1
|
Bardel B, Créange A, Bonardet N, Bapst B, Zedet M, Wahab A, Ayache SS, Lefaucheur JP. Motor function in multiple sclerosis assessed by navigated transcranial magnetic stimulation mapping. J Neurol 2024; 271:4513-4528. [PMID: 38709305 DOI: 10.1007/s00415-024-12398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION Impaired motor function is a major cause of disability in multiple sclerosis (MS), involving various neuroplasticity processes typically assessed by neuroimaging. This study aimed to determine whether navigated transcranial magnetic stimulation (nTMS) could also provide biomarkers of motor cortex plasticity in patients with MS (pwMS). METHODS nTMS motor mapping was performed for hand and leg muscles bilaterally. nTMS variables included the amplitude and latency of motor evoked potentials (MEPs), corticospinal excitability measures, and the size of cortical motor maps (CMMs). Clinical assessment included disability (Expanded Disability Status Scale, EDSS), strength (MRC scale, pinch and grip), and dexterity (9-hole Pegboard Test). RESULTS nTMS motor mapping was performed in 68 pwMS. PwMS with high disability (EDSS ≥ 3) had enlarged CMMs with less dense distribution of MEPs and various MEP parameter changes compared to pwMS with low disability (EDSS < 3). Patients with progressive MS had also various MEP parameter changes compared to pwMS with relapsing remitting form. MRC score correlated positively with MEP amplitude and negatively with MEP latency, pinch strength correlated negatively with CMM volume and dexterity with MEP latency. CONCLUSIONS This is the first study to perform 4-limb cortical motor mapping in pwMS using a dedicated nTMS procedure. By quantifying the cortical surface representation of a given muscle and the variability of MEP within this representation, nTMS can provide new biomarkers of motor function impairment in pwMS. Our study opens perspectives for the use of nTMS as an objective method for assessing pwMS disability in clinical practice.
Collapse
Affiliation(s)
- Benjamin Bardel
- Excitabilité Nerveuse Et Thérapeutique (ENT), Univ Paris Est Creteil, EA 4391, 8 Rue du Général Sarrail, Créteil, 94000, France.
- Service Des Explorations Fonctionnelles Non Invasives, Department of Clinical Neurophysiology, DMU FIxIT, AP-HP, Unité de Neurophysiologie Clinique, Hôpital Universitaire Henri Mondor, Henri Mondor University Hospital, 1 Rue Gustave Eiffel, 94000, Creteil, France.
- Centre de Ressources Et de Compétences SEP Grand-Paris Est, Hôpital Universitaire Henri Mondor, 1 Rue Gustave Eiffel, 94000, Creteil, France.
| | - Alain Créange
- Excitabilité Nerveuse Et Thérapeutique (ENT), Univ Paris Est Creteil, EA 4391, 8 Rue du Général Sarrail, Créteil, 94000, France
- Centre de Ressources Et de Compétences SEP Grand-Paris Est, Hôpital Universitaire Henri Mondor, 1 Rue Gustave Eiffel, 94000, Creteil, France
- Department of Neurology, AP-HP, Henri Mondor University Hospital, DMU Médecine, 1 Rue Gustave Eiffel, 94000, Creteil, France
| | - Nathalie Bonardet
- Excitabilité Nerveuse Et Thérapeutique (ENT), Univ Paris Est Creteil, EA 4391, 8 Rue du Général Sarrail, Créteil, 94000, France
| | - Blanche Bapst
- Excitabilité Nerveuse Et Thérapeutique (ENT), Univ Paris Est Creteil, EA 4391, 8 Rue du Général Sarrail, Créteil, 94000, France
- Centre de Ressources Et de Compétences SEP Grand-Paris Est, Hôpital Universitaire Henri Mondor, 1 Rue Gustave Eiffel, 94000, Creteil, France
- Department of Neuroradiology, AP-HP, Henri Mondor University Hospital, DMU FIxIT, 1 Rue Gustave Eiffel, 94000, Creteil, France
| | - Mickael Zedet
- Centre de Ressources Et de Compétences SEP Grand-Paris Est, Hôpital Universitaire Henri Mondor, 1 Rue Gustave Eiffel, 94000, Creteil, France
- Department of Neurology, AP-HP, Henri Mondor University Hospital, DMU Médecine, 1 Rue Gustave Eiffel, 94000, Creteil, France
| | - Abir Wahab
- Centre de Ressources Et de Compétences SEP Grand-Paris Est, Hôpital Universitaire Henri Mondor, 1 Rue Gustave Eiffel, 94000, Creteil, France
- Department of Neurology, AP-HP, Henri Mondor University Hospital, DMU Médecine, 1 Rue Gustave Eiffel, 94000, Creteil, France
| | - Samar S Ayache
- Excitabilité Nerveuse Et Thérapeutique (ENT), Univ Paris Est Creteil, EA 4391, 8 Rue du Général Sarrail, Créteil, 94000, France
- Service Des Explorations Fonctionnelles Non Invasives, Department of Clinical Neurophysiology, DMU FIxIT, AP-HP, Unité de Neurophysiologie Clinique, Hôpital Universitaire Henri Mondor, Henri Mondor University Hospital, 1 Rue Gustave Eiffel, 94000, Creteil, France
- Centre de Ressources Et de Compétences SEP Grand-Paris Est, Hôpital Universitaire Henri Mondor, 1 Rue Gustave Eiffel, 94000, Creteil, France
- Department of Neurology, AP-HP, Henri Mondor University Hospital, DMU Médecine, 1 Rue Gustave Eiffel, 94000, Creteil, France
| | - Jean-Pascal Lefaucheur
- Excitabilité Nerveuse Et Thérapeutique (ENT), Univ Paris Est Creteil, EA 4391, 8 Rue du Général Sarrail, Créteil, 94000, France
- Service Des Explorations Fonctionnelles Non Invasives, Department of Clinical Neurophysiology, DMU FIxIT, AP-HP, Unité de Neurophysiologie Clinique, Hôpital Universitaire Henri Mondor, Henri Mondor University Hospital, 1 Rue Gustave Eiffel, 94000, Creteil, France
| |
Collapse
|
2
|
Neurorehabilitation in Multiple Sclerosis-A Review of Present Approaches and Future Considerations. J Clin Med 2022; 11:jcm11237003. [PMID: 36498578 PMCID: PMC9739865 DOI: 10.3390/jcm11237003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Multiple sclerosis is an increasingly prevalent disease, representing the leading cause of non-traumatic neurological disease in Europe and North America. The most common symptoms include gait deficits, balance and coordination impairments, fatigue, spasticity, dysphagia and an overactive bladder. Neurorehabilitation therapeutic approaches aim to alleviate symptoms and improve the quality of life through promoting positive immunological transformations and neuroplasticity. The purpose of this study is to evaluate the current treatments for the most debilitating symptoms in multiple sclerosis, identify areas for future improvement, and provide a reference guide for practitioners in the field. It analyzes the most cited procedures currently in use for the management of a number of symptoms affecting the majority of patients with multiple sclerosis, from different training routines to cognitive rehabilitation and therapies using physical agents, such as electrostimulation, hydrotherapy, cryotherapy and electromagnetic fields. Furthermore, it investigates the quality of evidence for the aforementioned therapies and the different tests applied in practice to assess their utility. Lastly, the study looks at potential future candidates for the treatment and evaluation of patients with multiple sclerosis and the supposed benefits they could bring in clinical settings.
Collapse
|
3
|
Jandric D, Doshi A, Scott R, Paling D, Rog D, Chataway J, Schoonheim M, Parker G, Muhlert N. A systematic review of resting state functional MRI connectivity changes and cognitive impairment in multiple sclerosis. Brain Connect 2021; 12:112-133. [PMID: 34382408 DOI: 10.1089/brain.2021.0104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Cognitive impairment in multiple sclerosis (MS) is increasingly being investigated with resting state functional MRI (rs-fMRI) functional connectivity (FC) . However, results remain difficult to interpret, showing both high and low FC associated with cognitive impairment. We conducted a systematic review of rs-fMRI studies in MS to understand whether the direction of FC change relates to cognitive dysfunction, and how this may be influenced by the choice of methodology. METHODS Embase, Medline and PsycINFO were searched for studies assessing cognitive function and rs-fMRI FC in adults with MS. RESULTS Fifty-seven studies were included in a narrative synthesis. Of these, 50 found an association between cognitive impairment and FC abnormalities. Worse cognition was linked to high FC in 18 studies, and to low FC in 17 studies. Nine studies found patterns of both high and low FC related to poor cognitive performance, in different regions or for different MR metrics. There was no clear link to increased FC during early stages of MS and reduced FC in later stages, as predicted by common models of MS pathology. Throughout, we found substantial heterogeneity in study methodology, and carefully consider how this may impact on the observed findings. DISCUSSION These results indicate an urgent need for greater standardisation in the field - in terms of the choice of MRI analysis and the definition of cognitive impairment. This will allow us to use rs-fMRI FC as a biomarker in future clinical studies, and as a tool to understand mechanisms underpinning cognitive symptoms in MS.
Collapse
Affiliation(s)
- Danka Jandric
- The University of Manchester, 5292, Oxford Road, Manchester, United Kingdom of Great Britain and Northern Ireland, M13 9PL;
| | - Anisha Doshi
- University College London, 4919, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Richelle Scott
- The University of Manchester, 5292, Manchester, United Kingdom of Great Britain and Northern Ireland;
| | - David Paling
- Royal Hallamshire Hospital, 105629, Sheffield, Sheffield, United Kingdom of Great Britain and Northern Ireland;
| | - David Rog
- Salford Royal Hospital, 105621, Salford, Salford, United Kingdom of Great Britain and Northern Ireland;
| | - Jeremy Chataway
- University College London, 4919, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Menno Schoonheim
- Amsterdam UMC Locatie VUmc, 1209, Anatomy & Neurosciences, Amsterdam, Noord-Holland, Netherlands;
| | - Geoff Parker
- University College London, 4919, London, London, United Kingdom of Great Britain and Northern Ireland.,The University of Manchester, 5292, Manchester, United Kingdom of Great Britain and Northern Ireland;
| | - Nils Muhlert
- The University of Manchester, 5292, Manchester, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
4
|
Bučková B, Kopal J, Řasová K, Tintěra J, Hlinka J. Open Access: The Effect of Neurorehabilitation on Multiple Sclerosis-Unlocking the Resting-State fMRI Data. Front Neurosci 2021; 15:662784. [PMID: 34121992 PMCID: PMC8192961 DOI: 10.3389/fnins.2021.662784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Barbora Bučková
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
| | - Jakub Kopal
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
- Department of Computing and Control Engineering, University of Chemistry and Technology, Prague, Czechia
| | - Kamila Řasová
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Jaroslav Tintěra
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
- Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Jaroslav Hlinka
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
| |
Collapse
|
5
|
De Meo E, Portaccio E, Giorgio A, Ruano L, Goretti B, Niccolai C, Patti F, Chisari CG, Gallo P, Grossi P, Ghezzi A, Roscio M, Mattioli F, Stampatori C, Simone M, Viterbo RG, Bonacchi R, Rocca MA, De Stefano N, Filippi M, Amato MP. Identifying the Distinct Cognitive Phenotypes in Multiple Sclerosis. JAMA Neurol 2021; 78:414-425. [PMID: 33393981 DOI: 10.1001/jamaneurol.2020.4920] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Importance Cognitive impairment is a common and disabling feature of multiple sclerosis (MS), but a precise characterization of cognitive phenotypes in patients with MS is lacking. Objectives To identify cognitive phenotypes in a clinical cohort of patients with MS and to characterize their clinical and magnetic resonance imaging (MRI) features. Design, Setting, and Participants This multicenter cross-sectional study consecutively screened clinically stable patients with MS and healthy control individuals at 8 MS centers in Italy from January 1, 2010, to October 31, 2019. Patients with MS and healthy control individuals who were not using psychoactive drugs and had no history of other neurological or medical disorders, learning disability, severe head trauma, and alcohol or drug abuse were enrolled. Main Outcomes and Measures Participants underwent a neurological examination and a cognitive evaluation with the Rao Brief Repeatable Battery and Stroop Color and Word Test. A subgroup of participants also underwent a brain MRI examination. Latent profile analysis was used on cognitive test z scores to identify cognitive phenotypes. Linear regression and mixed-effects models were used to define clinical and MRI features of each phenotype. Results A total of 1212 patients with MS (mean [SD] age, 41.1 [11.1] years; 784 women [64.7%]) and 196 healthy control individuals (mean [SD] age, 40.4 [8.6] years; 130 women [66.3%]) were analyzed in this study. Five cognitive phenotypes were identified: preserved cognition (n = 235 patients [19.4%]), mild-verbal memory/semantic fluency (n = 362 patients [29.9%]), mild-multidomain (n = 236 patients [19.5%]), severe-executive/attention (n = 167 patients [13.8%]), and severe-multidomain (n = 212 patients [17.5%]) involvement. Patients with preserved cognition and mild-verbal memory/semantic fluency were younger (mean [SD] age, 36.5 [9.8] years and 38.2 [11.1] years) and had shorter disease duration (mean [SD] 8.0 [7.3] years and 8.3 [7.6] years) compared with patients with mild-multidomain (mean [SD] age, 42.6 [11.2] years; mean [SD] disease duration, 12.8 [9.6] years; P < .001), severe-executive/attention (mean [SD] age, 42.9 [11.7] years; mean [SD] disease duration, 12.2 [9.5] years; P < .001), and severe-multidomain (mean [SD] age, 44.0 [11.0] years; mean [SD] disease duration, 13.3 [10.2] years; P < .001) phenotypes. Severe cognitive phenotypes prevailed in patients with progressive MS. At MRI evaluation, compared with those with preserved cognition, patients with mild-verbal memory/semantic fluency exhibited decreased mean (SE) hippocampal volume (5.42 [0.68] mL vs 5.13 [0.68] mL; P = .04), patients with the mild-multidomain phenotype had decreased mean (SE) cortical gray matter volume (687.69 [35.40] mL vs 662.59 [35.48] mL; P = .02), patients with severe-executive/attention had higher mean (SE) T2-hyperintense lesion volume (51.33 [31.15] mL vs 99.69 [34.07] mL; P = .04), and patients with the severe-multidomain phenotype had extensive brain damage, with decreased volume in all the brain structures explored, except for nucleus pallidus, amygdala and caudate nucleus. Conclusions and Relevance This study found that by defining homogeneous and clinically meaningful phenotypes, the limitations of the traditional dichotomous classification in MS can be overcome. These phenotypes can represent a more meaningful measure of the cognitive status of patients with MS and can help define clinical disability, support clinicians in treatment choices, and tailor cognitive rehabilitation strategies.
Collapse
Affiliation(s)
- Ermelinda De Meo
- Neuroimaging Research Unit, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.,Institute of Experimental Neurology, Vita-Salute San Raffaele University, Milan, Italy.,Section Neurosciences, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, University of Florence, Florence, Italy
| | - Emilio Portaccio
- Department of Neurology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Department of Neurorehabilitation, IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Antonio Giorgio
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Luis Ruano
- EPIUnit, Instituto de Saúde Pública de Universidade do Porto, Porto, Portugal.,Neurology Department, Centro Hospitalar de Entre Douro e Vouga, Santa Maria da Feira, Portugal
| | - Benedetta Goretti
- Section Neurosciences, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, University of Florence, Florence, Italy
| | - Claudia Niccolai
- Department of Neurorehabilitation, IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Francesco Patti
- Department of Neurology, University of Catania, Catania, Italy
| | | | - Paolo Gallo
- Department of Neurology, University of Padova, Padova, Italy
| | - Paola Grossi
- Neuroimmunology Center, Cardiocerebrovascular, Azienda Socio Sanitaria Territoriale (ASST) of Crema, Crema, Italy
| | | | | | - Flavia Mattioli
- Neuropsychology Unit, ASST Spedali Civili Brescia, Brescia, Italy
| | | | - Marta Simone
- Child and Adolescence Neuropsychiatry Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs University Aldo Moro Bari, Bari, Italy
| | - Rosa Gemma Viterbo
- Child and Adolescence Neuropsychiatry Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs University Aldo Moro Bari, Bari, Italy
| | - Raffaello Bonacchi
- Neuroimaging Research Unit, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.,Institute of Experimental Neurology, Vita-Salute San Raffaele University, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.,Institute of Experimental Neurology, Vita-Salute San Raffaele University, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Amato
- Section Neurosciences, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, University of Florence, Florence, Italy.,Department of Neurorehabilitation, IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| |
Collapse
|
6
|
Stellmann JP, Wanke N, Maarouf A, Gellißen S, Heesen C, Audoin B, Gold SM, Zaaraoui W, Poettgen J. Cognitive performance shows domain specific associations with regional cortical thickness in multiple sclerosis. NEUROIMAGE-CLINICAL 2021; 30:102606. [PMID: 33744503 PMCID: PMC7985400 DOI: 10.1016/j.nicl.2021.102606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/15/2021] [Accepted: 02/15/2021] [Indexed: 11/25/2022]
Abstract
Cognitive impairment correlates with loss of cortical thickness in MS. Cognitive tests show distinctive regional associations with cortical thickness. Some regions, such as the left insula, correlate with multiple tests. Associations patterns seem reproducible in patients with very mild impairment. Better localization of cognitive functions may improve future MRI studies.
Multiple Sclerosis (MS) patients often suffer from significant cognitive impairment. Earlier research has shown relationships between regional cortical atrophy and cognitive deterioration. However, due to a large number of neuropsychological assessments and a heterogenous pattern of cognitive deficits in MS patients, reported associations patterns are also heterogenous. Using an extensive neuropsychological battery of 23 different tasks, we explored domain (attention/information processing, memory, spatial processing, executive functioning) and task-specific associations with regional cortical thickness in a representative sample of MS patients (N = 97). Cortical regions associated with multiple cognitive tasks in the left hemisphere were predominantly located in the inferior insula (attention p < 0.001, memory p = 0.047, spatial processing p = 0.004, executive functioning p = 0.037), the gyrus frontalis superior (attention p = 0.015, memory p = 0.037, spatial processing p = 0.033, executive functioning p = 0.017) and temporal medial (attention p < 0.001, memory two clusters p = 0.016 and p < 0.001, executive functioning p = 0.016). In the right hemisphere, we detected the strongest association in the sulcus interparietalis with five cluster (attention SDMT p = 0.003 and TAP_DA p < 0.001; memory Rey recall p = 0.013 and VLMT verbal learning p = 0.016; spatial processing Rey copy p < 0.001). We replicated parts of our results in an independent sample of 30 mildly disabled MS patients. Moreover, comparisons to 29 healthy controls showed that the regional associations seemed to represent rather pathophysiological dependency than a physiological one. We believe that our results may prove useful in diagnosis and rehabilitation of cognitive impairments and may serve as guidance in future magnetic resonance imaging (MRI) studies.
Collapse
Affiliation(s)
- Jan-Patrick Stellmann
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; APHM, Hopital de la Timone, CEMEREM, Marseille, France; Aix Marseille Univ, CNRS, CRMBM, Marseille, France.
| | - Nadine Wanke
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Department of Cognitive Psychology, Institute of Psychology, University of Hamburg, Von-Melle-Park 5, 20146 Hamburg, Germany
| | - Adil Maarouf
- APHM, Hopital de la Timone, CEMEREM, Marseille, France; Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Susanne Gellißen
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg Eppendorf, Hamburg, Martinistr. 52, 20246 Hamburg, Germany
| | - Christoph Heesen
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Bertrand Audoin
- APHM, Hopital de la Timone, CEMEREM, Marseille, France; Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Stefan M Gold
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Charité Universitätsmedizin Berlin, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany; Charité Universitätsmedizin Berlin, Medizinische Klinik m.S. Psychosomatik, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Wafaa Zaaraoui
- APHM, Hopital de la Timone, CEMEREM, Marseille, France; Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Jana Poettgen
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
7
|
Chard DT, Alahmadi AAS, Audoin B, Charalambous T, Enzinger C, Hulst HE, Rocca MA, Rovira À, Sastre-Garriga J, Schoonheim MM, Tijms B, Tur C, Gandini Wheeler-Kingshott CAM, Wink AM, Ciccarelli O, Barkhof F. Mind the gap: from neurons to networks to outcomes in multiple sclerosis. Nat Rev Neurol 2021; 17:173-184. [PMID: 33437067 DOI: 10.1038/s41582-020-00439-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
MRI studies have provided valuable insights into the structure and function of neural networks, particularly in health and in classical neurodegenerative conditions such as Alzheimer disease. However, such work is also highly relevant in other diseases of the CNS, including multiple sclerosis (MS). In this Review, we consider the effects of MS pathology on brain networks, as assessed using MRI, and how these changes to brain networks translate into clinical impairments. We also discuss how this knowledge can inform the targeting of MS treatments and the potential future directions for research in this area. Studying MS is challenging as its pathology involves neurodegenerative and focal inflammatory elements, both of which could disrupt neural networks. The disruption of white matter tracts in MS is reflected in changes in network efficiency, an increasingly random grey matter network topology, relative cortical disconnection, and both increases and decreases in connectivity centred around hubs such as the thalamus and the default mode network. The results of initial longitudinal studies suggest that these changes evolve rather than simply increase over time and are linked with clinical features. Studies have also identified a potential role for treatments that functionally modify neural networks as opposed to altering their structure.
Collapse
Affiliation(s)
- Declan T Chard
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK. .,National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, London, UK.
| | - Adnan A S Alahmadi
- Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Bertrand Audoin
- Aix-Marseille University, CNRS, CRMBM, Marseille, France.,AP-HM, University Hospital Timone, Department of Neurology, Marseille, France
| | - Thalis Charalambous
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Christian Enzinger
- Department of Neurology, Research Unit for Neuronal Repair and Plasticity, Medical University of Graz, Graz, Austria.,Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Graz, Austria
| | - Hanneke E Hulst
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Sastre-Garriga
- Servei de Neurologia/Neuroimmunologia, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Betty Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Carmen Tur
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,Department of Neurology, Luton and Dunstable University Hospital, Luton, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.,Brain MRI 3T Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Alle Meije Wink
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Olga Ciccarelli
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, London, UK
| | - Frederik Barkhof
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, London, UK.,Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | | |
Collapse
|
8
|
Barros C, Fernandes A. Linking Cognitive Impairment to Neuroinflammation in Multiple Sclerosis using neuroimaging tools. Mult Scler Relat Disord 2020; 47:102622. [PMID: 33227630 DOI: 10.1016/j.msard.2020.102622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022]
Abstract
Multiple sclerosis (MS) is a complex chronic immune disease in the central nervous system, causing neurological disability among young and middle-aged adults. Impaired cognition is now emerging as a major clinical symptom being present in more than 50% of MS patients. Recent data support that neuroinflammation mediated by glial cells plays a key part in MS course and, particularly, microglia is responsible for the pruning of synapses possibly impacting on vital neural networks maintenance. However, the knowledge of microglia-mediated mechanisms underlying cognitive impairment in MS is poor and unfortunately, there are no medicines to overcome this "invisible" symptom. Interestingly, the use of powerful diagnostic imaging tools as structural and functional MRI as well as PET brought new insights into some biological mechanisms, but no link between the possibility to use early visible alterations to predict cognitive deficits was clarified yet. In this review, we focus on the interplay between MS-related cognitive structures and neuroinflammation, specifically the presence of microglia and their reactivity. Moreover, we also discuss new imaging tools to assess cognitive impairment and to track microglia activation. Understanding the role of microglia in cognitive impairment and how it can be prevented may be a promising contribution to innovative therapeutic strategies that culminate in the improvement of MS patients' life quality.
Collapse
Affiliation(s)
- Catarina Barros
- Neuron-Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Adelaide Fernandes
- Neuron-Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
9
|
Droby A, Fleysher L, Petracca M, Podranski K, Xu J, Fabian M, Marjańska M, Inglese M. Lower cortical gamma-aminobutyric acid level contributes to increased connectivity in sensory-motor regions in progressive MS. Mult Scler Relat Disord 2020; 43:102183. [DOI: 10.1016/j.msard.2020.102183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
|
10
|
Stellmann JP, Maarouf A, Schulz KH, Baquet L, Pöttgen J, Patra S, Penner IK, Gellißen S, Ketels G, Besson P, Ranjeva JP, Guye M, Nolte G, Engel AK, Audoin B, Heesen C, Gold SM. Aerobic Exercise Induces Functional and Structural Reorganization of CNS Networks in Multiple Sclerosis: A Randomized Controlled Trial. Front Hum Neurosci 2020; 14:255. [PMID: 32714172 PMCID: PMC7340166 DOI: 10.3389/fnhum.2020.00255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022] Open
Abstract
Objectives: Evidence from animal studies suggests that aerobic exercise may promote neuroplasticity and could, therefore, provide therapeutic benefits for neurological diseases such as multiple sclerosis (MS). However, the effects of exercise in human CNS disorders on the topology of brain networks, which might serve as an outcome at the interface between biology and clinical performance, remain poorly understood. Methods: We investigated functional and structural networks in patients with relapsing-remitting MS in a clinical trial of standardized aerobic exercise. Fifty-seven patients were randomly assigned to moderate-intensity exercise for 3 months or a non-exercise control group. We reconstructed functional networks based on resting-state functional magnetic resonance imaging (MRI) and used probabilistic tractography on diffusion-weighted imaging data for structural networks. Results: At baseline, compared to 30 healthy controls, patients exhibited decreased structural connectivity that was most pronounced in hub regions of the brain. Vice versa, functional connectivity was increased in hubs. After 3 months, we observed hub independent increased functional connectivity in the exercise group while the control group presented a loss of functional hub connectivity. On a structural level, the control group remained unchanged, while the exercise group had also increased connectivity. Increased clustering of hubs indicates a better structural integration and internal connectivity at the top of the network hierarchy. Conclusion: Increased functional connectivity of hubs contrasts a loss of structural connectivity in relapsing-remitting MS. Under an exercise condition, a further hub independent increase of functional connectivity seems to translate in higher structural connectivity of the whole brain.
Collapse
Affiliation(s)
- Jan-Patrick Stellmann
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,APHM, Hopital de la Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
| | - Adil Maarouf
- APHM, Hopital de la Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
| | - Karl-Heinz Schulz
- Institut und Poliklinik für Medizinische Psychologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Universitäres Kompetenzzentrum für Sport-und Bewegungsmedizin (Athleticum), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Baquet
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Pöttgen
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Patra
- Institut und Poliklinik für Medizinische Psychologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Universitäres Kompetenzzentrum für Sport-und Bewegungsmedizin (Athleticum), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Iris-Katharina Penner
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Susanne Gellißen
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Gesche Ketels
- Department of Physiotherapy, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Pierre Besson
- APHM, Hopital de la Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
| | - Jean-Philippe Ranjeva
- APHM, Hopital de la Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
| | - Maxime Guye
- APHM, Hopital de la Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Bertrand Audoin
- APHM, Hopital de la Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
| | - Christoph Heesen
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan M Gold
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin (CBF), Berlin, Germany.,Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), Med. Klinik m.S. Psychosomatik, Campus Benjamin Franklin (CBF), Berlin, Germany
| |
Collapse
|
11
|
Prosperini L, Di Filippo M. Beyond clinical changes: Rehabilitation-induced neuroplasticity in MS. Mult Scler 2020; 25:1348-1362. [PMID: 31469359 DOI: 10.1177/1352458519846096] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neural plasticity represents the substrate by which the damaged central nervous system (CNS) re-learns lost behaviors in response to rehabilitation. In persons with multiple sclerosis (MS), rehabilitation can therefore exploit the potential of neural plasticity to restore CNS functions beyond the spontaneous mechanisms of recovery from MS-related damage. METHODS Here, we reviewed the currently available evidence on the occurrence of mechanisms of structural and functional plasticity following rehabilitation, motor, and/or cognitive training. We presented both data gained from basic laboratory research on animal models and data on persons with MS obtained by advanced magnetic resonance imaging (MRI) techniques. RESULTS Studies on physical and environmental enrichment in experimental MS models showed beneficial effects mediated by both immune modulation and activity-dependent plasticity, lowering tissue destruction and restoring of CNS network function. Translational researches in MS people demonstrated structural and/or functional MRI changes after various interventions, but their heterogeneity and small sample sizes (5-42 patients) raise concerns about the interpretation and generalization of the obtained results. DISCUSSION We highlighted the limitations of published studies, focusing on the knowledge gaps to be filled in terms of neuropathological correlations between changes detected in animal models and changes detected in vivo by neuroimaging.
Collapse
Affiliation(s)
- Luca Prosperini
- Department of Neurosciences, San Camillo-Forlanini Hospital, Rome, Italy
| | | |
Collapse
|
12
|
The Cuprizone Model: Dos and Do Nots. Cells 2020; 9:cells9040843. [PMID: 32244377 PMCID: PMC7226799 DOI: 10.3390/cells9040843] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. Various pre-clinical models with different specific features of the disease are available to study MS pathogenesis and to develop new therapeutic options. During the last decade, the model of toxic demyelination induced by cuprizone has become more and more popular, and it has contributed substantially to our understanding of distinct yet important aspects of the MS pathology. Here, we aim to provide a practical guide on how to use the cuprizone model and which pitfalls should be avoided.
Collapse
|
13
|
A Controlled Clinical Trial on the Effects of Exercise on Cognition and Mobility in Adults With Multiple Sclerosis. Am J Phys Med Rehabil 2019; 98:97-102. [PMID: 29927751 DOI: 10.1097/phm.0000000000000987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The aim of the study was to investigate the effects of a 6-mo exercise program on cognition and mobility in participants with multiple sclerosis. DESIGN This is a prospective, single-blind, controlled clinical trial. SETTING A community rehabilitation program within a large metropolitan health service. PARTICIPANTS Twenty-eight patients with multiple sclerosis were referred for outpatient rehabilitation. INTERVENTIONS Participants were allocated to one of two groups and undertook a cognitive-motor exercise program or monitoring (control group). MAIN OUTCOME MEASURES Cognition and mobility were the main outcome measures. Cognition was evaluated using the Mini-Mental State Examination and the Frontal Assessment Battery. Mobility was assessed with the Timed Get Up and Go test, applied with and without dual task distractors. RESULTS The findings showed benefits provided by exercise on cognition and mobility. Differently, participants of the control group did not have significant changes in cognition scores after 6 mos of follow-up and had a worse performance in mobility tests. CONCLUSION Six months of exercise provided benefits to cognition and mobility in adults with multiple sclerosis. This trial was registered prospectively with the Brazilian Clinical Trials Register, ID: RBR-9gh4km (http://www.ensaiosclinicos.gov.br/rg/?q=RBR-9gh4km). TO CLAIM CME CREDITS Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) Recognize the physical and cognitive decline in multiple sclerosis; (2) Identify the importance of exercise on cognition and mobility in patients with multiple sclerosis; and (3) Appreciate the potential benefit of dual tasking in the rehabilitation of individuals with multiple sclerosis.Level: Advanced ACCREDITATION: The Association of Academic Physiatrists is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.The Association of Academic Physiatrists designates this Journal-based CME activity for a maximum of 1.0 AMA PRA Category 1 Credit(s)™. Physicians should only claim credit commensurate with the extent of their participation in the activity.
Collapse
|
14
|
Pinter D, Beckmann CF, Fazekas F, Khalil M, Pichler A, Gattringer T, Ropele S, Fuchs S, Enzinger C. Morphological MRI phenotypes of multiple sclerosis differ in resting-state brain function. Sci Rep 2019; 9:16221. [PMID: 31700126 PMCID: PMC6838050 DOI: 10.1038/s41598-019-52757-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/29/2019] [Indexed: 11/09/2022] Open
Abstract
We aimed to assess differences in resting-state functional connectivity (FC) between distinct morphological MRI-phenotypes in multiple sclerosis (MS). Out of 180 MS patients, we identified those with high T2-hyperintense lesion load (T2-LL) and high normalized brain volume (NBV; a predominately white matter damage group, WMD; N = 37) and patients with low T2-LL and low NBV (N = 37; a predominately grey matter damage group; GMD). Independent component analysis of resting-state fMRI was used to test for differences in the sensorimotor network (SMN) between MS MRI-phenotypes and compared to 37 age-matched healthy controls (HC). The two MS groups did not differ regarding EDSS scores, disease duration and distribution of clinical phenotypes. WMD compared to GMD patients showed increased FC in all sub-units of the SMN (sex- and age-corrected). WMD patients had increased FC compared to HC and GMD patients in the central SMN (leg area). Only in the WMD group, higher EDSS scores and T2-LL correlated with decreased connectivity in SMN sub-units. MS patients with distinct morphological MRI-phenotypes also differ in brain function. The amount of focal white matter pathology but not global brain atrophy affects connectivity in the central SMN (leg area) of the SMN, consistent with the notion of a disconnection syndrome.
Collapse
Affiliation(s)
- Daniela Pinter
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
- Research Unit for Neuronal Plasticity and Repair, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
| | - Christian F Beckmann
- Donders Institute, Cognitive Neuroscience Department and Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Kapittelweg 29, Nijmegen, The Netherlands
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
| | - Alexander Pichler
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
| | - Siegrid Fuchs
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria.
- Research Unit for Neuronal Plasticity and Repair, Medical University of Graz, Auenbruggerplatz 22, Graz, Austria.
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, Graz, Austria.
| |
Collapse
|
15
|
Baldassari LE, Feng J, Clayton BLL, Oh SH, Sakaie K, Tesar PJ, Wang Y, Cohen JA. Developing therapeutic strategies to promote myelin repair in multiple sclerosis. Expert Rev Neurother 2019; 19:997-1013. [PMID: 31215271 DOI: 10.1080/14737175.2019.1632192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Approved disease-modifying therapies for multiple sclerosis (MS) lessen inflammatory disease activity that causes relapses and MRI lesions. However, chronic inflammation and demyelination lead to axonal degeneration and neuronal loss, for which there currently is no effective treatment. There has been increasing interest in developing repair-promoting strategies, but there are important unanswered questions regarding the mechanisms and appropriate methods to evaluate these treatments. Areas covered: The rationale for remyelinating agents in MS is discussed, with an overview of both myelin physiology and endogenous repair mechanisms. This is followed by a discussion of the identification and development of potential remyelinating drugs. Potential biomarkers of remyelination are reviewed, including considerations regarding measuring remyelination in clinical trials. Information and data were obtained from a search of recent literature through PubMed. Peer-reviewed original articles and review articles were included. Expert opinion: There are several obstacles to the translation of potential remyelinating agents to clinical trials, particularly uncertainty regarding the most appropriate study population and method to monitor remyelination. Refinements in clinical trial design and outcome measurement, potentially via advanced imaging techniques, are needed to optimize detection of repair in patients with MS.
Collapse
Affiliation(s)
- Laura E Baldassari
- Mellen Center for MS Treatment and Research, Cleveland Clinic , Cleveland , OH , USA
| | - Jenny Feng
- Mellen Center for MS Treatment and Research, Cleveland Clinic , Cleveland , OH , USA
| | - Benjamin L L Clayton
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Se-Hong Oh
- Department of Biomedical Engineering, Hankuk University of Foreign Studies , Yongin , Republic of Korea
| | - Ken Sakaie
- Imaging Institute, Cleveland Clinic , Cleveland , OH , USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Yanming Wang
- Department of Radiology, Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Jeffrey A Cohen
- Mellen Center for MS Treatment and Research, Cleveland Clinic , Cleveland , OH , USA
| |
Collapse
|
16
|
Bonanno L, Russo M, Bramanti A, Calabrò RS, Marino S. Functional connectivity in multiple sclerosis after robotic rehabilitative treatment: A case report. Medicine (Baltimore) 2019; 98:e15047. [PMID: 31027053 PMCID: PMC6831415 DOI: 10.1097/md.0000000000015047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
RATIONALE Multiple sclerosis (MS) is an inflammatory demyelinating disease of central nervous system and it is associated with an impaired motor function status. The efficacy of rehabilitation in promoting functional recovery and increasing quality of life in MS patients has been demonstrated. PATIENT CONCERNS A 47-year-old woman was diagnosed with relapsing-remitting multiple sclerosis (RRMS) in November 2014 because of left upper limb hypoesthesia and weakness with difficulty in hand manipulation skills (there was a 1-point Expanded Disability Status Scale (EDSS) progression, i.e., 2.5 vs 1.5). Magnetic resonance image (MRI) showed a new frontal right cortical high-signal-intensity lesion. DIAGNOSIS Neurological and MRI examination were suggestive of MS diagnosis. INTERVENTIONS Patient was treated with robotic rehabilitation and evaluated by a Glove Analyzer for fMRI system (GAF). Functional MRI (fMRI) was acquired before and at the end of rehabilitative treatment performed with robotic device (Armeo-power). OUTCOMES At the end of the rehabilitation program, most of the behavioral parameters, GAF and fMRI evaluation, showed a significative improvement. Moreover, fMRI showed a significantly increased functional activation within the sensory-motor network in the active, motor task. LESSONS Our findings suggest a possible restorative effect of robotics on brain networks. Moreover, we may argue that GAF may be a valuable tool in assessing functional recovery after upper limb rehabilitation, especially of associated to fMRI examination.
Collapse
Affiliation(s)
- Lilla Bonanno
- Scientific Institute of medical Research (IRCCS) Centro Neurolesi Bonino-Pulejo
| | - Margherita Russo
- Scientific Institute of medical Research (IRCCS) Centro Neurolesi Bonino-Pulejo
| | - Alessia Bramanti
- Institute of Applied Science and Intelligent System “ISASI Eduardo Caianiello”, National Research Council (CNR), Messina, Italy
| | | | - Silvia Marino
- Scientific Institute of medical Research (IRCCS) Centro Neurolesi Bonino-Pulejo
| |
Collapse
|
17
|
Iancheva D, Trenova A, Mantarova S, Terziyski K. Functional Magnetic Resonance Imaging Correlations Between Fatigue and Cognitive Performance in Patients With Relapsing Remitting Multiple Sclerosis. Front Psychiatry 2019; 10:754. [PMID: 31749716 PMCID: PMC6842936 DOI: 10.3389/fpsyt.2019.00754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
The correlation between fatigue and cognitive performance in multiple sclerosis (MS) is well reported, but the intimate mechanisms of the fatigue impact on cognition are not fully defined yet. The aim of this study is to investigate blood oxygen level-dependent (BOLD) activations in relapsing remitting MS (RRMS) patients with and without cognitive dysfunction and the impact of fatigue on cortical activations. Forty-two patients with RRMS were enrolled in the study. Cognitive functioning was assessed by the Symbol Digit Modalities Test (SDMT) and Paced Serial Addition Test (PASAT). A cutoff point of a total score of 55 on the SDMT was used to divide the patients into two groups: cognitively impaired (CI), SDMT score equal to or below 55 points, and cognitively preserved (CP), SMDT score above 55 points. Fatigue was assessed by the Modified Fatigue Impact Scale (MFIS). Participants were assessed with the Beck Depression Inventory (BDI) prior to inclusion in order to exclude major depressive episode. Functional Magnetic Resonance Imaging (fMRI) scanning was performed on a 3T MRI. The PVSAT (Paced Visual Serial Addition Test) paradigm was applied as a cognitive task. All functional data were analyzed with SPM12 and statistical analysis with SPSS 19.0. No statistically significant differences between CI and CP patients were found (p=0.953, p=0.322) in the MFIS and BDI score. Performance on the PASAT in CI patients was 34.07±13.721, for CP patients 46.42±11.453, and the SDMT performance in the CI patient group was 42.40±9.179, in the CP group 57.83±2.552. Between-group analysis revealed increased activations in left Brodmann area (BA) 40 in CP patients with several clusters located in the left supramarginal gyrus. Regression analysis showed increased BOLD signal in left BA 40, right BA 40, and left BA 6, associated with a higher score on MFIS. Stronger BOLD signal in left BA 31 was associated with a lower score on MFIS. Significance level was set to p<0.05, FWE (family-wise error) corrected. The differences in BOLD activations suggest the presence of cortical reorganization in our CP patients. The impact of fatigue on cortical activation during a cognitive task is demonstrated by inconformity of activated areas depending on the MFIS score. Our results suggest that activation in BA 40 may represent a mechanism for diminishing fatigue impact on cognitive functioning in CP patients.
Collapse
Affiliation(s)
| | - Anastasya Trenova
- Department of Neurology, Medical University Plovdiv, Plovdiv, Bulgaria
| | - Stefka Mantarova
- Department of Neurology, Medical University Plovdiv, Plovdiv, Bulgaria.,Military Medical Academy-MHAT Plovdiv, Sofia, Bulgaria
| | - Kiril Terziyski
- Department of Neurology, Medical University Plovdiv, Plovdiv, Bulgaria.,Department of Pathophysiology, Medical University Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
18
|
Cognitive Deficits in Multiple Sclerosis: Recent Advances in Treatment and Neurorehabilitation. Curr Treat Options Neurol 2018; 20:53. [PMID: 30345468 DOI: 10.1007/s11940-018-0538-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE OF REVIEW This article highlights recent progress in research on treatment and neurorehabilitation of cognitive impairment in multiple sclerosis (MS) including pharmacological interventions, physical exercise, and neuropsychological rehabilitation, both in conventional and technology-assisted settings. RECENT FINDINGS The most consistent evidence in terms of improvement or preservation of circumscribed cognitive scores in MS patients comes from moderately sampled randomized clinical trials on multimodal approaches that combine conventional or computerized neuropsychological training with psychoeducation or cognitive behavioral therapy. Disease-modifying treatments also appear to have beneficial effects in preventing or attenuating cognitive decline, whereas there is little evidence for agents such as donepezil or stimulants. Finally, physical exercise may yield some cognitive improvement in MS patients. Despite substantial and often promising research efforts, there is a lack of validated and widely accepted clinical procedures for cognitive neurorehabilitation in MS. Development of such approaches will require collaborative efforts towards the design of interventions that are fundamentally inspired by cognitive neuroscience, potentially guided by neuroimaging, and composed of conventional neuropsychological training and cognitive behavioral therapy as well as physical exercise and therapeutic video games. Subsequently, large-scale validation will be needed with meaningful outcome measures reflecting transfer to everyday cognitive function and maintenance of training effects.
Collapse
|
19
|
Musella A, Gentile A, Rizzo FR, De Vito F, Fresegna D, Bullitta S, Vanni V, Guadalupi L, Stampanoni Bassi M, Buttari F, Centonze D, Mandolesi G. Interplay Between Age and Neuroinflammation in Multiple Sclerosis: Effects on Motor and Cognitive Functions. Front Aging Neurosci 2018; 10:238. [PMID: 30135651 PMCID: PMC6092506 DOI: 10.3389/fnagi.2018.00238] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/20/2018] [Indexed: 01/09/2023] Open
Abstract
Aging is one of the main risk factors for the development of many neurodegenerative diseases. Emerging evidence has acknowledged neuroinflammation as potential trigger of the functional changes occurring during normal and pathological aging. Two main determinants have been recognized to cogently contribute to neuroinflammation in the aging brain, i.e., the systemic chronic low-grade inflammation and the decline in the regulation of adaptive and innate immune systems (immunosenescence, ISC). The persistence of the inflammatory status in the brain in turn may cause synaptopathy and synaptic plasticity impairments that underlie both motor and cognitive dysfunctions. Interestingly, such inflammation-dependent synaptic dysfunctions have been recently involved in the pathophysiology of multiple sclerosis (MS). MS is an autoimmune neurodegenerative disease, typically affecting young adults that cause an early and progressive deterioration of both cognitive and motor functions. Of note, recent controlled studies have clearly shown that age at onset modifies prognosis and exerts a significant effect on presenting phenotype, suggesting that aging is a significant factor associated to the clinical course of MS. Moreover, some lines of evidence point to the different impact of age on motor disability and cognitive deficits, being the former most affected than the latter. The precise contribution of aging-related factors to MS neurological disability and the underlying molecular and cellular mechanisms are still unclear. In the present review article, we first emphasize the importance of the neuroinflammatory dependent mechanisms, such as synaptopathy and synaptic plasticity impairments, suggesting their potential exacerbation or acceleration with advancing age in the MS disease. Lastly, we provide an overview of clinical and experimental studies highlighting the different impact of age on motor disability and cognitive decline in MS, raising challenging questions on the putative age-related mechanisms involved.
Collapse
Affiliation(s)
- Alessandra Musella
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University of Rome, Rome, Italy
| | - Antonietta Gentile
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Francesca Romana Rizzo
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca De Vito
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Diego Fresegna
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Bullitta
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Vanni
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Livia Guadalupi
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy
| | | | - Fabio Buttari
- Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Diego Centonze
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Georgia Mandolesi
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University of Rome, Rome, Italy
| |
Collapse
|
20
|
Willekens B, Perrotta G, Cras P, Cools N. Into the Moment: Does Mindfulness Affect Biological Pathways in Multiple Sclerosis? Front Behav Neurosci 2018; 12:103. [PMID: 29872382 PMCID: PMC5972188 DOI: 10.3389/fnbeh.2018.00103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/30/2018] [Indexed: 01/01/2023] Open
Abstract
Mindfulness was introduced in the Western world by Jon Kabat-Zinn in 1979. He defined it as "awareness that arises through paying attention, on purpose, in the present moment, non-judgmentally." Since then, research on mindfulness-based interventions (MBIs) has increased exponentially both in health and disease, including in patients with neurodegenerative diseases such as dementia and Parkinson's disease. Research on the effect of mindfulness and multiple sclerosis (MS) only recently gained interest. Several studies completed since 2010 provided evidence that mindfulness improves quality of life (QoL), depression and fatigue in MS patients. In addition to patient-reported outcome measures, potential effects on cognitive function have been investigated only to a very limited extent. However, research on laboratory biomarkers and neuroimaging, capable to deliver proof-of-concept of this behavioral treatment in MS, is mainly lacking. In this perspective, we illustrate possible neurobiological mechanisms, including the tripartite interaction between the brain, the immune system and neuroendocrine regulation, through which this treatment might affect multiple sclerosis symptoms. We propose to (1) include immunological and/or neuroimaging biomarkers as standard outcome measures in future research dedicated to mindfulness and MS to help explain the clinical improvements seen in fatigue and depression; (2) to investigate effects on enhancing cognitive reserve and cognitive function; and (3) to investigate the effects of mindfulness on the disease course in MS.
Collapse
Affiliation(s)
- Barbara Willekens
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium.,Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | | - Patrick Cras
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium.,Department of Neurology, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Laboratory for Neurobiology, Born-Bunge Institute, University of Antwerp, Antwerp, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
21
|
Pareto D, Sastre-Garriga J, Alonso J, Galán I, Arévalo MJ, Renom M, Montalban X, Rovira À. Classic Block Design "Pseudo"-Resting-State fMRI Changes After a Neurorehabilitation Program in Patients with Multiple Sclerosis. J Neuroimaging 2018; 28:313-319. [PMID: 29400912 DOI: 10.1111/jon.12500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/10/2018] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND AND PURPOSE The goal of this study was to assess changes in the resting-state networks (RSNs) of patients with multiple sclerosis (MS) after a cognitive rehabilitation program (CRP), by retrospectively analyzing functional magnetic resonance imaging (fMRI) studies using the classical block design. METHODS Fifteen patients with MS (2 primary progressive, 3 relapsing-remitting, 10 secondary progressive) were scanned before and after the CRP on a 1.5T MRI scanner. In addition, patients underwent pre- and post-CRP neuropsychological assessment using a battery of standardized tests. Five healthy individuals were scanned at the same time points to confirm the test-retest reliability of the imaging technique. For each study, the individual fMRI blocks of rest were merged to produce a "pseudo"-resting-state (pseudo-RS) of 3 minutes duration. RS studies were analyzed with the MELODIC toolbox. A dual regression analysis was applied to estimate the longitudinal changes in RSNs of patients and test controls relative to a set of predefined RSNs used as templates. RESULTS In healthy individuals, there were no significant differences in RSN results between the two time points studied. In the group of patients with MS, significant differences were found post-CRP in the visual medial, cerebellar, auditory, and frontal-executive RSNs. Furthermore, synchronization increases in the frontal-executive RSN were associated with cognitive improvement on neuropsychological testing. CONCLUSIONS Results obtained using a pseudo-RS approach to analyze data from block-design fMRI studies suggest that a CRP of 5 weeks' duration induces measurable changes in specific RSNs of patients with MS.
Collapse
Affiliation(s)
- Deborah Pareto
- Section of Neuroradiology, Department of Radiology, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Jaume Sastre-Garriga
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), University Hospital Vall d'Hebron, Barcelona, Spain
| | - Juli Alonso
- Section of Neuroradiology, Department of Radiology, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Ingrid Galán
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), University Hospital Vall d'Hebron, Barcelona, Spain
| | - Maria Jesus Arévalo
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), University Hospital Vall d'Hebron, Barcelona, Spain
| | - Marta Renom
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), University Hospital Vall d'Hebron, Barcelona, Spain
| | - Xavier Montalban
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), University Hospital Vall d'Hebron, Barcelona, Spain
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology, University Hospital Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
22
|
Sumowski JF, Benedict R, Enzinger C, Filippi M, Geurts JJ, Hamalainen P, Hulst H, Inglese M, Leavitt VM, Rocca MA, Rosti-Otajarvi EM, Rao S. Cognition in multiple sclerosis: State of the field and priorities for the future. Neurology 2018; 90:278-288. [PMID: 29343470 PMCID: PMC5818015 DOI: 10.1212/wnl.0000000000004977] [Citation(s) in RCA: 385] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 10/10/2017] [Indexed: 12/15/2022] Open
Abstract
Cognitive decline is recognized as a prevalent and debilitating symptom of multiple sclerosis (MS), especially deficits in episodic memory and processing speed. The field aims to (1) incorporate cognitive assessment into standard clinical care and clinical trials, (2) utilize state-of-the-art neuroimaging to more thoroughly understand neural bases of cognitive deficits, and (3) develop effective, evidence-based, clinically feasible interventions to prevent or treat cognitive dysfunction, which are lacking. There are obstacles to these goals. Our group of MS researchers and clinicians with varied expertise took stock of the current state of the field, and we identify several important practical and theoretical challenges, including key knowledge gaps and methodologic limitations related to (1) understanding and measurement of cognitive deficits, (2) neuroimaging of neural bases and correlates of deficits, and (3) development of effective treatments. This is not a comprehensive review of the extensive literature, but instead a statement of guidelines and priorities for the field. For instance, we provide recommendations for improving the scientific basis and methodologic rigor for cognitive rehabilitation research. Toward this end, we call for multidisciplinary collaborations toward development of biologically based theoretical models of cognition capable of empirical validation and evidence-based refinement, providing the scientific context for effective treatment discovery.
Collapse
Affiliation(s)
- James F Sumowski
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH.
| | - Ralph Benedict
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH
| | - Christian Enzinger
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH
| | - Massimo Filippi
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH
| | - Jeroen J Geurts
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH
| | - Paivi Hamalainen
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH
| | - Hanneke Hulst
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH
| | - Matilde Inglese
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH
| | - Victoria M Leavitt
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH
| | - Maria A Rocca
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH
| | - Eija M Rosti-Otajarvi
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH
| | - Stephen Rao
- From the Department of Neurology & Corinne Goldsmith Dickinson Center for Multiple Sclerosis (J.F.S., M.I.), Icahn School of Medicine at Mount Sinai, New York; Department of Neurology (R.B.), School of Medicine and Biomedical Sciences, University of Buffalo, State University of New York (SUNY); Department of Neurology (C.E.), Medical University of Graz, Austria; Department of Neurology & Neuroimaging Research Unit, Division of Neuroscience (M.F., M.A.R.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Anatomy and Neurosciences (J.J.G., H.H.), VU University Medical Center, Amsterdam Neuroscience, VUmc MS Center Amsterdam, the Netherlands; Masku Neurological Rehabilitation Centre (P.H.), Masku, Finland; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (M.I.), University of Genoa, Italy; Department of Neurology & Columbia University Multiple Sclerosis Clinical Care and Research Center (V.M.L.), Columbia University Medical Center, New York, NY; Department of Neurology and Rehabilitation (E.M.R.-O.), Tampere University Hospital, Finland; and Schey Center for Cognitive Neuroimaging, Neurological Institute (S.R.), Cleveland Clinic, OH
| |
Collapse
|
23
|
Abstract
Understanding the clinico-radiological paradox is important in the search for more sensitive and specific surrogates of relapses and disability progression (such that they can be used to inform treatment choices in individual people with multiple sclerosis) and to gain a better understanding of the pathophysiological basis of disability in multiple sclerosis (to identify and assess key therapeutic targets). In this brief review, we will consider themes and issues underlying the clinico-radiological paradox and recent advances in its resolution.
Collapse
Affiliation(s)
- Declan Chard
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH), Biomedical Research Centre, London, UK.,NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
| | - S Anand Trip
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH), Biomedical Research Centre, London, UK.,NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, London, UK
| |
Collapse
|
24
|
Groppo E, Baglio F, Cattaneo D, Tavazzi E, Bergsland N, Di Tella S, Parelli R, Carpinella I, Grosso C, Capra R, Rovaris M. Multidisciplinary Rehabilitation is Efficacious and Induces Neural Plasticity in Multiple Sclerosis even when Complicated by Progressive Multifocal Leukoencephalopathy. Front Neurol 2017; 8:491. [PMID: 28974941 PMCID: PMC5610687 DOI: 10.3389/fneur.2017.00491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/01/2017] [Indexed: 11/13/2022] Open
Abstract
A 48-year-old woman with multiple sclerosis (MS), treated with natalizumab for more than one year without clinical and magnetic resonance imaging (MRI) signs of disease activity, was diagnosed with definite progressive multifocal leukoencephalopathy (PML). She presented with subacute motor deficit of the right upper limb (UL), followed by involvement of the homolateral leg and urinary urgency. The patient was treated with steroids and plasma exchange. On follow-up MRI scans, the PML lesion remained stable and no MS rebounds were observed, but the patient complained of a progressive worsening of the right UL motor impairment, becoming dependent in most activities of daily living. A cycle of multidisciplinary rehabilitation (MDR) was then started, including daily sessions of UL robot therapy and occupational therapy. Functional MRI (fMRI) was acquired before and at the end of the MDR cycle using a motor task which consisted of 2 runs: in one run the patient was asked to observe while the second one consisted of hand grasping movements. At the end of the rehabilitation period, both the velocity and the smoothness of arm trajectories during robot-based reaching movements were significantly improved. After MDR, compared with baseline, fMRI showed significantly increased functional activation within the sensory-motor network in the active, motor task, while no significant differences were found in the observational task. MDR in MS, including robot-assisted UL training, seems to be clinically efficacious and to have a significant impact on brain functional reorganization on a short-term, even in the presence of superimposed tissue damage provoked by PML.
Collapse
Affiliation(s)
| | | | | | | | - Niels Bergsland
- IRCCS Fondazione Don Gnocchi ONLUS, Milan, Italy.,Buffalo Neuroimaging Analysis Center, Department of Neurology, University at Buffalo SUNY, Buffalo, NY, United States
| | | | | | | | | | - Ruggero Capra
- ASST Spedali Civili of Brescia, MS Regional Center, Montichiari, Italy
| | | |
Collapse
|
25
|
Sormani MP, Pardini M. Assessing Repair in Multiple Sclerosis: Outcomes for Phase II Clinical Trials. Neurotherapeutics 2017; 14:924-933. [PMID: 28695472 PMCID: PMC5722763 DOI: 10.1007/s13311-017-0558-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple Sclerosis (MS) pathology is complex and includes inflammatory processes, neurodegeneration, and demyelination. While multiple drugs have been developed to tackle MS-related inflammation, to date there is scant evidence regarding which therapeutic approach, if any, could be used to reverse demyelination, foster tissue repair, and thus positively impact on chronic disability. Here, we reviewed the current structural and functional markers (magnetic resonance imaging, positron emission tomography, optical coherence tomography, and visual evoked potentials) which could be used in phase II clinical trials of new compounds aimed to foster tissue repair in MS. Magnetic transfer ratio recovery in newly formed lesions currently represents the most widely used biomarker of tissue repair in MS, even if other markers, such as optical coherence tomography and positron emission tomography hold great promise to complement magnetic transfer ratio in tissue repair clinical trials. Future studies are needed to better characterize the different possible biomarkers to study tissue repair in MS, especially regarding their pathological specificity, sensitivity to change, and their relationship with disease activity.
Collapse
Affiliation(s)
- Maria Pia Sormani
- Biostatistics Unit, Department of Health Sciences, University of Genoa, Genoa, Italy.
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy
- Policlinic San Martino-IST, Genoa, Italy
| |
Collapse
|
26
|
Stellmann JP, Hodecker S, Cheng B, Wanke N, Young KL, Hilgetag C, Gerloff C, Heesen C, Thomalla G, Siemonsen S. Reduced rich-club connectivity is related to disability in primary progressive MS. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 4:e375. [PMID: 28804744 PMCID: PMC5532749 DOI: 10.1212/nxi.0000000000000375] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/17/2017] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate whether the structural connectivity of the brain's rich-club organization is altered in patients with primary progressive MS and whether such changes to this fundamental network feature are associated with disability measures. METHODS We recruited 37 patients with primary progressive MS and 21 healthy controls for an observational cohort study. Structural connectomes were reconstructed based on diffusion-weighted imaging data using probabilistic tractography and analyzed with graph theory. RESULTS We observed the same topological organization of brain networks in patients and controls. Consistent with the originally defined rich-club regions, we identified superior frontal, precuneus, superior parietal, and insular cortex in both hemispheres as rich-club nodes. Connectivity within the rich club was significantly reduced in patients with MS (p = 0.039). The extent of reduced rich-club connectivity correlated with clinical measurements of mobility (Kendall rank correlation coefficient τ = -0.20, p = 0.047), hand function (τ = -0.26, p = 0.014), and information processing speed (τ = -0.20, p = 0.049). CONCLUSIONS In patients with primary progressive MS, the fundamental organization of the structural connectome in rich-club and peripheral nodes was preserved and did not differ from healthy controls. The proportion of rich-club connections was altered and correlated with disability measures. Thus, the rich-club organization of the brain may be a promising network phenotype for understanding the patterns and mechanisms of neurodegeneration in MS.
Collapse
Affiliation(s)
- Jan-Patrick Stellmann
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS) (J.-P.S., S.H., N.W., K.L.Y., C.G., C. Heesen, S.S.), Klinik und Poliklinik für Neurologie (J.-P.S., S.H., B.C., N.W., K.L.Y., C. Heesen, G.T.), Institute of Computational Neuroscience (C. Hilgetag), and Department of Diagnostic and Interventional Neuroradiology (S.S.), University Medical Center Hamburg-Eppendorf, Germany
| | - Sibylle Hodecker
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS) (J.-P.S., S.H., N.W., K.L.Y., C.G., C. Heesen, S.S.), Klinik und Poliklinik für Neurologie (J.-P.S., S.H., B.C., N.W., K.L.Y., C. Heesen, G.T.), Institute of Computational Neuroscience (C. Hilgetag), and Department of Diagnostic and Interventional Neuroradiology (S.S.), University Medical Center Hamburg-Eppendorf, Germany
| | - Bastian Cheng
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS) (J.-P.S., S.H., N.W., K.L.Y., C.G., C. Heesen, S.S.), Klinik und Poliklinik für Neurologie (J.-P.S., S.H., B.C., N.W., K.L.Y., C. Heesen, G.T.), Institute of Computational Neuroscience (C. Hilgetag), and Department of Diagnostic and Interventional Neuroradiology (S.S.), University Medical Center Hamburg-Eppendorf, Germany
| | - Nadine Wanke
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS) (J.-P.S., S.H., N.W., K.L.Y., C.G., C. Heesen, S.S.), Klinik und Poliklinik für Neurologie (J.-P.S., S.H., B.C., N.W., K.L.Y., C. Heesen, G.T.), Institute of Computational Neuroscience (C. Hilgetag), and Department of Diagnostic and Interventional Neuroradiology (S.S.), University Medical Center Hamburg-Eppendorf, Germany
| | - Kim Lea Young
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS) (J.-P.S., S.H., N.W., K.L.Y., C.G., C. Heesen, S.S.), Klinik und Poliklinik für Neurologie (J.-P.S., S.H., B.C., N.W., K.L.Y., C. Heesen, G.T.), Institute of Computational Neuroscience (C. Hilgetag), and Department of Diagnostic and Interventional Neuroradiology (S.S.), University Medical Center Hamburg-Eppendorf, Germany
| | - Claus Hilgetag
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS) (J.-P.S., S.H., N.W., K.L.Y., C.G., C. Heesen, S.S.), Klinik und Poliklinik für Neurologie (J.-P.S., S.H., B.C., N.W., K.L.Y., C. Heesen, G.T.), Institute of Computational Neuroscience (C. Hilgetag), and Department of Diagnostic and Interventional Neuroradiology (S.S.), University Medical Center Hamburg-Eppendorf, Germany
| | - Christian Gerloff
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS) (J.-P.S., S.H., N.W., K.L.Y., C.G., C. Heesen, S.S.), Klinik und Poliklinik für Neurologie (J.-P.S., S.H., B.C., N.W., K.L.Y., C. Heesen, G.T.), Institute of Computational Neuroscience (C. Hilgetag), and Department of Diagnostic and Interventional Neuroradiology (S.S.), University Medical Center Hamburg-Eppendorf, Germany
| | - Christoph Heesen
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS) (J.-P.S., S.H., N.W., K.L.Y., C.G., C. Heesen, S.S.), Klinik und Poliklinik für Neurologie (J.-P.S., S.H., B.C., N.W., K.L.Y., C. Heesen, G.T.), Institute of Computational Neuroscience (C. Hilgetag), and Department of Diagnostic and Interventional Neuroradiology (S.S.), University Medical Center Hamburg-Eppendorf, Germany
| | - Götz Thomalla
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS) (J.-P.S., S.H., N.W., K.L.Y., C.G., C. Heesen, S.S.), Klinik und Poliklinik für Neurologie (J.-P.S., S.H., B.C., N.W., K.L.Y., C. Heesen, G.T.), Institute of Computational Neuroscience (C. Hilgetag), and Department of Diagnostic and Interventional Neuroradiology (S.S.), University Medical Center Hamburg-Eppendorf, Germany
| | - Susanne Siemonsen
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS) (J.-P.S., S.H., N.W., K.L.Y., C.G., C. Heesen, S.S.), Klinik und Poliklinik für Neurologie (J.-P.S., S.H., B.C., N.W., K.L.Y., C. Heesen, G.T.), Institute of Computational Neuroscience (C. Hilgetag), and Department of Diagnostic and Interventional Neuroradiology (S.S.), University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
27
|
Sihvonen AJ, Särkämö T, Leo V, Tervaniemi M, Altenmüller E, Soinila S. Music-based interventions in neurological rehabilitation. Lancet Neurol 2017; 16:648-660. [PMID: 28663005 DOI: 10.1016/s1474-4422(17)30168-0] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 03/03/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023]
Abstract
During the past ten years, an increasing number of controlled studies have assessed the potential rehabilitative effects of music-based interventions, such as music listening, singing, or playing an instrument, in several neurological diseases. Although the number of studies and extent of available evidence is greatest in stroke and dementia, there is also evidence for the effects of music-based interventions on supporting cognition, motor function, or emotional wellbeing in people with Parkinson's disease, epilepsy, or multiple sclerosis. Music-based interventions can affect divergent functions such as motor performance, speech, or cognition in these patient groups. However, the psychological effects and neurobiological mechanisms underlying the effects of music interventions are likely to share common neural systems for reward, arousal, affect regulation, learning, and activity-driven plasticity. Although further controlled studies are needed to establish the efficacy of music in neurological recovery, music-based interventions are emerging as promising rehabilitation strategies.
Collapse
Affiliation(s)
- Aleksi J Sihvonen
- Faculty of Medicine, University of Turku, Turku, Finland; Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland.
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Vera Leo
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Mari Tervaniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland; CICERO Learning, University of Helsinki, Finland
| | - Eckart Altenmüller
- Institute of Music Physiology and Musicians' Medicine, University of Music and Drama Hannover, Hanover, Germany
| | - Seppo Soinila
- Department of Neurology, University of Turku, Turku, Finland; Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| |
Collapse
|
28
|
A Randomised Controlled Trial of Efficacy of Cognitive Rehabilitation in Multiple Sclerosis: A Cognitive, Behavioural, and MRI Study. Neural Plast 2016; 2016:4292585. [PMID: 28116167 PMCID: PMC5223046 DOI: 10.1155/2016/4292585] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/29/2016] [Accepted: 11/17/2016] [Indexed: 12/18/2022] Open
Abstract
Aim. To explore the efficacy of home-based, computerised, cognitive rehabilitation in patients with multiple sclerosis using neuropsychological assessment and advanced structural and functional magnetic resonance imaging (fMRI). Methods. 38 patients with MS and cognitive impairment on the Brief International Cognitive Assessment for MS (BICAMS) were enrolled. Patients were randomised to undergo 45 minutes of computerised cognitive rehabilitation using RehaCom software (n = 19) three times weekly for six weeks or to a control condition (n = 19). Neuropsychological and MRI data were obtained at baseline (time 1), following the 6-week intervention (time 2), and after a further twelve weeks (time 3). Cortical activations were explored using fMRI and microstructural changes were explored using quantitative magnetisation transfer (QMT) imaging. Results. The treatment group showed a greater improvement in SDMT gain scores between baseline and time 2 compared to the control group (p = 0.005). The treatment group exhibited increased activation in the bilateral prefrontal cortex and right temporoparietal regions relative to control group at time 3 (p < 0.05FWE corrected). No significant changes were observed on QMT. Conclusion. This study supports the hypothesis that home-based, computerised, cognitive rehabilitation may be effective in improving cognitive performance in patients with MS. Clinical trials registration is ISRCTN54901925.
Collapse
|
29
|
Koini M, Filippi M, Rocca MA, Yousry T, Ciccarelli O, Tedeschi G, Gallo A, Ropele S, Valsasina P, Riccitelli G, Damjanovic D, Muhlert N, Mancini L, Fazekas F, Enzinger C. Correlates of Executive Functions in Multiple Sclerosis Based on Structural and Functional MR Imaging: Insights from a Multicenter Study. Radiology 2016; 280:869-79. [DOI: 10.1148/radiol.2016151809] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|