1
|
Consonni FM, Incerti M, Bertolotti M, Ballerini G, Garlatti V, Sica A. Heme catabolism and heme oxygenase-1-expressing myeloid cells in pathophysiology. Front Immunol 2024; 15:1433113. [PMID: 39611159 PMCID: PMC11604077 DOI: 10.3389/fimmu.2024.1433113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024] Open
Abstract
Although the pathological significance of myeloid cell heterogeneity is still poorly understood, new evidence indicates that distinct macrophage subsets are characterized by specific metabolic programs that influence disease onset and progression. Within this scenario, distinct subsets of macrophages, endowed with high rates of heme catabolism by the stress-responsive enzyme heme oxygenase-1 (HO-1), play critical roles in physiologic and pathological conditions. Of relevance, the substrates of HO-1 activity are the heme groups that derive from cellular catabolism and are converted into carbon monoxide (CO), biliverdin and Fe2+, which together elicit anti-apoptotic, anti-inflammatory activities and control oxidative damage. While high levels of expression of HO-1 enzyme by specialized macrophage populations (erythrophagocytes) guarantee the physiological disposal of senescent red blood cells (i.e. erythrocateresis), the action of HO-1 takes on pathological significance in various diseases, and abnormal CO metabolism has been observed in cancer, hematological diseases, hypertension, heart failure, inflammation, sepsis, neurodegeneration. Modulation of heme catabolism and CO production is therefore a feasible therapeutic opportunity in various diseases. In this review we discuss the role of HO-1 in different pathological contexts (i.e. cancer, infections, cardiovascular, immune-mediated and neurodegenerative diseases) and highlight new therapeutic perspectives on the modulation of the enzymatic activity of HO-1.
Collapse
Affiliation(s)
- Francesca Maria Consonni
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Martina Incerti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Milena Bertolotti
- Navita S.r.l., University of Eastern Piedmont A. Avogadro, Novara, Italy
| | - Giulia Ballerini
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Valentina Garlatti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
2
|
Martínez-Casales M, Hernanz R, Alonso MJ. Vascular and Macrophage Heme Oxygenase-1 in Hypertension: A Mini-Review. Front Physiol 2021; 12:643435. [PMID: 33716792 PMCID: PMC7952647 DOI: 10.3389/fphys.2021.643435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Hypertension is one predictive factor for stroke and heart ischemic disease. Nowadays, it is considered an inflammatory disease with elevated cytokine levels, oxidative stress, and infiltration of immune cells in several organs including heart, kidney, and vessels, which contribute to the hypertension-associated cardiovascular damage. Macrophages, the most abundant immune cells in tissues, have a high degree of plasticity that is manifested by polarization in different phenotypes, with the most well-known being M1 (proinflammatory) and M2 (anti-inflammatory). In hypertension, M1 phenotype predominates, producing inflammatory cytokines and oxidative stress, and mediating many mechanisms involved in the pathogenesis of this disease. The increase in the renin-angiotensin system and sympathetic activity contributes to the macrophage mobilization and to its polarization to the pro-inflammatory phenotype. Heme oxygenase-1 (HO-1), a phase II detoxification enzyme responsible for heme catabolism, is induced by oxidative stress, among others. HO-1 has been shown to protect against oxidative and inflammatory insults in hypertension, reducing end organ damage and blood pressure, not only by its expression at the vascular level, but also by shifting macrophages toward the anti-inflammatory phenotype. The regulatory role of heme availability for the synthesis of enzymes involved in hypertension development, such as cyclooxygenase or nitric oxide synthase, seems to be responsible for many of the beneficial HO-1 effects; additionally, the antioxidant, anti-inflammatory, antiapoptotic, and antiproliferative effects of the end products of its reaction, carbon monoxide, biliverdin/bilirubin, and Fe2+, would also contribute. In this review, we analyze the role of HO-1 in hypertensive pathology, focusing on its expression in macrophages.
Collapse
Affiliation(s)
- Marta Martínez-Casales
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Raquel Hernanz
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - María J Alonso
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| |
Collapse
|
3
|
Meng Q, Guo Y, Zhang D, Zhang Q, Li Y, Bian H. Tongsaimai reverses the hypertension and left ventricular remolding caused by abdominal aortic constriction in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112154. [PMID: 31415848 DOI: 10.1016/j.jep.2019.112154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 08/01/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
Treating ventricular remodeling continues to be a clinical challenge. Studies have shown that hypertension is one of the most common causes of ventricular remodeling, and is a major cause of cardiovascular risk in adults. Here, we report that Tongsaimai (TSM), a Chinese traditional medicine, could inhibit arterial pressure and left ventricular pressure to improve hemodynamic abnormalities in rats impaired by abdominal aortic constriction (AAC). Administration of TSM significantly reduced the heart mass index and the left ventricular mass index significantly in AAC rats. TSM could also markedly ameliorate cardiac collagen deposition and reduce the concentration of hydroxyproline in the heart of AAC rats. Moreover, TSM alleviated cardiac histomorphology injury resulting from AAC, including reducing cardiomyocyte hypertrophy, fibrous connective tissue hyperplasia, cardiomyocyte apoptosis, replacement fibrosis and the disorders of myocardial myofibrils, intercalated discs, mitochondria and mitochondrial crista. In addition, the levels of transforming growth factor (TGF) - β and inflammation-related molecules including tumor necrosis factor-α (TNF-α), which were over-expressed with AAC, were decreased by STM. In conclusion, STM could reverse the hypertension and left ventricular remolding caused by abdominal aortic constriction in rats.
Collapse
Affiliation(s)
- Qinghai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| | - Yao Guo
- Nanjing TechBoon Biotechnology Company Limited, Nanjing, Jiangsu, 211899, China.
| | - Dini Zhang
- Department of Environmental Protection, Nanjing Institute of Environmental Sciences, Nanjing, Jiangsu, 210042, China.
| | - Qichun Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| | - Yu Li
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
4
|
Zhang Y, Shi F, Yu Z, Yang A, Zeng M, Wang J, Yin H, Zhang B, Ma X. A cross-sectional study on factors associated with hypertension and genetic polymorphisms of renin-angiotensin-aldosterone system in Chinese hui pilgrims to hajj. BMC Public Health 2019; 19:1223. [PMID: 31484569 PMCID: PMC6727391 DOI: 10.1186/s12889-019-7357-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/22/2019] [Indexed: 01/11/2023] Open
Abstract
Background Hypertension is the leading risk factor for cardiovascular disease (CVD), however, the studies on lifestyle and genetic risks in Chinese pilgrims to Hajj was limited. The aim of this study is to examine the prevalence and associated lifestyle and genetic risks for hypertension among Hui Hajj pilgrims in China. Methods We performed a cross-sectional analysis of data in 1,465 participants aged 30–70 years who participated in a medical examination for Hui Hajj pilgrims from Gansu province, China in 2017. Multiple logistic regression was used to evaluate the association of potential risk factors with hypertension. Deoxyribonucleic acid (DNA) polymorphism was examined at sites in the renin-angiotensin-aldosterone system (RAAS). Results The prevalence of hypertension was 47% among this population. Lifestyle factors such as fried food preference (like vs. dislike: odds ratio [OR]: =1.53, 95% confidence interval [CI]: 1.13–2.09) and barbecued food preference (like vs. dislike: OR = 1.45, 95% CI: 1.06–1.97) were associated with elevated risk of hypertension among Hui pilgrims. Comparing with Angiotensin converting enzyme (ACE) rs4425 AA genotype, TT genotype was associated with hypertension risk (OR = 2.16, 95% CI: 1.17–4.00). Similar results were also observed for ACE rs4437 CC genotype (OR = 1.95, 95% CI: 1.07–3.55), Angiotensin II receptor (ATR) rs129876 AA genotype (OR = 4.10, 95% CI: 2.30–7.32) and Aldosterone synthase (CYP11B2) rs1912 TT genotype (OR = 2.82, 95% CI: 1.57–5.06) genotypes. Conclusions Unhealthy lifestyle and genetic factors were associated with the prevalence of hypertension in Chinese Hui pilgrims and their interactions were also observed. Electronic supplementary material The online version of this article (10.1186/s12889-019-7357-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yinxia Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, China.,Northwest Minzu University, Lanzhou, 730030, China
| | - Fangfang Shi
- Center for Disease Control and Prevention, Kongtong District, Pingliang, Gansu, China
| | - Zhanbiao Yu
- Qingyang People's Hospital, Qingyang, 745000, China
| | - Aimin Yang
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Kowloon, Hong Kong SAR
| | - Maolan Zeng
- Northwest Minzu University, Lanzhou, 730030, China
| | - Jiaoyue Wang
- Gansu International Travel Healthcare Center, Lanzhou, 730000, China
| | - Haiping Yin
- Gansu International Travel Healthcare Center, Lanzhou, 730000, China
| | - Benzhong Zhang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, China.
| |
Collapse
|
5
|
Ma MM, Lin CX, Liu CZ, Gao M, Sun L, Tang YB, Zhou JG, Wang GL, Guan YY. Threonine532 phosphorylation in ClC-3 channels is required for angiotensin II-induced Cl(-) current and migration in cultured vascular smooth muscle cells. Br J Pharmacol 2016; 173:529-44. [PMID: 26562480 DOI: 10.1111/bph.13385] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 10/11/2015] [Accepted: 10/25/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Angiotensin II (AngII) induces migration and growth of vascular smooth muscle cell (VSMC), which is responsible for vascular remodelling in some cardiovascular diseases. Ang II also activates a Cl(-) current, but the underlying mechanism is not clear. EXPERIMENTAL APPROACH The A10 cell line and primary cultures of VSMC from control, ClC-3 channel null mice and WT mice made hypertensive with AngII infusions were used. Techniques employed included whole-cell patch clamp, co-immunoprecipitation, site-specific mutagenesis and Western blotting, KEY RESULTS In VSMC, AngII induced Cl(-) currents was carried by the chloride ion channel ClC-3. This current was absent in VSMC from ClC-3 channel null mice. The AngII-induced Cl(-) current involved interactions between ClC-3 channels and Rho-kinase 2 (ROCK2), shown by N- or C-terminal truncation of ClC-3 protein, ROCK2 siRNA and co-immunoprecipitation assays. Phosphorylation of ClC-3 channels at Thr(532) by ROCK2 was critical for AngII-induced Cl(-) current and VSMC migration. The ClC-3 T532D mutant (mutation of Thr(532) to aspartate), mimicking phosphorylated ClC-3 protein, significantly potentiated AngII-induced Cl(-) current and VSMC migration, while ClC-3 T532A (mutation of Thr(532) to alanine) had the opposite effects. AngII-induced cell migration was markedly decreased in VSMC from ClC-3 channel null mice that was insensitive to Y27632, an inhibitor of ROCK2. In addition, AngII-induced cerebrovascular remodelling was decreased in ClC-3 null mice, possibly by the ROCK2 pathway. CONCLUSIONS AND IMPLICATIONS ClC-3 protein phosphorylation at Thr(532) by ROCK2 is required for AngII-induced Cl(-) current and VSMC migration that are involved in AngII-induced vascular remodelling in hypertension.
Collapse
Affiliation(s)
- Ming-Ming Ma
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Cai-Xia Lin
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Can-Zhao Liu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Min Gao
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Lu Sun
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yong-Bo Tang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jia-Guo Zhou
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Guan-Lei Wang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yong-Yuan Guan
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Volpe M, Battistoni A, Savoia C, Tocci G. Understanding and treating hypertension in diabetic populations. Cardiovasc Diagn Ther 2015; 5:353-63. [PMID: 26543822 DOI: 10.3978/j.issn.2223-3652.2015.06.02] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypertension and diabetes frequently occurs in the same individuals in clinical practice. Moreover, the presence of hypertension does increase the risk of new-onset diabetes, as well as diabetes does promote development of hypertension. Whatever the case, the concomitant presence of these conditions confers a high risk of major cardiovascular complications and promotes the use integrated pharmacological interventions, aimed at achieving the recommended therapeutic targets. While the benefits of lowering abnormal fasting glucose levels in patients with hypertension and diabetes have been consistently demonstrated, the blood pressure (BP) targets to be achieved to get a benefit in patients with diabetes have been recently reconsidered. In the past, randomized clinical trials have, indeed, demonstrated that lowering BP levels to less than 140/90 mmHg was associated to a substantial reduction of the risk of developing macrovascular and microvascular complications in hypertensive patients with diabetes. In addition, epidemiological and clinical reports suggested that "the lower, the better" for BP in diabetes, so that levels of BP even lower than 130/80 mmHg have been recommended. Recent randomized clinical trials, however, designed to evaluate the potential benefits obtained with an intensive antihypertensive therapy, aimed at achieving a target systolic BP level below 120 mmHg as compared to those obtained with less stringent therapy, have challenged the previous recommendations from international guidelines. In fact, detailed analyses of these trials showed a paradoxically increased risk of coronary events, mostly myocardial infarction, in those patients who achieved the lowest BP levels, particularly in the high-risk subsets of hypertensive populations with diabetes. In the light of these considerations, the present article will briefly review the common pathophysiological mechanisms, the potential sites of therapeutic interactions and the currently recommended BP targets to be achieved under pharmacological treatment in hypertension and diabetes.
Collapse
Affiliation(s)
- Massimo Volpe
- 1 Division of Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Phycology, University of Rome Sapienza, Sant'Andrea Hospital, Rome, Italy ; 2 IRCCS Neuromed, Pozzilli (IS), Italy
| | - Allegra Battistoni
- 1 Division of Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Phycology, University of Rome Sapienza, Sant'Andrea Hospital, Rome, Italy ; 2 IRCCS Neuromed, Pozzilli (IS), Italy
| | - Carmine Savoia
- 1 Division of Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Phycology, University of Rome Sapienza, Sant'Andrea Hospital, Rome, Italy ; 2 IRCCS Neuromed, Pozzilli (IS), Italy
| | - Giuliano Tocci
- 1 Division of Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Phycology, University of Rome Sapienza, Sant'Andrea Hospital, Rome, Italy ; 2 IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
7
|
Greater efficacy of aldosterone blockade and diuretic reinforcement vs. dual renin–angiotensin blockade for left ventricular mass regression in patients with resistant hypertension. J Hypertens 2014; 32:2038-44; discussion 2044. [DOI: 10.1097/hjh.0000000000000280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Iruretagoyena JI, Davis W, Bird C, Olsen J, Radue R, Teo Broman A, Kendziorski C, Splinter BonDurant S, Golos T, Bird I, Shah D. Metabolic gene profile in early human fetal heart development. Mol Hum Reprod 2014; 20:690-700. [PMID: 24674993 PMCID: PMC11514182 DOI: 10.1093/molehr/gau026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 02/28/2014] [Accepted: 03/20/2014] [Indexed: 12/14/2022] Open
Abstract
The primitive cardiac tube starts beating 6-8 weeks post fertilization in the developing embryo. In order to describe normal cardiac development during late first and early second trimester in human fetuses this study used microarray and pathways analysis and created a corresponding 'normal' database. Fourteen fetal hearts from human fetuses between 10 and 18 weeks of gestational age (GA) were prospectively collected at the time of elective termination of pregnancy. RNA from recovered tissues was used for transcriptome analysis with Affymetrix 1.0 ST microarray chip. From the amassed data we investigated differences in cardiac development within the 10-18 GA period dividing the sample by GA in three groups: 10-12 (H1), 13-15 (H2) and 16-18 (H3) weeks. A fold change of 2 or above adjusted for a false discovery rate of 5% was used as initial cutoff to determine differential gene expression for individual genes. Test for enrichment to identify functional groups was carried out using the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Array analysis correctly identified the cardiac specific genes, and transcripts reported to be differentially expressed were confirmed by qRT-PCR. Single transcript and Ontology analysis showed first trimester heart expression of myosin-related genes to be up-regulated >5-fold compared with second trimester heart. In contrast the second trimester hearts showed further gestation-related increases in many genes involved in energy production and cardiac remodeling. In conclusion, fetal heart development during the first trimester was dominated by heart-specific genes coding for myocardial development and differentiation. During the second trimester, transcripts related to energy generation and cardiomyocyte communication for contractile coordination/proliferation were more dominant. Transcripts related to fatty acid metabolism can be seen as early as 10 weeks and clearly increase as the heart matures. Retinol receptor and gamma-aminobutyric acid (GABA) receptor transcripts were detected, and have not been described previously in human fetal heart during this period. For the first time global gene expression of heart has been described in human samples to create a database of normal development to understand and compare with known abnormal fetal heart development.
Collapse
Affiliation(s)
- J I Iruretagoyena
- MFM Division, OBGYN Department, University of Wisconsin, Madison, WI, USA
| | - W Davis
- Gene Expression Center, University of Wisconsin, Madison, WI, USA
| | - C Bird
- MFM Division, OBGYN Department, University of Wisconsin, Madison, WI, USA
| | - J Olsen
- Gene Expression Center, University of Wisconsin, Madison, WI, USA
| | - R Radue
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - A Teo Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - C Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | | | - T Golos
- National Primate Research Center, and Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - I Bird
- Reproductive Sciences Division, OBGYN Department, University of Wisconsin, Madison, WI, USA
| | - D Shah
- MFM Division, OBGYN Department, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
9
|
Hao XQ, Zhang SY, Cheng XC, Li M, Sun TW, Zhang JL, Guo W, Li L. Imidapril inhibits right ventricular remodeling induced by low ambient temperature in broiler chickens. Poult Sci 2013; 92:1492-7. [PMID: 23687144 DOI: 10.3382/ps.2012-02671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study explored the effect of imidapril on the right ventricular remodeling induced by low ambient temperature in broiler chickens. Twenty-four broiler chickens were randomly divided into 3 groups (n = 8), including the control group, low temperature group, and imidapril group. Chickens in the control group were raised at normal temperature, whereas chickens in the low temperature group and imidapril group were exposed to low ambient temperature (12 to 18°C) from 14 d of age until 45 d of age. At the same time, chickens in the imidapril group were gavaged with imidapril at 3 mg/kg once daily for 30 d. The thickness of the right ventricular wall was observed with echocardiography. The BW and wet lung weight as well as weight of right and left ventricles and ventricular septum were measured. Both wet lung weight index and right ventricular hypertrophy index were calculated. Pulmonary arterial systolic pressure was assessed according to echocardiography. The expression of ACE and ACE2 mRNA in the right ventricular myocardial tissue was quantified by real-time PCR. Proliferating cell nuclear antigen-positive cells were detected by immunohistostaining. The concentration of angiotensin (Ang) II and Ang (1-7) in the right ventricular myocardial tissue was measured with ELISA. The results showed that right ventricular hypertrophy index, wet lung weight index, pulmonary arterial systolic pressure, expression of ACE mRNA in the right ventricular tissue, Ang II concentration, and the thickness of the right ventricular wall in the low temperature group increased significantly compared with those in the control group and imidapril group. The ACE2 mRNA expression increased 36%, whereas Ang (1-7) concentration decreased significantly in the low temperature group compared with that in the control group and imidapril group. In conclusion, imidapril inhibits right ventricular remodeling induced by low ambient temperature in broiler chickens.
Collapse
Affiliation(s)
- Xue-Qin Hao
- Department of Pharmacy, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | | | | | | | | | | | | | | |
Collapse
|