzed and visualized using CiteSpace (version 6.1.R3). Results A total of 4,756 publications on tDCS fulfilled the criteria we designed and then were extracted from the WOSCC. The United States (1,190 publications, 25.02%) and Harvard University (185 publications, 3.89%) were the leading contributors among all the countries and institutions, respectively. NITSCHE MA and FREGNI F, two key researchers, have made great achievements in tDCS. Brain Stimulation (306 publications) had the highest number of publications relevant to tDCS and the highest number of citations (4,042 times). In terms of potential hotspots, we observed through reference co-citation analysis timeline viewer related to tDCS that "depression"#0, "Sensorimotor network"#10, "working memory"#11, and "Transcranial magnetic stimulation"#9 might be the future research hotspots, while keywords with the strong burst and still ongoing were "intensity" (2018-2022), "impairment" (2020-2022), "efficacy" (2020-2022), and "guideline" (2020-2022). Conclusion This was the first-ever study of peer-reviewed publications relative to tDCS using several scientometric and visual analytic methods to quantitatively and qualitatively reveal the current research status and trends in the field of tDCS. Through the bibliometric method, we gained an in-depth understanding of the current research status and development trend on tDCS. Our research and analysis results might provide some practical sources for academic scholars and clinicians.
Collapse
Affiliation(s)
- Weiming Sun
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Medical College, Nanchang University, Nanchang, China,Weiming Sun,
| | - JingJing Song
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiangli Dong
- Jiangxi Medical College, Nanchang University, Nanchang, China,Department of Psychosomatic Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xizhen Kang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Binjun He
- School of Life Science, Nanchang University, Nanchang, China
| | - Wentao Zhao
- The Third Clinical Department, China Medical University, Shenyang, China
| | - Zhaoting Li
- School of Life Science, Nanchang University, Nanchang, China
| | - Zhen Feng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiuping Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Medical College, Nanchang University, Nanchang, China,*Correspondence: Xiuping Chen,
| |
Collapse
|
5
|
Zhang Y, Li C, Chen D, Tian R, Yan X, Zhou Y, Song Y, Yang Y, Wang X, Zhou B, Gao Y, Jiang Y, Zhang X. Repeated High-Definition Transcranial Direct Current Stimulation Modulated Temporal Variability of Brain Regions in Core Neurocognitive Networks Over the Left Dorsolateral Prefrontal Cortex in Mild Cognitive Impairment Patients. J Alzheimers Dis 2022; 90:655-666. [DOI: 10.3233/jad-220539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Early intervention of amnestic mild cognitive impairment (aMCI) may be the most promising way for delaying or even preventing the progression to Alzheimer’s disease. Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that has been recognized as a promising approach for the treatment of aMCI. Objective: In this paper, we aimed to investigate the modulating mechanism of tDCS on the core neurocognitive networks of brain. Methods: We used repeated anodal high-definition transcranial direct current stimulation (HD-tDCS) over the left dorsolateral prefrontal cortex and assessed the effect on cognition and dynamic functional brain network in aMCI patients. We used a novel method called temporal variability to depict the characteristics of the dynamic brain functional networks. Results: We found that true anodal stimulation significantly improved cognitive performance as measured by the Montreal Cognitive Assessment after simulation. Meanwhile, the Mini-Mental State Examination scores showed a clear upward trend. More importantly, we found significantly altered temporal variability of dynamic functional connectivity of regions belonging to the default mode network, central executive network, and the salience network after true anodal stimulation, indicating anodal HD-tDCS may enhance brain function by modulating the temporal variability of the brain regions. Conclusion: These results imply that ten days of anodal repeated HD-tDCS over the LDLPFC exerts beneficial effects on the temporal variability of the functional architecture of the brain, which may be a potential neural mechanism by which HD-tDCS enhances brain functions. Repeated HD-tDCS may have clinical uses for the intervention of brain function decline in aMCI patients.
Collapse
Affiliation(s)
- Yanchun Zhang
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
- Department of Rehabilitation, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Chenxi Li
- Department of the Psychology of Military Medicine, Air Force Medical University, Xi’an, Shaanxi, P.R. China
| | - Deqiang Chen
- Department of CT, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Rui Tian
- Department of Rehabilitation, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Xinyue Yan
- Department of Rehabilitation, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Yingwen Zhou
- Department of MR, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Yancheng Song
- Department of MR, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Yanlong Yang
- Department of MR, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Xiaoxuan Wang
- Department of MR, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Bo Zhou
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Yuhong Gao
- Institute of Geriatrics, Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yujuan Jiang
- Department of Rehabilitation, Cangzhou Central Hospital, Cangzhoug, Hebei Province, China
| | - Xi Zhang
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Han J, Chen C, Zheng S, Yan X, Wang C, Wang K, Hu Y. High-Definition Transcranial Direct Current Stimulation of the Dorsolateral Prefrontal Cortex Modulates the Electroencephalography Rhythmic Activity of Parietal Occipital Lobe in Patients With Chronic Disorders of Consciousness. Front Hum Neurosci 2022; 16:889023. [PMID: 35712532 PMCID: PMC9196904 DOI: 10.3389/fnhum.2022.889023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundDisorders of consciousness (DOC) are a spectrum of pathologies affecting one’s ability to interact with the external world. At present, High-Definition Transcranial Direct Current Stimulation (HD-tDCS) is used in many patients with DOC as a non-invasive treatment, but electrophysiological research on the effect of HD-tDCS on patients with DOC is limited.ObjectivesTo explore how HD-tDCS affects the cerebral cortex and examine the possible electrophysiological mechanisms underlying the effects of HD-tDCS on the cerebral cortex.MethodsA total of 19 DOC patients were assigned to HD-tDCS stimulation. Each of them underwent 10 anodal HD-tDCS sessions of the left dorsolateral prefrontal cortex (DLPFC) over 5 consecutive days. Coma Recovery Scale-Revision (CRS-R) scores were recorded to evaluate the consciousness level before and after HD-tDCS, while resting-state electroencephalography (EEG) recordings were obtained immediately before and after single and multiple HD-tDCS stimuli. Depending on whether the CRS-R score increased after stimulation, we classified the subjects into responsive (RE) and non-responsive (N-RE) groups and compared the differences in power spectral density (PSD) between the groups in different frequency bands and brain regions, and also examined the relationship between PSD values and CRS-R scores.ResultsFor the RE group, the PSD value of the parieto-occipital region increased significantly in the 6–8 Hz frequency band after multiple stimulations by HD-tDCS. After a single stimulation, an increase in PSD was observed at 10–13 and 13–30 Hz. In addition, for all subjects, a positive correlation was observed between the change in PSD value in the parieto-occipital region at 10–13 and 6–8 Hz frequency band and the change in CRS-R score after a single stimulation.ConclusionRepeated anodal HD-tDCS of the left DLPFC can improve clinical outcomes in patients with DOC, and HD-tDCS-related increased levels of consciousness were associated with increased parieto-occipital PSD.
Collapse
Affiliation(s)
- Jinying Han
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Chen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Shuang Zheng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Xiaoxiang Yan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Changqing Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei, China
- *Correspondence: Kai Wang,
| | - Yajuan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Yajuan Hu,
| |
Collapse
|
7
|
Temporal Interference (TI) Stimulation Boosts Functional Connectivity in Human Motor Cortex: A Comparison Study with Transcranial Direct Current Stimulation (tDCS). Neural Plast 2022; 2022:7605046. [PMID: 35140781 PMCID: PMC8820942 DOI: 10.1155/2022/7605046] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 01/10/2023] Open
Abstract
Temporal interference (TI) could stimulate deep motor cortex and induce movement without affecting the overlying cortex in previous mouse studies. However, there is still lack of evidence on potential TI effects in human studies. To fill this gap, we collected resting-state functional magnetic resonance imaging data on 40 healthy young participants both before and during TI stimulation on the left primary motor cortex (M1). We also chose a widely used simulation approach (tDCS) as a baseline condition. In the stimulation session, participants were randomly allocated to 2 mA TI or tDCS for 20 minutes. We used a seed-based whole brain correlation analysis method to quantify the strength of functional connectivity among different brain regions. Our results showed that both TI and tDCS significantly boosted functional connection strength between M1 and secondary motor cortex (premotor cortex and supplementary motor cortex). This is the first time to demonstrate substantial stimulation effect of TI in the human brain.
Collapse
|
8
|
Sefat O, Salehinejad MA, Danilewitz M, Shalbaf R, Vila-Rodriguez F. Combined Yoga and Transcranial Direct Current Stimulation Increase Functional Connectivity and Synchronization in the Frontal Areas. Brain Topogr 2022; 35:207-218. [DOI: 10.1007/s10548-022-00887-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/02/2022] [Indexed: 11/28/2022]
|
9
|
San-Juan D, Mas RNM, Gutiérrez C, Morales J, Díaz A, Quiñones G, Galindo AK, Baigts LA, Ximenez-Camilli C, Anschel D. Effect of the anodal transcranial direct current electrical stimulation on cognition of medical residents with acute sleep deprivation. Sleep Sci 2022; 15:89-96. [PMID: 35273752 PMCID: PMC8889958 DOI: 10.5935/1984-0063.20220007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/20/2021] [Indexed: 11/26/2022] Open
Abstract
Background Medical residents must sustain acute sleep deprivation, which can lead to nonfatal and fatal consequences in hospitals due to cognitive decline. Anodal transcranial direct current stimulation (a-tDCS) is a safe noninvasive neuromodulation technique that can induce depolarization of neurons. Previous studies in pilots have shown benefits against fatigue increasing wakefulness and cognitive performance. However, the effects of a-tDCS on cognition in acute sleep deprived healthcare workers remains unknown. Purpose To evaluate cognitive changes in sleep deprived medical residents after one session of a-tDCS. Methods Open clinical test-re-test study including 13 medical residents with acute sleep deprivation. Subjects received 1 session of bifrontal a-tDCS (2mAx20min), anodal over the left dorsolateral prefrontal region. Pre-and-post treatment subjects were tested with Beck anxiety inventory, Beck depression and HVLT tests, Rey´s and Taylor´s figures, Trail Making A/B, Stroop, Aleatory Digit retention test (WAIS), Digits and symbols and MoCA tests. Post-intervention was added the Executive functions and Frontal Lobes Neuropsychological Battery (BANFE2) test and changing the Taylor figure for Reyfigure. Results Twelve medical residents were analyzed; 8 men and 4 women, 29.5 (+/-2.2) years mean age. All had a mean of 21.6 (+/-1.3) hours of sleep deprivation. There were no serious adverse events. We found statistically significant difference in Rey´s/Taylor´s figures (p=0.002), Trail Making Test (p=0.005), WAIS IV symbols (p=0.003), Word Stroop (p=0.021). BANFE-2 showed that the main affected area was the orbito-medial prefrontal region. Conclusion a-tDCS appears safe and improves working memory, attention, response time and distractors elimination in acute sleep deprived medical residents.
Collapse
Affiliation(s)
- Daniel San-Juan
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Epilepsy Clinic - Mexico City - Mexico City - Mexico
| | - Raúl Nathanael May Mas
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Neurology Department - Mexico City - Mexico City - Mexico
| | - Cuauhtémoc Gutiérrez
- Facultad de Estudios Superiores Iztacala, Psychology Posgraduate Department - Mexico City - Mexico City - Mexico
| | - Jorge Morales
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Epilepsy Clinic - Mexico City - Mexico City - Mexico
| | - Ana Díaz
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Unit of Cognition and Behavior - Mexico City - Mexico City - Mexico
| | - Gerardo Quiñones
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Neurology Department - Mexico City - Mexico City - Mexico
| | - Axel Kevin Galindo
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Epilepsy Clinic - Mexico City - Mexico City - Mexico
| | - Luis Armando Baigts
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Epilepsy Clinic - Mexico City - Mexico City - Mexico
| | - Cecilia Ximenez-Camilli
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Epilepsy Clinic - Mexico City - Mexico City - Mexico
| | - David Anschel
- New York University Comprehensive Epilepsy Center, Epilepsy Center - New York - New York - United States
| |
Collapse
|
10
|
Chan MMY, Yau SSY, Han YMY. The neurobiology of prefrontal transcranial direct current stimulation (tDCS) in promoting brain plasticity: A systematic review and meta-analyses of human and rodent studies. Neurosci Biobehav Rev 2021; 125:392-416. [PMID: 33662444 DOI: 10.1016/j.neubiorev.2021.02.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022]
Abstract
The neurobiological mechanisms underlying prefrontal transcranial direct current stimulation (tDCS) remain elusive. Randomized, sham-controlled trials in humans and rodents applying in vivo prefrontal tDCS were included to explore whether prefrontal tDCS modulates resting-state and event-related functional connectivity, neural oscillation and synaptic plasticity. Fifty studies were included in the systematic review and 32 in the meta-analyses. Neuroimaging meta-analysis indicated anodal prefrontal tDCS significantly enhanced bilateral median cingulate activity [familywise error (FWE)-corrected p < .005]; meta-regression revealed a positive relationship between changes in median cingulate activity after tDCS and current density (FWE-corrected p < .005) as well as electric current strength (FWE-corrected p < .05). Meta-analyses of electroencephalography and magnetoencephalography data revealed nonsignificant changes (ps > .1) in both resting-state and event-related oscillatory power across all frequency bands. Applying anodal tDCS over the rodent hippocampus/prefrontal cortex enhanced long-term potentiation and brain-derived neurotrophic factor expression in the stimulated brain regions (ps <.005). Evidence supporting prefrontal tDCS administration is preliminary; more methodologically consistent studies evaluating its effects on cognitive function that include brain activity measurements are needed.
Collapse
Affiliation(s)
- Melody M Y Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sonata S Y Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yvonne M Y Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|