1
|
Wu X, Zhang Q, Guo J, Jia Y, Zhang Z, Zhao M, Yang Y, Wang B, Hu J, Sheng L, Li Y. Metabolism of F18, a Derivative of Calanolide A, in Human Liver Microsomes and Cytosol. Front Pharmacol 2017; 8:479. [PMID: 28769808 PMCID: PMC5515859 DOI: 10.3389/fphar.2017.00479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/04/2017] [Indexed: 12/02/2022] Open
Abstract
10-Chloromethyl-11-demethyl-12-oxo-calanolide (F18), an analog of calanolide A, is a novel potent nonnucleoside reverse transcriptase inhibitor against HIV-1. Here, we report the metabolic profile and the results of associated biochemical studies of F18 in vitro and in vivo. The metabolites of F18 were identified based on liquid chromatography-electrospray ionization mass spectrometry and/or nuclear magnetic resonance. Twenty-three metabolites of F18 were observed in liver microsomes in vitro. The metabolism of F18 involved 4-propyl chain oxidation, 10-chloromethyl oxidative dechlorination and 12-carbonyl reduction. Three metabolites (M1, M3-1, and M3-2) were also found in rat blood after oral administration of F18 and the reduction metabolites M3-1 and M3-2 were found to exhibit high potency for the inhibition of HIV-1 in vitro. The oxidative metabolism of F18 was mainly catalyzed by cytochrome P450 3A4 in human microsomes, whereas flavin-containing monooxygenases and 11β-hydroxysteroid dehydrogenase were found to be involved in its carbonyl reduction. In human cytosol, multiple carbonyl reductases, including aldo-keto reductase 1C, short-chain dehydrogenases/reductases and quinone oxidoreductase 1, were demonstrated to be responsible for F18 carbonyl reduction. In conclusion, the in vitro metabolism of F18 involves multiple drug metabolizing enzymes, and several metabolites exhibited anti-HIV-1 activities. Notably, the described results provide the first demonstration of the capability of FMOs for carbonyl reduction.
Collapse
Affiliation(s)
- Xiangmeng Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Qinghao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Jiamei Guo
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Yufei Jia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Ziqian Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Manman Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Yakun Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Baolian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Li Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Yan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| |
Collapse
|
2
|
Buckheit RW, Russell JD, Xu ZQ, Flavin M. Anti-HIV-1 activity of calanolides used in combination with other mechanistically diverse inhibitors of HIV-1 replication. Antivir Chem Chemother 2000; 11:321-7. [PMID: 11142630 DOI: 10.1177/095632020001100502] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The natural product (+)-calanolide A, a unique non-nucleoside reverse transcriptase inhibitor (NNRTI) of HIV-1 replication, is currently being evaluated in clinical trials in the USA. (+)-Calanolide A, the congeners costatolide and dihydrocostatolide, and (+)-12-oxo(+)-calanolide A, were evaluated in combination with a variety of mechanically diverse inhibitors of HIV replication to define the efficacy and cellular toxicity of potential clinical drug combinations. These assays should be useful in prioritizing the use of different combination drug strategies in a clinical setting. The calanolides exhibited synergistic antiviral interactions with other nucleoside and non-nucleoside reverse transcriptase inhibitors and protease inhibitors. Additive interactions were also observed when the calanolides were used with representative compounds from each of these classes of inhibitors. No evidence of either combination toxicity or antagonistic antiviral activity was detected with any of the tested compounds. The combination antiviral efficacy of three-drug combinations involving the calanolides, and the efficacy of two- and three-drug combinations using a (+)-calanolide A-resistant challenge virus (bearing the T139I amino acid change in the reverse transcriptase), was also evaluated in vitro. These assays suggest that the best combination of agents based on in vitro anti-HIV assay results would include the calanolides in combination with lamivudine and nelfinavir, since this was the only three-drug combination exhibiting a significant level of synergy. Combination assays with the (+)-calanolide A-resistant strain yielded identical results as seen with the wild-type virus, although the concentration of the calanolides had to be increased.
Collapse
Affiliation(s)
- R W Buckheit
- Infectious Disease Research Department, Southern Research Institute, Frederick, MD, USA.
| | | | | | | |
Collapse
|