1
|
da Silva Rosa SC, Barzegar Behrooz A, Guedes S, Vitorino R, Ghavami S. Prioritization of genes for translation: a computational approach. Expert Rev Proteomics 2024; 21:125-147. [PMID: 38563427 DOI: 10.1080/14789450.2024.2337004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Gene identification for genetic diseases is critical for the development of new diagnostic approaches and personalized treatment options. Prioritization of gene translation is an important consideration in the molecular biology field, allowing researchers to focus on the most promising candidates for further investigation. AREAS COVERED In this paper, we discussed different approaches to prioritize genes for translation, including the use of computational tools and machine learning algorithms, as well as experimental techniques such as knockdown and overexpression studies. We also explored the potential biases and limitations of these approaches and proposed strategies to improve the accuracy and reliability of gene prioritization methods. Although numerous computational methods have been developed for this purpose, there is a need for computational methods that incorporate tissue-specific information to enable more accurate prioritization of candidate genes. Such methods should provide tissue-specific predictions, insights into underlying disease mechanisms, and more accurate prioritization of genes. EXPERT OPINION Using advanced computational tools and machine learning algorithms to prioritize genes, we can identify potential targets for therapeutic intervention of complex diseases. This represents an up-and-coming method for drug development and personalized medicine.
Collapse
Affiliation(s)
- Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Canada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Canada
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sofia Guedes
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, Katowice, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
2
|
Zadeh Shirazi A, Tofighi M, Gharavi A, Gomez GA. The Application of Artificial Intelligence to Cancer Research: A Comprehensive Guide. Technol Cancer Res Treat 2024; 23:15330338241250324. [PMID: 38775067 PMCID: PMC11113055 DOI: 10.1177/15330338241250324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Advancements in AI have notably changed cancer research, improving patient care by enhancing detection, survival prediction, and treatment efficacy. This review covers the role of Machine Learning, Soft Computing, and Deep Learning in oncology, explaining key concepts and algorithms (like SVM, Naïve Bayes, and CNN) in a clear, accessible manner. It aims to make AI advancements understandable to a broad audience, focusing on their application in diagnosing, classifying, and predicting various cancer types, thereby underlining AI's potential to better patient outcomes. Moreover, we present a tabular summary of the most significant advances from the literature, offering a time-saving resource for readers to grasp each study's main contributions. The remarkable benefits of AI-powered algorithms in cancer care underscore their potential for advancing cancer research and clinical practice. This review is a valuable resource for researchers and clinicians interested in the transformative implications of AI in cancer care.
Collapse
Affiliation(s)
- Amin Zadeh Shirazi
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Morteza Tofighi
- Department of Electrical Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran
| | - Alireza Gharavi
- Department of Computer Science, Azad University, Mashhad Branch, Mashhad, Iran
| | - Guillermo A. Gomez
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
3
|
Nekouie N, Romoozi M, Esmaeili M. A New Evolutionary Ensemble Learning of Multimodal Feature Selection from Microarray Data. Neural Process Lett 2023. [DOI: 10.1007/s11063-023-11159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
4
|
Vahmiyan M, Kheirabadi M, Akbari E. Feature selection methods in microarray gene expression data: a systematic mapping study. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07661-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2022]
|
5
|
Lin PH, Kuo PH. Ensemble learning based functional independence ability estimator for pediatric brain tumor survivors. Health Informatics J 2022; 28:14604582221140975. [DOI: 10.1177/14604582221140975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A history of brain tumor strongly affects children’s cognitive abilities, performance of daily activities, quality of life, and functional outcomes. In light of the difficulties in cognition, communication, physical skills, and behavior that these patients may encounter, occupational therapists should perform a comprehensive needs-led assessment of their global functioning after recovery. Such an assessment would ensure that the patients receive adequate support and services at school, at home, and in the community. By predicting the functional activity performance of children with a history of brain tumor, clinical workers can determine the progress of their ability recovery and the optimal treatment plan. We selected several features for testing and employed common machine learning models to predict Functional Independence Measure (WeeFIM) scores. The ensemble learning models exhibited stronger predictive performance than did the individual machine learning models. The ensemble learning models effectively predicted WeeFIM scores. Machine learning models can help clinical workers predict the functional assessment scores of patients with childhood brain tumors. This study used machine learning models to predict the WeeFIM scores of patients with childhood brain tumors and to demonstrate that ensemble machine learning models are more suitable for this task than are individual machine learning models.
Collapse
Affiliation(s)
- Pei-Hua Lin
- Department of Rehabilitation, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Ping-Huan Kuo
- Department of Mechanical Engineering, National Chung Cheng University, Taiwan; Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Taiwan
| |
Collapse
|
6
|
Belkahla S, Nahvi I, Biswas S, Nahvi I, Ben Amor N. Advances and development of prostate cancer, treatment, and strategies: A systemic review. Front Cell Dev Biol 2022; 10:991330. [PMID: 36158198 PMCID: PMC9501970 DOI: 10.3389/fcell.2022.991330] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
The most common type of cancer in the present-day world affecting modern-day men after lung cancer is prostate cancer. Prostate cancer remains on the list of top three cancer types claiming the highest number of male lives. An estimated 1.4 million new cases were reported worldwide in 2020. The incidence of prostate cancer is found predominantly in the regions having a high human development index. Despite the fact that considerable success has been achieved in the treatment and management of prostate cancer, it remains a challenge for scientists and clinicians to curve the speedy advancement of the said cancer type. The most common risk factor of prostate cancer is age; men tend to become more vulnerable to prostate cancer as they grow older. Commonly men in the age group of 66 years and above are the most vulnerable population to develop prostate cancer. The gulf countries are not far behind when it came to accounting for the number of individuals falling prey to the deadly cancer type in recent times. There has been a consistent increase in the incidence of prostate cancer in the gulf countries in the past decade. The present review aims at discussing the development, diagnostics via machine learning, and implementation of treatment of prostate cancer with a special focus on nanotherapeutics, in the gulf countries.
Collapse
Affiliation(s)
- Sana Belkahla
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Hofuf, Saudi Arabia
- *Correspondence: Sana Belkahla, ; Insha Nahvi,
| | - Insha Nahvi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Hofuf, Saudi Arabia
- *Correspondence: Sana Belkahla, ; Insha Nahvi,
| | - Supratim Biswas
- University of Cape Town, Department of Human Biology, Cape Town, South Africa
| | - Irum Nahvi
- College of Computer Engineering and Science, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia
| | - Nidhal Ben Amor
- Public Health Department, Veterinary College, King Faisal University, Al Hofuf, Saudi Arabia
| |
Collapse
|
7
|
Nature-inspired metaheuristics model for gene selection and classification of biomedical microarray data. Med Biol Eng Comput 2022; 60:1627-1646. [PMID: 35399141 DOI: 10.1007/s11517-022-02555-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/16/2022] [Indexed: 12/19/2022]
Abstract
Identifying a small subset of informative genes from a gene expression dataset is an important process for sample classification in the fields of bioinformatics and machine learning. In this process, there are two objectives: first, to minimize the number of selected genes, and second, to maximize the classification accuracy of the used classifier. In this paper, a hybrid machine learning framework based on a nature-inspired cuckoo search (CS) algorithm has been proposed to resolve this problem. The proposed framework is obtained by incorporating the cuckoo search (CS) algorithm with an artificial bee colony (ABC) in the exploitation and exploration of the genetic algorithm (GA). These strategies are used to maintain an appropriate balance between the exploitation and exploration phases of the ABC and GA algorithms in the search process. In preprocessing, the independent component analysis (ICA) method extracts the important genes from the dataset. Then, the proposed gene selection algorithms along with the Naive Bayes (NB) classifier and leave-one-out cross-validation (LOOCV) have been applied to find a small set of informative genes that maximize the classification accuracy. To conduct a comprehensive performance study, proposed algorithms have been applied on six benchmark datasets of gene expression. The experimental comparison shows that the proposed framework (ICA and CS-based hybrid algorithm with NB classifier) performs a deeper search in the iterative process, which can avoid premature convergence and produce better results compared to the previously published feature selection algorithm for the NB classifier.
Collapse
|
8
|
Vadapalli S, Abdelhalim H, Zeeshan S, Ahmed Z. Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine. Brief Bioinform 2022; 23:6590150. [PMID: 35595537 DOI: 10.1093/bib/bbac191] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/02/2022] [Accepted: 04/26/2022] [Indexed: 12/16/2022] Open
Abstract
Precision medicine uses genetic, environmental and lifestyle factors to more accurately diagnose and treat disease in specific groups of patients, and it is considered one of the most promising medical efforts of our time. The use of genetics is arguably the most data-rich and complex components of precision medicine. The grand challenge today is the successful assimilation of genetics into precision medicine that translates across different ancestries, diverse diseases and other distinct populations, which will require clever use of artificial intelligence (AI) and machine learning (ML) methods. Our goal here was to review and compare scientific objectives, methodologies, datasets, data sources, ethics and gaps of AI/ML approaches used in genomics and precision medicine. We selected high-quality literature published within the last 5 years that were indexed and available through PubMed Central. Our scope was narrowed to articles that reported application of AI/ML algorithms for statistical and predictive analyses using whole genome and/or whole exome sequencing for gene variants, and RNA-seq and microarrays for gene expression. We did not limit our search to specific diseases or data sources. Based on the scope of our review and comparative analysis criteria, we identified 32 different AI/ML approaches applied in variable genomics studies and report widely adapted AI/ML algorithms for predictive diagnostics across several diseases.
Collapse
Affiliation(s)
- Sreya Vadapalli
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Habiba Abdelhalim
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, New Brunswick, NJ, USA
| | - Zeeshan Ahmed
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson St, New Brunswick, NJ, USA
| |
Collapse
|
9
|
Aziz RM. Cuckoo Search-Based Optimization for Cancer Classification: A New Hybrid Approach. J Comput Biol 2022; 29:565-584. [DOI: 10.1089/cmb.2021.0410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
10
|
Ahmad M, Qadri SF, Qadri S, Saeed IA, Zareen SS, Iqbal Z, Alabrah A, Alaghbari HM, Mizanur Rahman SM. A Lightweight Convolutional Neural Network Model for Liver Segmentation in Medical Diagnosis. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7954333. [PMID: 35755754 PMCID: PMC9225858 DOI: 10.1155/2022/7954333] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022]
Abstract
Liver segmentation and recognition from computed tomography (CT) images is a warm topic in image processing which is helpful for doctors and practitioners. Currently, many deep learning methods are used for liver segmentation that takes a long time to train the model which makes this task challenging and limited to larger hardware resources. In this research, we proposed a very lightweight convolutional neural network (CNN) to extract the liver region from CT scan images. The suggested CNN algorithm consists of 3 convolutional and 2 fully connected layers, where softmax is used to discriminate the liver from background. Random Gaussian distribution is used for weight initialization which achieved a distance-preserving-embedding of the information. The proposed network is known as Ga-CNN (Gaussian-weight initialization of CNN). General experiments are performed on three benchmark datasets including MICCAI SLiver'07, 3Dircadb01, and LiTS17. Experimental results show that the proposed method performed well on each benchmark dataset.
Collapse
Affiliation(s)
- Mubashir Ahmad
- Department of Computer Science and IT, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan
| | - Syed Furqan Qadri
- College of Computer Science and Software Engineering, Computer Vision Institute, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Salman Qadri
- Computer Science Department, MNS-University of Agriculture, Multan 60650, Pakistan
| | - Iftikhar Ahmed Saeed
- Department of Computer Science and IT, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan
| | - Syeda Shamaila Zareen
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Zafar Iqbal
- Department of Computer Science, Ibadat International University, Islamabad 44000, Pakistan
| | - Amerah Alabrah
- Department of Information Systems, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
| | | | - Sk. Md. Mizanur Rahman
- Information and Communication Engineering Technology, School of Engineering Technology and Applied Science, Centennial College, Toronto, Canada
| |
Collapse
|
11
|
Alrefai N, Ibrahim O. Optimized feature selection method using particle swarm intelligence with ensemble learning for cancer classification based on microarray datasets. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07147-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Optimal Deep Learning Enabled Prostate Cancer Detection Using Microarray Gene Expression. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7364704. [PMID: 35310199 PMCID: PMC8930217 DOI: 10.1155/2022/7364704] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/30/2021] [Accepted: 01/15/2022] [Indexed: 12/23/2022]
Abstract
Prostate cancer is the main cause of death over the globe. Earlier detection and classification of cancer is highly important to improve patient health. Previous studies utilized statistical and machine learning (ML) techniques for prostate cancer detection. However, several challenges that exist in the investigation process are the existence of high dimensionality data and less number of training samples. Metaheuristic algorithms can be used to resolve the curse of dimensionality and improve the detection rate of artificial intelligence (AI) techniques. With this motivation, this article develops an artificial intelligence based feature selection with deep learning model for prostate cancer detection (AIFSDL-PCD) using microarray gene expression data. The AIFSDL-PCD technique involves preprocessing to enhance the input data quality. In addition, a chaotic invasive weed optimization (CIWO) based feature selection (FS) technique for choosing an optimal subset of features shows the novelty of the work. Moreover, the deep neural network (DNN) model can be applied as a classification model to detect the existence of prostate cancer in the microarray gene expression data. Furthermore, the hyperparameters of the DNN model can be effectively adjusted by the use of RMSprop optimizer. The design of CIWO based FS technique helps for reducing the computational complexity and improve the classification accuracy. The experimental results highlighted the betterment of the AIFSDL-PCD approach on the other techniques with respect to distinct measures.
Collapse
|