1
|
Centonze D, Di Sapio A, Brescia Morra V, Colombo E, Inglese M, Paolicelli D, Salvetti M, Furlan R. Steps toward the implementation of neurofilaments in multiple sclerosis: patient profiles to be prioritized in clinical practice. Front Neurol 2025; 16:1571605. [PMID: 40224313 PMCID: PMC11987710 DOI: 10.3389/fneur.2025.1571605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic central nervous system disease characterized by neurodegeneration and inflammation. Neurofilament light chain (NfL), a protein released during axonal injury, has gained recognition as a potential biomarker for monitoring MS progression and treatment response. Evidence indicates that blood NfL (bNfL) offers a minimally invasive, cost-effective tool for tracking neuroaxonal damage. Regular bNfL assessments can identify subclinical disease activity, guide treatment intensification, and support individualized care. However, bNfL level evaluation is currently not optimized in Italian clinical practice. This work examines the utility of bNfL monitoring in clinical practice, focusing on optimizing its use within specific patient profiles, especially in resource-limited settings. bNfL testing, particularly in targeted MS patient profiles, including stable patients exhibiting subclinical signs of disease activity, such as fatigue, and patients off-treatment, represents a promising adjunct for personalized disease management. Its integration into clinical practice, alongside MRI and clinical assessments, can enhance decision-making and improve care efficiency, especially in settings with limited MRI resources. Further research is needed to standardize testing protocols and establish disease-specific cutoffs.
Collapse
Affiliation(s)
- Diego Centonze
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Alessia Di Sapio
- Department of Neurology, Multiple Sclerosis Regional Referral Centre (CReSM), University Hospital San Luigi Gonzaga, Orbassano, Italy
| | - Vincenzo Brescia Morra
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences, Reproductive Sciences and Odontostomatology, Federico II University, Naples, Italy
| | - Elena Colombo
- Multiple Sclerosis Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Damiano Paolicelli
- Department of Translational Biomedicines and Neurosciences, University of Bari Aldo Moro, Bari, Italy
| | - Marco Salvetti
- IRCCS Neuromed, Pozzilli, Italy
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Roberto Furlan
- Vita e Salute San Raffaele University, Milan, Italy
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Yu H, Song J, Li J, Qi Y, Fan Z, Liu Q, Yu L, Song J, Dong H. Applications of Digital Enzyme-Linked Immunosorbent Assays in Ophthalmology. Cell Biochem Biophys 2025; 83:215-220. [PMID: 39333452 PMCID: PMC11870898 DOI: 10.1007/s12013-024-01515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 09/29/2024]
Abstract
Digital enzyme-linked immunosorbent assays (dELISAs) very sensitively detect biomarkers that cannot be measured using traditional methods. The molecules are confined within a small volume, their counts accurately computed, and the results rapidly delivered. Digital ELISAs find many applications. In recent years, such ELISAs have become increasingly used to aid ophthalmological diagnoses and treatments, and have revolutionized the field. This article reviews the applications of dELISAs in clinical practice, especially in the sphere of ophthalmology.
Collapse
Affiliation(s)
- He Yu
- Department of Ophthalmology, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Jiaping Song
- Department of Clinical Laboratory, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Junrong Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yuanyuan Qi
- Department of Ophthalmology, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Zhe Fan
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Qiming Liu
- Department of Ophthalmology, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Liang Yu
- Department of Ophthalmology, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Jian Song
- Department of Ophthalmology, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - He Dong
- Department of Ophthalmology, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.
| |
Collapse
|
3
|
Cerdá-Fuertes N, Stoessel M, Mickeliunas G, Pless S, Cagol A, Barakovic M, Maceski AM, Álvarez González C, D’ Souza M, Schaedlin S, Benkert P, Calabrese P, Gugleta K, Derfuss T, Sprenger T, Granziera C, Naegelin Y, Kappos L, Kuhle J, Papadopoulou A. Optical coherence tomography versus other biomarkers: Associations with physical and cognitive disability in multiple sclerosis. Mult Scler 2023; 29:1540-1550. [PMID: 37772490 PMCID: PMC10637109 DOI: 10.1177/13524585231198760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Optical coherence tomography (OCT) is a biomarker of neuroaxonal loss in multiple sclerosis (MS). OBJECTIVE The objective was to assess the relative role of OCT, next to magnetic resonance imaging (MRI) and serum markers of disability in MS. METHODS A total of 100 patients and 52 controls underwent OCT to determine peripapillary retinal nerve fiber layer (pRNFL) and ganglion cell-inner plexiform layers (GCIPL). Serum neurofilament light chain (sNfL), total lesion volume (TLV), and brain parenchymal fraction (BPF) were also assessed. The associations of OCT with disability were examined in linear regression models with correction for age, vision, and education. RESULTS In patients, pRNFL was associated with the Symbol Digit Modalities Test (SDMT; p = 0.030). In the multivariate analysis including sNfL and MRI measures, pRNFL (β = 0.19, p = 0.044) and TLV (β = -0.24, p = 0.023) were the only markers associated with the SDMT. pRNFL (p < 0.001) and GCIPL (p < 0.001) showed associations with the Expanded Disability Status Scale (EDSS). In the multivariate analysis, GCIPL showed the strongest association with the EDSS (β = -0.32, p < 0.001) followed by sNfL (β = 0.18, p = 0.024). CONCLUSION The associations of OCT measures with cognitive and physical disability were independent of serum and brain MRI markers of neuroaxonal loss. OCT can be an important tool for stratification in MS, while longitudinal studies using combinations of biomarkers are warranted.
Collapse
Affiliation(s)
- Nuria Cerdá-Fuertes
- Department of Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
- Neurostatus AG, University Hospital of Basel, Basel, Switzerland
| | - Marc Stoessel
- Department of Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
| | | | - Silvan Pless
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
- Faculty of Psychology and interdisciplinary Platform Psychology and Psychiatry, Division of Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Alessandro Cagol
- Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
| | - Muhamed Barakovic
- Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
| | | | | | - Marcus D’ Souza
- Neurostatus AG, University Hospital of Basel, Basel, Switzerland
| | - Sabine Schaedlin
- Department of Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
| | - Pascal Benkert
- Department of Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
| | - Pasquale Calabrese
- Faculty of Psychology and interdisciplinary Platform Psychology and Psychiatry, Division of Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Konstantin Gugleta
- University Eye Clinic Basel, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Tobias Derfuss
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital of Basel, Basel, Switzerland
| | - Till Sprenger
- Department of Neurology, DKD Helios Klinik Wiesbaden, Wiesbaden, Germany
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital of Basel, Basel, Switzerland
| | - Yvonne Naegelin
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Department of Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital of Basel, Basel, Switzerland
| | - Athina Papadopoulou
- Department of Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience, University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Woltsche N, Valentin K, Hoeflechner L, Guttmann A, Horwath-Winter J, Schneider MR, Ivastinovic D, Lindner M, Schmetterer L, Singh N, Riedl R, Buchmann A, Khalil M, Lindner E. Neurofilament light chain: a new marker for neuronal decay in the anterior chamber fluid of patients with glaucoma. Br J Ophthalmol 2023; 107:1432-1437. [PMID: 35750478 DOI: 10.1136/bjo-2021-320828] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/10/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND/AIMS Neurofilament light chain (NfL) levels in cerebrospinal fluid and serum are reliable indicators for neuroaxonal damage in a broad spectrum of neurodegenerative diseases. Herein, we investigate NfL levels in serum and anterior chamber fluid of patients with glaucoma. METHODS Patients scheduled for routine glaucoma or cataract surgery were recruited for this study. Retinal nerve fibre layer thickness was measured by optical coherence tomography (OCT, Heidelberg Spectralis). NfL levels in serum and in anterior chamber fluid were analysed with Simoa SR-X Analyzer (Quanterix; NFLIGHT, Lexington, Massachusetts, USA). T-test was used for parametric data and Mann-Whitney-U test for nonparametric data. Spearman's rank-order correlation was used to investigate correlations. P values<0.05 were considered as statistically significant. RESULTS Sixty patients with glaucoma and 58 controls were enrolled. Serum NfL concentration of patients with glaucoma was similar to serum NfL concentration in controls (median (IQR); 22.7 (18.9) pg/mL vs 22.5 (24.0) pg/mL; p=0.763). A positive correlation of serum NfL with age was observed in both patients with glaucoma (r=0.77; p<0.001) and in the control group (r=0.82, p<0.001). In the anterior chamber fluid, the NfL concentration was substantially increased in patients with glaucoma compared with controls (20.7 (101.3) pg/mL vs 3.1 (2.9) pg/mL; p<0.001). Furthermore, we found a positive correlation of anterior chamber fluid NfL with preoperative intraocular pressure (r=0.39, p=0.003) and with retinal nerve fibre layer thickness (r=0.58, p<0.001). CONCLUSION NfL levels in anterior chamber fluid are elevated in patients with glaucoma and correlate with intraocular pressure and retinal nerve fibre layer thickness. The presented data strongly support anterior chamber fluid NfL as a new marker for glaucoma.
Collapse
Affiliation(s)
- Nora Woltsche
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | | | - Lukas Hoeflechner
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Andreas Guttmann
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | | | | | | | - Marlene Lindner
- Department of Dentistry, Medical University of Graz, Graz, Steiermark, Austria
| | - Leopold Schmetterer
- Ocular Imaging, Singapore Eye Research Institute, Singapore
- Department of Clinical Pharmacology, Medical University of Vienna, Wien, Austria
| | - Neena Singh
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Regina Riedl
- Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria
| | - Arabella Buchmann
- Department of Neurology, Medical University of Graz, Graz, Steiermark, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Steiermark, Austria
| | - Ewald Lindner
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| |
Collapse
|
5
|
Tardo L, Salter A, Truong-Le M, Horton L, Blackburn KM, Sguigna PV. A narrative review of neuro-ophthalmologic disease in African Americans and Hispanics with multiple sclerosis. Ther Adv Chronic Dis 2023; 14:20406223231202645. [PMID: 37790945 PMCID: PMC10542320 DOI: 10.1177/20406223231202645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Multiple sclerosis (MS) is the most common non-traumatic cause of disability in young people, with vision loss in the disease representing the second largest contributor to disability. In particular, African-American patients with MS are noted to have lower vision than their Caucasian counterparts. In this review, we examine the disparities in eye diseases in the MS population with our gaps in knowledge and discuss the underlying nature of pathological disparities.
Collapse
Affiliation(s)
- Lauren Tardo
- Department of Neurology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8806, USA
| | - Amber Salter
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Melanie Truong-Le
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lindsay Horton
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kyle M. Blackburn
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter V. Sguigna
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
6
|
Sen MK, Hossain MJ, Mahns DA, Brew BJ. Validity of serum neurofilament light chain as a prognostic biomarker of disease activity in multiple sclerosis. J Neurol 2023; 270:1908-1930. [PMID: 36520240 DOI: 10.1007/s00415-022-11507-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating and neuroinflammatory disease of the human central nervous system with complex pathoetiology, heterogeneous presentations and an unpredictable course of disease progression. There remains an urgent need to identify and validate a biomarker that can reliably predict the initiation and progression of MS as well as identify patient responses to disease-modifying treatments/therapies (DMTs). Studies exploring biomarkers in MS and other neurodegenerative diseases currently focus mainly on cerebrospinal fluid (CSF) analyses, which are invasive and impractical to perform on a repeated basis. Recent studies, replacing CSF with peripheral blood samples, have revealed that the elevation of serum neurofilament light chain (sNfL) in the clinical stages of MS is, potentially, an ideal prognostic biomarker for predicting disease progression and for possibly guiding treatment decisions. However, there are unresolved factors (the definition of abnormal values of sNfL concentration, the standardisation of measurement and the amount of change in sNfL concentration that is significant) that are preventing its use as a biomarker in routine clinical practice for MS. This updated review critiques these recent findings and highlights areas for focussed work to facilitate the use of sNfL as a prognostic biomarker in MS management.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
- Peter Duncan Neuroscience Research Unit, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, 2010, Australia
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Md Jakir Hossain
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Bruce J Brew
- Peter Duncan Neuroscience Research Unit, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, 2010, Australia.
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
- Department of Neurology, St Vincent's Hospital, Darlinghurst, 2010, Australia.
| |
Collapse
|
7
|
Nij Bijvank J, Maillette de Buy Wenniger L, de Graaf P, Petzold A. Clinical review of retinotopy. Br J Ophthalmol 2023; 107:304-312. [PMID: 34887243 DOI: 10.1136/bjophthalmol-2021-320563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/14/2021] [Indexed: 11/03/2022]
Abstract
Two observations made 29 years apart are the cornerstones of this review on the contributions of Dr Gordon T. Plant to understanding pathology affecting the optic nerve. The first observation laid the anatomical basis in 1990 for the interpretation of optical coherence tomography (OCT) findings in 2009. Retinal OCT offers clinicians detailed in vivo structural imaging of individual retinal layers. This has led to novel observations which were impossible to make using ophthalmoscopy. The technique also helps to re-introduce the anatomically grounded concept of retinotopy to clinical practise. This review employs illustrations of the anatomical basis for retinotopy through detailed translational histological studies and multimodal brain-eye imaging studies. The paths of the prelaminar and postlaminar axons forming the optic nerve and their postsynaptic path from the dorsal lateral geniculate nucleus to the primary visual cortex in humans are described. With the mapped neuroanatomy in mind we use OCT-MRI pairings to discuss the patterns of neurodegeneration in eye and brain that are a consequence of the hard wired retinotopy: anterograde and retrograde axonal degeneration which can, within the visual system, propagate trans-synaptically. The technical advances of OCT and MRI for the first time enable us to trace axonal degeneration through the entire visual system at spectacular resolution. In conclusion, the neuroanatomical insights provided by the combination of OCT and MRI allows us to separate incidental findings from sinister pathology and provides new opportunities to tailor and monitor novel neuroprotective strategies.
Collapse
Affiliation(s)
- Jenny Nij Bijvank
- Departments of Ophthalmology and Neurology, Expertise Centre Neuro-ophthalmology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | | | - Pim de Graaf
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.,Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Axel Petzold
- Departments of Ophthalmology and Neurology, Expertise Centre Neuro-ophthalmology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands .,Moorfields Eye Hospital, City Road; The National Hospital for Neurology and Neurosurgery and the UCL Institute of Neurology, Queen Square, London, London, UK
| |
Collapse
|
8
|
Maier S, Barcutean L, Andone S, Manu D, Sarmasan E, Bajko Z, Balasa R. Recent Progress in the Identification of Early Transition Biomarkers from Relapsing-Remitting to Progressive Multiple Sclerosis. Int J Mol Sci 2023; 24:4375. [PMID: 36901807 PMCID: PMC10002756 DOI: 10.3390/ijms24054375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Despite extensive research into the pathophysiology of multiple sclerosis (MS) and recent developments in potent disease-modifying therapies (DMTs), two-thirds of relapsing-remitting MS patients transition to progressive MS (PMS). The main pathogenic mechanism in PMS is represented not by inflammation but by neurodegeneration, which leads to irreversible neurological disability. For this reason, this transition represents a critical factor for the long-term prognosis. Currently, the diagnosis of PMS can only be established retrospectively based on the progressive worsening of the disability over a period of at least 6 months. In some cases, the diagnosis of PMS is delayed for up to 3 years. With the approval of highly effective DMTs, some with proven effects on neurodegeneration, there is an urgent need for reliable biomarkers to identify this transition phase early and to select patients at a high risk of conversion to PMS. The purpose of this review is to discuss the progress made in the last decade in an attempt to find such a biomarker in the molecular field (serum and cerebrospinal fluid) between the magnetic resonance imaging parameters and optical coherence tomography measures.
Collapse
Affiliation(s)
- Smaranda Maier
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Laura Barcutean
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Sebastian Andone
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Doina Manu
- Center for Advanced Medical and Pharmaceutical Research, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Emanuela Sarmasan
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Zoltan Bajko
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Rodica Balasa
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
9
|
Petzold A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J Neurochem 2022; 163:179-219. [PMID: 35950263 PMCID: PMC9826399 DOI: 10.1111/jnc.15682] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofilament proteins (Nf) have been validated and established as a reliable body fluid biomarker for neurodegenerative pathology. This review covers seven Nf isoforms, Nf light (NfL), two splicing variants of Nf medium (NfM), two splicing variants of Nf heavy (NfH),α -internexin (INA) and peripherin (PRPH). The genetic and epigenetic aspects of Nf are discussed as relevant for neurodegenerative diseases and oncology. The comprehensive list of mutations for all Nf isoforms covers Amyotrophic Lateral Sclerosis, Charcot-Marie Tooth disease, Spinal muscular atrophy, Parkinson Disease and Lewy Body Dementia. Next, emphasis is given to the expanding field of post-translational modifications (PTM) of the Nf amino acid residues. Protein structural aspects are reviewed alongside PTMs causing neurodegenerative pathology and human autoimmunity. Molecular visualisations of NF PTMs, assembly and stoichiometry make use of Alphafold2 modelling. The implications for Nf function on the cellular level and axonal transport are discussed. Neurofilament aggregate formation and proteolytic breakdown are reviewed as relevant for biomarker tests and disease. Likewise, Nf stoichiometry is reviewed with regard to in vitro experiments and as a compensatory mechanism in neurodegeneration. The review of Nf across a spectrum of 87 diseases from all parts of medicine is followed by a critical appraisal of 33 meta-analyses on Nf body fluid levels. The review concludes with considerations for clinical trial design and an outlook for future research.
Collapse
Affiliation(s)
- Axel Petzold
- Department of NeurodegenerationQueen Square Insitute of Neurology, UCLLondonUK
| |
Collapse
|
10
|
Lotz-Havla AS, Katzdobler S, Nuscher B, Weiß K, Levin J, Havla J, Maier EM. Serum glial fibrillary acidic protein and neurofilament light chain in patients with early treated phenylketonuria. Front Neurol 2022; 13:1011470. [PMID: 36247773 PMCID: PMC9559705 DOI: 10.3389/fneur.2022.1011470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
To pave the way for healthy aging in early treated phenylketonuria (ETPKU) patients, a better understanding of the neurological course in this population is needed, requiring easy accessible biomarkers to monitor neurological disease progression in large cohorts. The objective of this pilot study was to investigate the potential of glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) as blood biomarkers to indicate changes of the central nervous system in ETPKU. In this single-center cross-sectional study, GFAP and NfL concentrations in serum were quantified using the Simoa® multiplex technology in 56 ETPKU patients aged 6–36 years and 16 age matched healthy controls. Correlation analysis and hierarchical linear regression analysis were performed to investigate an association with disease-related biochemical parameters and retinal layers assessed by optical coherence tomography. ETPKU patients did not show significantly higher GFAP concentrations (mean 73 pg/ml) compared to healthy controls (mean 60 pg/ml, p = 0.140). However, individual pediatric and adult ETPKU patients had GFAP concentrations above the healthy control range. In addition, there was a significant association of GFAP concentrations with current plasma tyrosine concentrations (r = −0.482, p = 0.036), a biochemical marker in phenylketonuria, and the retinal inner nuclear layer volume (r = 0.451, p = 0.04). There was no evidence of NfL alterations in our ETPKU cohort. These pilot results encourage multicenter longitudinal studies to further investigate serum GFAP as a complementary tool to better understand and monitor neurological disease progression in ETPKU. Follow-up investigations on aging ETPKU patients are required to elucidate the potential of serum NfL as biomarker.
Collapse
Affiliation(s)
- Amelie S. Lotz-Havla
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Brigitte Nuscher
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Katharina Weiß
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Johannes Levin
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Data Integration for Future Medicine (DIFUTURE) Consortium, LMU Munich, Munich, Germany
- *Correspondence: Joachim Havla
| | - Esther M. Maier
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Esther M. Maier
| |
Collapse
|
11
|
Grudziecka Pyrek M, Selmaj K. Optical coherence tomography assessment of axonal and neuronal damage of the retina in patients with familial and sporadic multiple sclerosis. Front Neurol 2022; 13:953188. [PMID: 36188381 PMCID: PMC9524155 DOI: 10.3389/fneur.2022.953188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Objective To assess axonal and neuronal damage of the retina in patients with familial (fMS) and sporadic multiple sclerosis (sMS). Methods 87 relapsing-remitting MS patients (45 patients with sMS, 42 patients with fMS) and 30 healthy controls were included in the study. Optical coherence tomography (OCT) was performed with the spectral domain optical coherence tomography (SD-OCT, Heidelberg Engineering, Germany). The peripapillary retinal nerve fiber layer (pRNFL) thickness, ganglion cell-inner plexiform layer (GCIPL) thickness, total macular volume (TMV) and the inner nuclear layer (INL) thickness were measured. Results A significant reduction of the pRNFL thickness was detected in sMS and fMS compared to the control group (86.29 (+/- 16.13) μm in sMS, 84.78 (+/- 12.92) μm in fMS, 98.93 (+/- 6.71) μm in control group; p < 0.001). There was no significant difference in the pRNFL thickness between sMS and fMS (p = 0.5239). The GCIPL thickness was significantly decreased in sMS and fMS compared to the control group [66.0581 (+/- 11.2674) μm in sMS, 63.8386 (+/-10.004) μm in fMS, 76.5074 (+/- 5.0004) μm in control group; p < 0.001]. A significant reduction of the TMV was shown in sMS and fMS compared to the control group [8.4541(+/- 0.4727) mm3 in sMS, 8.3612 (+/- 0.4448) mm3 in fMS, 8.8387 (+/- 0.314) mm3 in control group; p < 0.0011]. No difference in the GCIPL thickness and TMV between sMS and fMS was found (p = 0.3689 and p = 0.3758, respectively). The INL thickness in sMS and fMS did not differ compared to the control group [34.2323 (+/- 2.7006) μm in sMS, 34.5159 (+/- 2.9780) μm in fMS, 33.6148 (+/- 2.0811) μm in control group; p = 0.5971 and p = 0.1870, respectively] and between the two forms (p = 0.4894). Conclusion We confirmed the presence of axonal and neuronal damage of the retina in sMS and fMS. Both forms of MS did not differ significantly from each other with respect to RFNL, GCIPL, MV and INL. ON induced significant reduction of the pRNFL, GCIPL and MV in both groups of pwMS.
Collapse
Affiliation(s)
| | - Krzysztof Selmaj
- Department of Neurology, University of Warmia and Mazury, Olsztyn, Poland
- Centrum of Neurology, Lodz, Poland
- *Correspondence: Krzysztof Selmaj
| |
Collapse
|
12
|
Saitakis G, Chwalisz BK. Treatment and Relapse Prevention of Typical and Atypical Optic Neuritis. Int J Mol Sci 2022; 23:9769. [PMID: 36077167 PMCID: PMC9456305 DOI: 10.3390/ijms23179769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Optic neuritis (ON) is an inflammatory condition involving the optic nerve. Several important typical and atypical ON variants are now recognized. Typical ON has a more favorable prognosis; it can be idiopathic or represent an early manifestation of demyelinating diseases, mostly multiple sclerosis (MS). The atypical spectrum includes entities such as antibody-driven ON associated with neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody disease (MOGAD), chronic/relapsing inflammatory optic neuropathy (CRION), and sarcoidosis-associated ON. Appropriate and timely diagnosis is essential to rapidly decide on the appropriate treatment, maximize visual recovery, and minimize recurrences. This review paper aims at presenting the currently available state-of-the-art treatment strategies for typical and atypical ON, both in the acute phase and in the long-term. Moreover, emerging therapeutic approaches and novel steps in the direction of achieving remyelination are discussed.
Collapse
Affiliation(s)
- George Saitakis
- Division of Neuro-Ophthalmology, Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, MA 02115, USA
- Athens Eye Hospital, 166 75 Athens, Greece
| | - Bart K. Chwalisz
- Division of Neuro-Ophthalmology, Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 15 Parkman Street, Suite 835, Boston, MA 02114, USA
| |
Collapse
|
13
|
Sotirchos ES, Vasileiou ES, Filippatou AG, Fitzgerald KC, Smith MD, Lord HN, Kalaitzidis G, Lambe J, Duval A, Prince JL, Mowry EM, Saidha S, Calabresi PA. Association of Serum Neurofilament Light Chain With Inner Retinal Layer Thinning in Multiple Sclerosis. Neurology 2022; 99:e688-e697. [PMID: 35618438 PMCID: PMC9484608 DOI: 10.1212/wnl.0000000000200778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/11/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Serum neurofilament light chain (sNfL) and optical coherence tomography (OCT)-derived retinal measures (including peripapillary retinal nerve fiber layer [pRNFL] and macular ganglion cell layer/inner plexiform layer [GCIPL] thickness) have been proposed as biomarkers of neurodegeneration in multiple sclerosis (MS). However, studies evaluating the associations between sNfL and OCT-derived retinal measures in MS are limited. METHODS In this retrospective analysis of a longitudinal, observational, single-center cohort study, sNfL levels were measured in people with MS and healthy controls (HCs) using single molecule array. Participants with MS were followed with serial OCT for a median follow-up of 4.5 years. Eyes with optic neuritis (ON) within 6 months of baseline OCT or ON during follow-up were excluded. Age-normative cutoffs of sNfL were derived using the HC data, and MS participants with sNfL greater than the 97.5th percentile for age were classified as having elevated sNfL (sNfL-E). Analyses were performed with mixed-effects linear regression models and adjusted for age, sex, race, and history of ON. RESULTS A total of 130 HCs (age: 42.4 ± 14.2 years; 62% female) and 403 people with MS (age: 43.1 ± 12.0 years; 78% female) were included. Elevated sNfL levels were present at baseline in 80 participants with MS (19.9%). At baseline, sNfL-E participants had modestly lower pRNFL (-3.03 ± 1.50 μm; p = 0.044) and GCIPL thickness (-2.74 ± 1.02 μm; p = 0.007). As compared with those with sNfL within the reference range, eyes from NfL-E participants exhibited faster longitudinal thinning of the pRNFL (45% faster; -0.74 vs -0.51 μm/y; p = 0.015) and GCIPL (25% faster; -0.35 vs -0.28 μm/y; p = 0.021). Significant differences in rates of pRNFL and GCIPL thinning between sNfL groups were found only in those with relapsing-remitting MS but not progressive MS. DISCUSSION Elevated baseline sNfL is associated with accelerated rates of retinal neuroaxonal loss in relapsing-remitting MS, independent of overt ON, but may be less reflective of retinal neurodegeneration in progressive MS.
Collapse
Affiliation(s)
- Elias S Sotirchos
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD.
| | - Eleni S Vasileiou
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Angeliki G Filippatou
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Kathryn C Fitzgerald
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Matthew D Smith
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Hannah-Noelle Lord
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Grigorios Kalaitzidis
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Jeffrey Lambe
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Anna Duval
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Jerry L Prince
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Ellen M Mowry
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Shiv Saidha
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| | - Peter A Calabresi
- From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD
| |
Collapse
|
14
|
Krajnc N, Altmann P, Riedl K, Mitsch C, Berger T, Leutmezer F, Rommer P, Pemp B, Bsteh G. Association of Cerebrospinal Fluid Parameters and Neurofilament Light Chain With Retinal Nerve Fiber Layer Thickness in Multiple Sclerosis. Front Neurol 2022; 13:814734. [PMID: 35321514 PMCID: PMC8936502 DOI: 10.3389/fneur.2022.814734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/31/2022] [Indexed: 01/04/2023] Open
Abstract
Introduction Multiple sclerosis (MS) pathophysiology comprises both inflammatory and neurodegenerative characteristics. Cerebrospinal fluid (CSF) analysis allows for assessment of inflammation while neurofilament light chain can indicate neuroaxonal damage. Retinal thinning is a robust prognostic biomarker for neurodegeneration in MS. To date, an association between CSF parameters upon MS diagnosis and retinal thinning has not been investigated. Aims and Objectives We aimed to determine whether CSF parameters are associated with the evolution of retinal layer thinning in people with MS (pwMS). Methods For this longitudinal observational study, we investigated pwMS from the Vienna MS database (VMSD), who had undergone (1) a diagnostic lumbar puncture (LP) between 2015 and 2020, and (2) simultaneous optical coherence tomography (OCT) and/or (3) a follow-up OCT scan. Linear stepwise regression models were calculated with OCT parameters (peripapillary retinal nerve fiber layer [pRNFL] thickness at LP and at follow-up, annualized loss of pRNFL thickness [aLpRNFL]) as a dependent variable, and CSF parameters (white blood cell [WBC] count, total protein [CSFTP], CSF/serum albumin ratio [Qalb], intrathecal synthesis of immunoglobulins, neurofilament light chain [NfL] in both CSF and serum [CSFNfL/sNfL]) as independent variables adjusted for age, sex, and disease duration. Results We analyzed 61 pwMS (median age 30.0 years [interquartile range 25.5–35.0], 57.4% female, median disease duration 1.0 month [IQR 0–2.0] before LP, median follow-up 1.9 years [IQR 1.1–3.5]). CSFNfL and sNfL measurements were available in 26 and 31 pwMS, respectively. pRNFL thickness at LP was inversely associated with the CSF WBC count (β = −0.36; 95% CI −0.51, −0.08; p = 0.008). We did not find any association between other CSF parameters, including CSFNfL, sNfL, and aLpRNFL. Conclusions Increased WBC count as an indicator of acute inflammation and blood-brain-barrier breakdown seems to be associated with the amount of retinal thickness already lost at the time of LP. However, neither routine CSF parameters nor a singular NfL measurement allows the prediction of future retinal thinning.
Collapse
Affiliation(s)
- Nik Krajnc
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Patrick Altmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Katharina Riedl
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Christoph Mitsch
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Berthold Pemp
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Gabriel Bsteh
| |
Collapse
|
15
|
Dal-Bianco A, Schranzer R, Grabner G, Lanzinger M, Kolbrink S, Pusswald G, Altmann P, Ponleitner M, Weber M, Kornek B, Zebenholzer K, Schmied C, Berger T, Lassmann H, Trattnig S, Hametner S, Leutmezer F, Rommer P. Iron Rims in Patients With Multiple Sclerosis as Neurodegenerative Marker? A 7-Tesla Magnetic Resonance Study. Front Neurol 2022; 12:632749. [PMID: 34992573 PMCID: PMC8724313 DOI: 10.3389/fneur.2021.632749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Multiple sclerosis (MS) is a demyelinating and neurodegenerative disease of the central nervous system, characterized by inflammatory-driven demyelination. Symptoms in MS manifest as both physical and neuropsychological deficits. With time, inflammation is accompanied by neurodegeneration, indicated by brain volume loss on an MRI. Here, we combined clinical, imaging, and serum biomarkers in patients with iron rim lesions (IRLs), which lead to severe tissue destruction and thus contribute to the accumulation of clinical disability. Objectives: Subcortical atrophy and ventricular enlargement using an automatic segmentation pipeline for 7 Tesla (T) MRI, serum neurofilament light chain (sNfL) levels, and neuropsychological performance in patients with MS with IRLs and non-IRLs were assessed. Methods: In total 29 patients with MS [15 women, 24 relapsing-remitting multiple sclerosis (RRMS), and five secondary-progressive multiple sclerosis (SPMS)] aged 38 (22–69) years with an Expanded Disability Status Score of 2 (0–8) and a disease duration of 11 (5–40) years underwent neurological and neuropsychological examinations. Volumes of lesions, subcortical structures, and lateral ventricles on 7-T MRI (SWI, FLAIR, and MP2RAGE, 3D Segmentation Software) and sNfL concentrations using the Simoa SR-X Analyzer in IRL and non-IRL patients were assessed. Results: (1) Iron rim lesions patients had a higher FLAIR lesion count (p = 0.047). Patients with higher MP2Rage lesion volume exhibited more IRLs (p <0.014) and showed poorer performance in the information processing speed tested within 1 year using the Symbol Digit Modalities Test (SDMT) (p <0.047). (2) Within 3 years, patients showed atrophy of the thalamus (p = 0.021) and putamen (p = 0.043) and enlargement of the lateral ventricles (p = 0.012). At baseline and after 3 years, thalamic volumes were lower in IRLs than in non-IRL patients (p = 0.045). (3) At baseline, IRL patients had higher sNfL concentrations (p = 0.028). Higher sNfL concentrations were associated with poorer SDMT (p = 0.004), regardless of IRL presence. (4) IRL and non-IRL patients showed no significant difference in the neuropsychological performance within 1 year. Conclusions: Compared with non-IRL patients, IRL patients had higher FLAIR lesion counts, smaller thalamic volumes, and higher sNfL concentrations. Our pilot study combines IRL and sNfL, two biomarkers considered indicative for neurodegenerative processes. Our preliminary data underscore the reported destructive nature of IRLs.
Collapse
Affiliation(s)
| | - R Schranzer
- Department of Neurology, Vienna, Austria.,Department of Medical Engineering, Carinthia University of Applied Sciences, Klagenfurt, Austria
| | - G Grabner
- Department of Neurology, Vienna, Austria.,Department of Medical Engineering, Carinthia University of Applied Sciences, Klagenfurt, Austria
| | | | - S Kolbrink
- Department of Neurology, Vienna, Austria
| | - G Pusswald
- Department of Neurology, Vienna, Austria
| | - P Altmann
- Department of Neurology, Vienna, Austria
| | | | - M Weber
- Department of Biomedical Imaging and Image-Guided Therapy, High Field Magnetic Resonance Centre, Vienna, Austria
| | - B Kornek
- Department of Neurology, Vienna, Austria
| | | | - C Schmied
- Department of Neurology, Vienna, Austria
| | - T Berger
- Department of Neurology, Vienna, Austria
| | - H Lassmann
- Department of Neuroimmunology, Center for Brain Research, Vienna, Austria
| | - S Trattnig
- Department of Biomedical Imaging and Image-Guided Therapy, High Field Magnetic Resonance Centre, Vienna, Austria
| | - S Hametner
- Department of Neurology, Vienna, Austria.,Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - P Rommer
- Department of Neurology, Vienna, Austria
| |
Collapse
|
16
|
Lin TY, Vitkova V, Asseyer S, Martorell Serra I, Motamedi S, Chien C, Ditzhaus M, Papadopoulou A, Benkert P, Kuhle J, Bellmann-Strobl J, Ruprecht K, Paul F, Brandt AU, Zimmermann HG. Increased Serum Neurofilament Light and Thin Ganglion Cell-Inner Plexiform Layer Are Additive Risk Factors for Disease Activity in Early Multiple Sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/5/e1051. [PMID: 34348969 PMCID: PMC8362351 DOI: 10.1212/nxi.0000000000001051] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022]
Abstract
Objective To investigate the association of combined serum neurofilament light chain (sNfL) and retinal optical coherence tomography (OCT) measurements with future disease activity in patients with early multiple sclerosis (MS). Methods We analyzed sNfL by single molecule array technology and performed OCT measurements in a prospective cohort of 78 patients with clinically isolated syndrome and early relapsing-remitting MS with a median (interquartile range) follow-up of 23.9 (23.3–24.7) months. Patients were grouped into those with abnormal or normal sNfL levels, defined as sNfL ≥/<80th percentile of age-corrected reference values. Likewise, patients were grouped by a median split into those with thin or thick ganglion cell and inner plexiform layer (GCIP), peripapillary retinal nerve fiber layer, and inner nuclear layer in nonoptic neuritis eyes. Outcome parameters were violation of no evidence of disease activity (NEDA-3) criteria or its components. Results Patients with abnormal baseline sNfL had a higher risk of violating NEDA-3 (hazard ratio [HR] 2.28, 95% CI 1.27–4.09, p = 0.006) and developing a new brain lesion (HR 2.47, 95% CI 1.30–4.69, p = 0.006), but not for a new relapse (HR 2.21, 95% CI 0.97–5.03, p = 0.058). Patients with both abnormal sNfL and thin GCIP had an even higher risk for NEDA-3 violation (HR 3.61, 95% CI 1.77–7.36, p = 4.2e−4), new brain lesion (HR 3.19, 95% CI 1.51–6.76, p = 0.002), and new relapse (HR 5.38, 95% CI 1.61–17.98, p = 0.006) than patients with abnormal sNfL alone. Conclusions In patients with early MS, the presence of both abnormal sNfL and thin GCIP is a stronger risk factor for future disease activity than the presence of each parameter alone.
Collapse
Affiliation(s)
- Ting-Yi Lin
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Viktoriya Vitkova
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Susanna Asseyer
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Ivette Martorell Serra
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Seyedamirhosein Motamedi
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Claudia Chien
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Marc Ditzhaus
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Athina Papadopoulou
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Pascal Benkert
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Jens Kuhle
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Judith Bellmann-Strobl
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Klemens Ruprecht
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Friedemann Paul
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Alexander U Brandt
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine
| | - Hanna G Zimmermann
- From the Experimental and Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; NeuroCure Clinical Research Center (T.-Y.L., V.V., S.A., I.M.S., S.M., C.C., A.P., J.B.-S., F.P., A.U.B., H.G.Z.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Psychiatry and Psychotherapy (C.C.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Statistics (M.D.), TU Dortmund University, Germany; Neurology Clinic and Policlinic (A.P., J.K.), MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel; Clinical Trial Unit (P.B.), Department of Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Neurology (K.R., F.P.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; and Department of Neurology (A.U.B.), University of California, Irvine.
| |
Collapse
|
17
|
Jakimovski D, Dwyer MG, Bergsland N, Weinstock-Guttman B, Zivadinov R. Disease biomarkers in multiple sclerosis: current serum neurofilament light chain perspectives. Neurodegener Dis Manag 2021; 11:329-340. [PMID: 34196596 DOI: 10.2217/nmt-2020-0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The continuous neuroinflammatory and neurodegenerative pathology in multiple sclerosis (MS) results in irreversible accumulation of physical and cognitive disability. Reliable early detection of MS disease processes can aid in the diagnosis, monitoring and treatment management of MS patients. Recent assay technological advancements now allow reliable quantification of serum-based neurofilament light chain (sNfL) levels, which provide temporal information regarding the degree of neuroaxonal damage. The relationship and predictive value of sNfL with clinical and cognitive outcomes, other paraclinical measures and treatment response is reviewed. sNfL measurement is an emerging, noninvasive and disease-responsive MS biomarker that is currently utilized in research and clinical trial settings. Understanding sNfL confounders and further assay standardization will allow clinical implementation of this biomarker.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.,IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, 20148, Italy
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment & Research Center, Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
18
|
Bittner S, Oh J, Havrdová EK, Tintoré M, Zipp F. The potential of serum neurofilament as biomarker for multiple sclerosis. Brain 2021; 144:2954-2963. [PMID: 34180982 PMCID: PMC8634125 DOI: 10.1093/brain/awab241] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/27/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
Multiple sclerosis is a highly heterogeneous disease, and the detection of neuroaxonal damage as well as its quantification is a critical step for patients. Blood-based serum neurofilament light chain (sNfL) is currently under close investigation as an easily accessible biomarker of prognosis and treatment response in patients with multiple sclerosis. There is abundant evidence that sNfL levels reflect ongoing inflammatory-driven neuroaxonal damage (e.g. relapses or MRI disease activity) and that sNfL levels predict disease activity over the next few years. In contrast, the association of sNfL with long-term clinical outcomes or its ability to reflect slow, diffuse neurodegenerative damage in multiple sclerosis is less clear. However, early results from real-world cohorts and clinical trials using sNfL as a marker of treatment response in multiple sclerosis are encouraging. Importantly, clinical algorithms should now be developed that incorporate the routine use of sNfL to guide individualized clinical decision-making in people with multiple sclerosis, together with additional fluid biomarkers and clinical and MRI measures. Here, we propose specific clinical scenarios where implementing sNfL measures may be of utility, including, among others: initial diagnosis, first treatment choice, surveillance of subclinical disease activity and guidance of therapy selection.
Collapse
Affiliation(s)
- Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Eva Kubala Havrdová
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Mar Tintoré
- Department of Neurology, Hospital General Universitari Vall D'Hebron, Cemcat, Barcelona, Spain
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
19
|
Seitz CB, Steffen F, Muthuraman M, Uphaus T, Krämer J, Meuth SG, Albrecht P, Groppa S, Zipp F, Bittner S, Fleischer V. Serum neurofilament levels reflect outer retinal layer changes in multiple sclerosis. Ther Adv Neurol Disord 2021; 14:17562864211003478. [PMID: 34104217 PMCID: PMC8155762 DOI: 10.1177/17562864211003478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/28/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Serum neurofilament light chain (sNfL) and distinct intra-retinal layers are
both promising biomarkers of neuro-axonal injury in multiple sclerosis (MS).
We aimed to unravel the association of both markers in early MS, having
identified that neurofilament has a distinct immunohistochemical expression
pattern among intra-retinal layers. Methods: Three-dimensional (3D) spectral domain macular optical coherence tomography
scans and sNfL levels were investigated in 156 early MS patients
(female/male: 109/47, mean age: 33.3 ± 9.5 years, mean disease duration:
2.0 ± 3.3 years). Out of the whole cohort, 110 patients had no history of
optic neuritis (NHON) and 46 patients had a previous history of optic
neuritis (HON). In addition, a subgroup of patients
(n = 38) was studied longitudinally over 2 years. Support
vector machine analysis was applied to test a regression model for
significant changes. Results: In our cohort, HON patients had a thinner outer plexiform layer (OPL) volume
compared to NHON patients (B = −0.016, SE = 0.006,
p = 0.013). Higher sNfL levels were significantly
associated with thinner OPL volumes in HON patients
(B = −6.734, SE = 2.514, p = 0.011). This
finding was corroborated in the longitudinal subanalysis by the association
of higher sNfL levels with OPL atrophy (B = 5.974,
SE = 2.420, p = 0.019). sNfL levels were 75.7% accurate at
predicting OPL volume in the supervised machine learning. Conclusions: In summary, sNfL levels were a good predictor of future outer retinal
thinning in MS. Changes within the neurofilament-rich OPL could be
considered as an additional retinal marker linked to MS
neurodegeneration.
Collapse
Affiliation(s)
- Caspar B Seitz
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Timo Uphaus
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Julia Krämer
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweizer-Campus, Münster, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University of Münster, Albert-Schweizer-Campus, Münster, Germany
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Vinzenz Fleischer
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, Mainz 55131, Germany
| |
Collapse
|
20
|
Sjöbom U, Hellström W, Löfqvist C, Nilsson AK, Holmström G, Pupp IH, Ley D, Blennow K, Zetterberg H, Sävman K, Hellström A. Analysis of Brain Injury Biomarker Neurofilament Light and Neurodevelopmental Outcomes and Retinopathy of Prematurity Among Preterm Infants. JAMA Netw Open 2021; 4:e214138. [PMID: 33797551 PMCID: PMC8019094 DOI: 10.1001/jamanetworkopen.2021.4138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Circulating levels of neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) are important in the course of brain injury in adults, but longitudinal postnatal circulating levels in preterm infants have not been investigated. OBJECTIVES To examine postnatal longitudinal serum levels of NfL and GFAP in preterm infants during the first 15 weeks of life and to explore possible associations between these biomarkers, neonatal morbidities, and neurodevelopmental outcomes at 2 years. DESIGN, SETTING, AND PARTICIPANTS This cohort study used data from 3 clinical studies, including 221 infants born before 32 weeks gestational age (GA) from 1999 to 2015; neurodevelopmental outcomes were evaluated in 120 infants. Data were collected at tertiary-level neonatal intensive care units in Gothenburg, Lund, and Uppsala, Sweden. Data analysis was conducted from January to October 2020. EXPOSURE Preterm birth. MAIN OUTCOMES AND MEASURES Serum NfL and GFAP levels, retinopathy of prematurity (ROP), intraventricular hemorrhage, and Bayley Scales of Infant Development II and III at 2 years of age, analyzed by multivariate logistic regression measured by odds ratio (OR), and receiver operating characteristic curve (ROC) analysis. Area under the curve (AUC) was also measured. RESULTS The 221 included infants (108 [48.9%] girls) had a mean (SD) GA at birth of 26.5 (2.1) weeks and a mean (SD) birth weight of 896 (301) grams. NfL levels increased after birth, remaining high during the first 4 weeks of life before declining to continuously low levels by postnatal age 12 weeks (median [range] NfL level at birth: 58.8 [11.5-1371.3] ng/L; 1 wk: 83.5 [14.1-952.2] ng/L; 4 wk: 24.4 [7.0-306.0] ng/L; 12 wk: 9.1 [3.7-57.0] ng/L). In a binary logistic regression model adjusted for GA at birth, birth weight SD score, Apgar status at 5 minutes, and mode of delivery, the NfL AUC at weeks 2 to 4 was independently associated with any ROP (OR, 4.79; 95% CI, 2.17-10.56; P < .001). In an exploratory analysis adjusted for GA at birth and sex, NfL AUC at weeks 2 to 4 was independently associated with unfavorable neurodevelopmental outcomes at 2 years corrected age (OR per 10-unit NfL increase, 1.07; 95% CI, 1.02-1.13; P = .01). Longitudinal GFAP levels were not significantly associated with neonatal morbidity or neurodevelopmental outcome. CONCLUSIONS AND RELEVANCE In this study, high NfL levels during the first weeks of life were associated with ROP and poor neurodevelopmental outcomes at 2 years of age. Associations between NfL and later neurovascular development in infants born prematurely should be investigated further.
Collapse
Affiliation(s)
- Ulrika Sjöbom
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - William Hellström
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chatarina Löfqvist
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders K. Nilsson
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gerd Holmström
- Unit of Ophthalmology, Department of Neuroscience, University Hospital, Uppsala, Sweden
| | - Ingrid Hansen Pupp
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - David Ley
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, University College of London Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at University College of London, London, United Kingdom
| | - Karin Sävman
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Neonatology, The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
21
|
Exposure to Secondhand Smoke in Children is Associated with a Thinner Retinal Nerve Fiber Layer: The Hong Kong Children Eye Study. Am J Ophthalmol 2021; 223:91-99. [PMID: 33129810 DOI: 10.1016/j.ajo.2020.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE We sought to assess the effects of exposure to secondhand smoke (SHS) on peripapillary retinal nerve fiber layer (p-RNFL) thickness in children. DESIGN Cross-sectional study. METHODS Children 6-8 years of age were consecutively recruited from the population-based Hong Kong Children Eye Study. All participants received comprehensive ophthalmic examinations and p-RNFL thickness was measured by spectral-domain optical coherence tomography. SHS data were derived from a validated questionnaire. Associations between p-RNFL thickness and SHS exposure status, number of smokers in the family, and quantity of smoking in the family were determined by multivariate linear regression after adjusting for potential confounders. RESULTS Among the Hong Kong Children Eye Study cohort (n = 3,103), approximately one-third of children were exposed to SHS (35.4%, n = 1,097). Compared to those without exposure to SHS, children exposed to SHS had similar age (P = .83), gender (P = .17), body mass index (P = .44), birth weight (P = .23), and axial length (P = .34), but had lower family income (P < .001) and lower parental education level (P < .001). After adjusting for all the above factors, exposure to SHS was associated with a thinner global p-RNFL by 4.4 μm (P < .001). Reduced p-RNFL was also associated with increased numbers of smokers in the family (β = -3.40, P < .001) and increased quantity of SHS (β = -0.22, P < .001). CONCLUSIONS Exposure to SHS in children was associated with a thinner p-RNFL. A thinner p-RNFL may increase the risk of irreversible visual impairment in the future. Our results provide evidence to recommend that children avoid exposure to SHS.
Collapse
|
22
|
Thebault S, Bose G, Booth R, Freedman MS. Serum neurofilament light in MS: The first true blood-based biomarker? Mult Scler 2021; 28:1491-1497. [PMID: 33565908 PMCID: PMC9315170 DOI: 10.1177/1352458521993066] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A simple blood-derived biomarker is desirable in the routine management
of multiple sclerosis (MS) patients and serum neurofilament light
chain (sNfL) is the most promising candidate. Although its utility was
first shown in cerebrospinal fluid (CSF), technological advancements
have enabled reliable detection in serum and less frequently plasma,
obviating the need for repeated lumbar punctures. In this review,
after defining the knowledge gap in MS management that many hope sNfL
could fill, we summarize salient studies demonstrating associations of
sNfL levels with outcomes of interest. We group these outcomes into
inflammatory activity, progression, treatment response, and
prediction/prognosis. Where possible we focus on data from real-world
perspective observational cohorts. While acknowledging the limitations
of sNfL and highlighting key areas for ongoing work, we conclude with
our opinion of the role for sNfL as an objective, convenient, and
cost-effective adjunct to clinical assessment. Paving the way for
other promising biomarkers both blood-derived and otherwise, sNfL is
an incremental step toward precision medicine for MS patients.
Collapse
Affiliation(s)
- Simon Thebault
- The Ottawa Hospital and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Gauruv Bose
- The Ottawa Hospital and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ronald Booth
- The Ottawa Hospital and Ottawa Hospital Research Institute, Ottawa, ON, Canada/The University of Ottawa, Ottawa, ON, Canada
| | - Mark S Freedman
- The Ottawa Hospital and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
23
|
Serum neurofilament light chain withstands delayed freezing and repeated thawing. Sci Rep 2020; 10:19982. [PMID: 33203974 PMCID: PMC7672085 DOI: 10.1038/s41598-020-77098-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022] Open
Abstract
Serum neurofilament light chain (sNfL) and its ability to expose axonal damage in neurologic disorders have solicited a considerable amount of attention in blood biomarker research. Hence, with the proliferation of high-throughput assay technology, there is an imminent need to study the pre-analytical stability of this biomarker. We recruited 20 patients with common neurological diagnoses and 10 controls (i.e. patients without structural neurological disease). We investigated whether a variation in pre-analytical variables (delayed freezing up to 24 h and repeated thawing/freezing for up to three cycles) affects the measured sNfL concentrations using state of the art Simoa technology. Advanced statistical methods were applied to expose any relevant changes in sNfL concentration due to different storing and processing conditions. We found that sNfL concentrations remained stable when samples were frozen within 24 h (mean absolute difference 0.2 pg/ml; intraindividual variation below 0.1%). Repeated thawing and re-freezing up to three times did not change measured sNfL concentration significantly, either (mean absolute difference 0.7 pg/ml; intraindividual variation below 0.2%). We conclude that the soluble sNfL concentration is unaffected at 4–8 °C when samples are frozen within 24 h and single aliquots can be used up to three times. These observations should be considered for planning future studies.
Collapse
|
24
|
Abdelhak A, Huss A, Stahmann A, Senel M, Krumbholz M, Kowarik MC, Havla J, Kümpfel T, Kleiter I, Wüstinger I, Zettl UK, Schwartz M, Roesler R, Friede T, Ludolph AC, Ziemann U, Tumani H. Explorative study of emerging blood biomarkers in progressive multiple sclerosis (EmBioProMS): Design of a prospective observational multicentre pilot study. Contemp Clin Trials Commun 2020; 18:100574. [PMID: 32478196 PMCID: PMC7251538 DOI: 10.1016/j.conctc.2020.100574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/04/2020] [Accepted: 05/17/2020] [Indexed: 11/18/2022] Open
Abstract
Background Defining clinical and subclinical progression in multiple sclerosis (MS) is challenging. Patient history, expanded disability status scale (EDSS), and magnetic resonance imaging (MRI) all have shortcomings and may underestimate disease dynamics. Emerging serum biomarkers such as glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) proved useful in many cross-sectional studies. However, longitudinal data on patients with progressive MS is scarce. Objectives To assess whether the serum biomarkers GFAP and NfL might differentiate between patients with progressive vs. non-progressive disease stages and predict the disease course according to the Lublin criteria. Methods EmBioProMS is a pilot, observational, prospective, multicentric study funded by the German Multiple Sclerosis Society (DMSG). 200 patients with MS according to the 2017 McDonald criteria and history of relapse-independent progression at any time (progressive MS, PMS), younger than 65 years, and with EDSS ≤ 6.5 will be recruited in 6 centres in Germany. At baseline, month 6, and 18, medical history, EDSS, Nine-Hole-Peg-Test (9-HPT), Timed-25-Foot-Walk-Test (T-25FW), Symbol-Digit-Modalities-Test (SDMT), serum GFAP, and NfL, MRI (at least baseline and month 18) and optional optical coherence tomography (OCT) will be performed. Disease progression before and during the study is defined by confirmed EDSS progression, increase by ≥ 20% in 9-HPT or T-25FW time. Conclusions This longitudinal multicentre study will reveal to what extent the prediction of disease progression in patients with PMS will be improved by the analysis of serum biomarkers in conjunction with routine clinical data and neuroimaging measures.
Collapse
Affiliation(s)
- Ahmed Abdelhak
- Department of Neurology & Stroke, University Hospital of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Neurology, University Hospital of Ulm, Ulm, Germany
| | - Andre Huss
- Department of Neurology, University Hospital of Ulm, Ulm, Germany
| | - Alexander Stahmann
- MS Forschungs- und Projektentwicklungs-gGmbH, MS-Registry by the German MS-Society, Hanover, Germany
| | - Makbule Senel
- Department of Neurology, University Hospital of Ulm, Ulm, Germany
| | - Markus Krumbholz
- Department of Neurology & Stroke, University Hospital of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Markus C. Kowarik
- Department of Neurology & Stroke, University Hospital of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University, Munich, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians University, Munich, Germany
| | - Ingo Kleiter
- Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany
- St. Josef-Hospital, Department of Neurology, Ruhr-University, Bochum, Germany
| | - Isabella Wüstinger
- Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Berg, Germany
| | - Uwe K. Zettl
- Department of Neurology, Neuroimmunological Section, University of Rostock, Rostock, Germany
| | - Margit Schwartz
- Department of Neurology, Neuroimmunological Section, University of Rostock, Rostock, Germany
| | - Romy Roesler
- Fachklinik für Neurologie Dietenbronn, Schwendi, Germany
| | - Tim Friede
- Department of Medical Statistics, University Medical Centre Göttingen, Göttingen, Germany
| | | | - Ulf Ziemann
- Department of Neurology & Stroke, University Hospital of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hayrettin Tumani
- Department of Neurology, University Hospital of Ulm, Ulm, Germany
- Fachklinik für Neurologie Dietenbronn, Schwendi, Germany
- Corresponding author. Universitäts- und Rehabilitationskliniken Ulm (RKU), Oberer Eselsberg 45, 89081, Ulm, Germany.
| |
Collapse
|
25
|
Tavazzi E, Jakimovski D, Kuhle J, Hagemeier J, Ozel O, Ramanathan M, Barro C, Bergsland N, Tomic D, Kropshofer H, Leppert D, Michalak Z, Lincoff N, Dwyer MG, Benedict RHB, Weinstock-Guttman B, Zivadinov R. Serum neurofilament light chain and optical coherence tomography measures in MS: A longitudinal study. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/4/e737. [PMID: 32424064 PMCID: PMC7251512 DOI: 10.1212/nxi.0000000000000737] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To study the association between serum neurofilament light chain (sNfL) and multiple optical coherence tomography (OCT) measures in patients with MS and healthy controls (HCs). METHODS In this prospective study, 110 patients with MS were recruited, together with 52 age- and sex-matched HCs. Clinical evaluation and spectral domain OCT and sNfL were obtained at baseline and after 5.5 years of follow-up. Nested linear mixed models were used to assess differences between MS vs HC and associations between sNfL and OCT measures. Partial correlation coefficients are reported, and p values were adjusted for the false discovery rate. RESULTS At baseline, peripapillary retinal nerve fiber layer thickness (pRNFLT) and macular ganglion cell and inner plexiform layer thickness (mGCIP) were significantly lower in MS than HC both in MS-associated optic neuritis (MSON) (p = 0.007, p = 0.001) and nonaffected MSON (n-MSON) eyes (p = 0.003, p = 0.018), along with total macular volume (TMV) in n-MSON eyes (p = 0.011). At follow-up, MS showed significantly lower pRNFLT, mGCIP, and TMV both in MSON and n-MSON eyes (p < 0.001) compared with HC. In MS n-MSON eyes, sNfL was significantly associated with baseline pRNFLT and mGCIP (q = 0.019). No significant associations were found in MSON eyes. CONCLUSIONS This study confirms the ability of sNfL to detect neurodegeneration in MS and advocates for the inclusion of sNfL and OCT measures in clinical trials. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that sNfL levels were associated with MS neurodegeneration measured by OCT.
Collapse
Affiliation(s)
- Eleonora Tavazzi
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Dejan Jakimovski
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Jens Kuhle
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Jesper Hagemeier
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Osman Ozel
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Murali Ramanathan
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Christian Barro
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Niels Bergsland
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Davorka Tomic
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Harald Kropshofer
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - David Leppert
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Zuzanna Michalak
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Norah Lincoff
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Michael G Dwyer
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Ralph H B Benedict
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Bianca Weinstock-Guttman
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York
| | - Robert Zivadinov
- From the Buffalo Neuroimaging Analysis Center (E.T., D.J., J.H., O.O., N.B., M.G.D., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi, Milan, Italy; Neurologic Clinic and Policlinic (J.K., C.B., Z.M., N.L.), Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Department of Pharmaceutical Sciences (M.R.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Novartis Pharma AG (D.T., H.K., D.L.), Basel, Switzerland; Jacobs MS Center (R.H.B.B., B.W.-G.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, and Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York.
| |
Collapse
|
26
|
Petzold A, Braithwaite T, van Oosten BW, Balk L, Martinez-Lapiscina EH, Wheeler R, Wiegerinck N, Waters C, Plant GT. Case for a new corticosteroid treatment trial in optic neuritis: review of updated evidence. J Neurol Neurosurg Psychiatry 2020; 91:9-14. [PMID: 31740484 PMCID: PMC6952848 DOI: 10.1136/jnnp-2019-321653] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/20/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Axel Petzold
- Expertise Centrum Neuro-ophthalmology, Departments of Neurology & Ophthalmology, Amsterdam UMC, Amsterdam, The Netherlands .,Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, London, UK
| | - Tasanee Braithwaite
- Neuro-ophthalmology, Moorfields Eye Hospital and The National Hospital for Neurology & Neurosurgery, London, UK
| | | | - Lisanne Balk
- Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Elena H Martinez-Lapiscina
- Center of Neuroimmunology and Service of Neurology, Clinic Barcelona Hospital University, Barcelona, Spain
| | | | - Nils Wiegerinck
- )Patient Organisation (Neuro-ophthalmology), Lisbon, Portugal
| | - Christiaan Waters
- Neuro-ophthalmologie Vereniging Nederland (KvK nummer 66260140), Amsterdam, Netherlands
| | - Gordon T Plant
- ,National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, St. Thomas Hospital, Moorfields Eye Hospital, London, UK
| |
Collapse
|