1
|
Song Y, Cao C, Xu Q, Gu S, Wang F, Huang X, Xu S, Wu E, Huang JH. Piperine Attenuates TBI-Induced Seizures via Inhibiting Cytokine-Activated Reactive Astrogliosis. Front Neurol 2020; 11:431. [PMID: 32655468 PMCID: PMC7325955 DOI: 10.3389/fneur.2020.00431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
Peppers have been used in clinics for a long time and its major component, piperine (PPR), has been proven to be effective in the treatment of seizures. The purpose of this study was to investigate the effects of piperine on early seizures in mice after a traumatic brain injury (TBI) and to explore the mechanism of the drug against the development on TBI. Specific-pathogen-free-grade mice were randomly divided into six dietary groups for a week: control group, TBI group, three piperine groups (low PPR group with 10 mg/kg PPR, medium PPR group with 20 mg/kg PPR, and high PPR group with 40 mg/kg PPR), and a positive control group (200 mg/kg valproate). Except for the control group, all the other groups used Feeney free weight falling method to establish the TBI of closed brain injury in mice, and the corresponding drugs were continuously injected intraperitoneally for 7 days after the brain injury. The results from behavior and electroencephalogram showed that piperine attenuated the subthreshold dose of pentylenetetrazole-induced seizures compared with the TBI group. The western blot results showed that the expression levels of inflammatory factors tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were reduced by piperine. The immunostaining results showed that the brain-derived neurotrophic factor (BDNF) was also reduced by piperine. In addition, positive cell counts of astrocytic fibrillary acidic protein (GFAP) in immuno-fluorescence showed that they were also reduced. Our data show that piperine treatment can reduce the degree of cerebral edema, down-regulate TNF-α, IL-1β, and BDNF, decrease the reactivity of GFAP in the hippocampus, and inhibit TBI-induced seizures.
Collapse
Affiliation(s)
- Yabei Song
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Caiyun Cao
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiuyue Xu
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Simeng Gu
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Psychology, School of Medicine, Jiangsu University, Zhenjiang, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Fushun Wang
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Xi Huang
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, United States
- Department of Surgery, College of Medicine, Texas A&M University, Temple, TX, United States
| | - Jason H. Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, United States
- Department of Surgery, College of Medicine, Texas A&M University, Temple, TX, United States
| |
Collapse
|
2
|
Kim HY, Yang YR, Hwang H, Lee HE, Jang HJ, Kim J, Yang E, Kim H, Rhim H, Suh PG, Kim JI. Deletion of PLCγ1 in GABAergic neurons increases seizure susceptibility in aged mice. Sci Rep 2019; 9:17761. [PMID: 31780806 PMCID: PMC6882884 DOI: 10.1038/s41598-019-54477-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/13/2019] [Indexed: 02/08/2023] Open
Abstract
Synaptic inhibition plays a fundamental role in the information processing of neural circuits. It sculpts excitatory signals and prevents hyperexcitability of neurons. Owing to these essential functions, dysregulated synaptic inhibition causes a plethora of neurological disorders, including epilepsy, autism, and schizophrenia. Among these disorders, epilepsy is associated with abnormal hyperexcitability of neurons caused by the deficits of GABAergic neuron or decreased GABAergic inhibition at synapses. Although many antiepileptic drugs are intended to improve GABA-mediated inhibition, the molecular mechanisms of synaptic inhibition regulated by GABAergic neurons are not fully understood. Increasing evidence indicates that phospholipase Cγ1 (PLCγ1) is involved in the generation of seizure, while the causal relationship between PLCγ1 and seizure has not been firmly established yet. Here, we show that genetic deletion of PLCγ1 in GABAergic neurons leads to handling-induced seizure in aged mice. In addition, aged Plcg1F/F; Dlx5/6-Cre mice exhibit other behavioral alterations, including hypoactivity, reduced anxiety, and fear memory deficit. Notably, inhibitory synaptic transmission as well as the number of inhibitory synapses are decreased in the subregions of hippocampus. These findings suggest that PLCγ1 may be a key determinant of maintaining both inhibitory synapses and synaptic transmission, potentially contributing to the regulation of E/I balance in the hippocampus.
Collapse
Affiliation(s)
- Hye Yun Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yong Ryoul Yang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hongik Hwang
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Republic of Korea
| | - Ha-Eun Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyun-Jun Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jeongyeon Kim
- Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Esther Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, 136-705, Republic of Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, 136-705, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Republic of Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. .,Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea.
| | - Jae-Ick Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
3
|
Iughetti L, Lucaccioni L, Fugetto F, Predieri B, Berardi A, Ferrari F. Brain-derived neurotrophic factor and epilepsy: a systematic review. Neuropeptides 2018; 72:23-29. [PMID: 30262417 DOI: 10.1016/j.npep.2018.09.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/13/2018] [Accepted: 09/19/2018] [Indexed: 12/09/2022]
Abstract
Several in vitro, ex vivo and in vivo studies imply brain-derived neurotrophic factor (BDNF) in the pathophysiology of epilepsy. Aim of our work is to report the most important findings regarding BDNF and its potential role in epilepsy. We targeted those publications addressing both in vitro and in vivo evidences of relationship between BDNF and epilepsy. Basic researches, randomized trials, cohort studies, and reviews were contemplated to give a breadth of clinical data. Medline, CENTRAL, and Science Direct were searched till August 2017 using keywords agreed by the authors. Together with a defined role in developmental and mature brain, BDNF has excitatory effects in neuronal cultures and animal brain slices. Furthermore, both BDNF and its conjugated receptor (i.e. Tropomyosin receptor kinase B or TrkB) are increased in animal models and humans with epilepsy, particularly in the temporal and hippocampal areas. Acute injection of BDNF in brain of mice induces seizures, which are almost or totally abolished blocking its transcription and pathway. Chronic infusion of BDNF is conversely associated with a decreased neuronal excitability, probably via several mechanism including an increase in central levels of neuropeptide Y (NPY), altered conductance of chloride, and downregulation of TrkB. While genetic studies are inconclusive, serum BDNF is more frequently higher in patients with epilepsy and appears to be correlated to severity of disease. Current evidences suggest that inhibiting BDNF-TrkB signaling and reinforcing the NPY system could represent a potential therapeutic strategy for epilepsy, especially for temporal lobe epilepsy.
Collapse
Affiliation(s)
- Lorenzo Iughetti
- Department of Medical and Surgical Sciences of the Mother, Children and Adults. University of Modena and Reggio Emilia, Via del Pozzo n. 71, 41124 Modena, Italy.
| | - Laura Lucaccioni
- Department of Medical and Surgical Sciences of the Mother, Children and Adults. University of Modena and Reggio Emilia, Via del Pozzo n. 71, 41124 Modena, Italy
| | - Francesco Fugetto
- Department of Medical and Surgical Sciences of the Mother, Children and Adults. University of Modena and Reggio Emilia, Via del Pozzo n. 71, 41124 Modena, Italy
| | - Barbara Predieri
- Department of Medical and Surgical Sciences of the Mother, Children and Adults. University of Modena and Reggio Emilia, Via del Pozzo n. 71, 41124 Modena, Italy
| | - Alberto Berardi
- Department of Medical and Surgical Sciences of the Mother, Children and Adults. University of Modena and Reggio Emilia, Via del Pozzo n. 71, 41124 Modena, Italy
| | - Fabrizio Ferrari
- Department of Medical and Surgical Sciences of the Mother, Children and Adults. University of Modena and Reggio Emilia, Via del Pozzo n. 71, 41124 Modena, Italy
| |
Collapse
|
4
|
Ohno Y, Kinboshi M, Shimizu S. Inwardly Rectifying Potassium Channel Kir4.1 as a Novel Modulator of BDNF Expression in Astrocytes. Int J Mol Sci 2018; 19:ijms19113313. [PMID: 30356026 PMCID: PMC6274740 DOI: 10.3390/ijms19113313] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/02/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a key molecule essential for neural plasticity and development, and is implicated in the pathophysiology of various central nervous system (CNS) disorders. It is now documented that BDNF is synthesized not only in neurons, but also in astrocytes which actively regulate neuronal activities by forming tripartite synapses. Inwardly rectifying potassium (Kir) channel subunit Kir4.1, which is specifically expressed in astrocytes, constructs Kir4.1 and Kir4.1/5.1 channels, and mediates the spatial potassium (K+) buffering action of astrocytes. Recent evidence illustrates that Kir4.1 channels play important roles in bringing about the actions of antidepressant drugs and modulating BDNF expression in astrocytes. Although the precise mechanisms remain to be clarified, it seems likely that inhibition (down-regulation or blockade) of astrocytic Kir4.1 channels attenuates K+ buffering, increases neuronal excitability by elevating extracellular K+ and glutamate, and facilitates BDNF expression. Conversely, activation (up-regulation or opening) of Kir4.1 channels reduces neuronal excitability by lowering extracellular K+ and glutamate, and attenuates BDNF expression. Particularly, the former pathophysiological alterations seem to be important in epileptogenesis and pain sensitization, and the latter in the pathogenesis of depressive disorders. In this article, we review the functions of Kir4.1 channels, with a focus on their regulation of spatial K+ buffering and BDNF expression in astrocytes, and discuss the role of the astrocytic Kir4.1-BDNF system in modulating CNS disorders.
Collapse
Affiliation(s)
- Yukihiro Ohno
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Masato Kinboshi
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Saki Shimizu
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
5
|
Lin PH, Tsai SJ, Huang CW, Mu-En L, Hsu SW, Lee CC, Chen NC, Chang YT, Lan MY, Chang CC. Dose-dependent genotype effects of BDNF Val66Met polymorphism on default mode network in early stage Alzheimer's disease. Oncotarget 2018; 7:54200-54214. [PMID: 27494844 PMCID: PMC5342335 DOI: 10.18632/oncotarget.11027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/22/2016] [Indexed: 01/09/2023] Open
Abstract
In humans, brain-derived neurotrophic factor (BDNF) has been shown to play a pivotal role in neurocognition, and its gene contains a functional polymorphism (Val66Met) that may explain individual differences in brain volume and memory-related activity.In this study, we enrolled 186 Alzheimer's disease (AD) patients who underwent 3D T1 magnetic resonance imaging, and explored the gray matter (GM) structural covariance networks (SCN). The patients were divided into three groups according to their genotype: Met/Met (n = 45), Val/Met (n = 86) and Val/Val (n = 55). Seed-based analysis was performed focusing on four SCN networks. Neurobehavioral scores served as the major outcome factor.Only peak cluster volumes of default mode medial temporal lobe network showed significant genotype interactions, of which the interconnected peak clusters showed dose-dependent genotype effects. There were also significant correlations between the cognitive test scores and interconnected-cluster volumes, especially in the orbitofrontal cortex.These findings support the hypothesis that BDNF rs6265 polymorphisms modulate entorhinal cortex-interconnected clusters and the valine allele was associated with stronger structural covariance patterns that determined the cognitive outcomes.
Collapse
Affiliation(s)
- Pin-Hsuan Lin
- Department of Health and Beauty, Shu-Zen College of Medicine and Management, Kaohsiung, Taiwan
| | - Shih-Jen Tsai
- Psychiatric Department of Taipei Veterans General Hospital, Taipei, Taiwan.,Psychiatric Division, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Wei Huang
- Department of Health and Beauty, Shu-Zen College of Medicine and Management, Kaohsiung, Taiwan.,Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Liu Mu-En
- Psychiatric Division, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Wei Hsu
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chen-Chang Lee
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Nai-Ching Chen
- Department of Health and Beauty, Shu-Zen College of Medicine and Management, Kaohsiung, Taiwan.,Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ya-Ting Chang
- Department of Health and Beauty, Shu-Zen College of Medicine and Management, Kaohsiung, Taiwan.,Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Min-Yu Lan
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Kikuyama H, Hanaoka T, Kanazawa T, Yoshida Y, Mizuno T, Toyoda H, Yoneda H. The Mechanism of Anti-Epileptogenesis by Levetiracetam Treatment is Similar to the Spontaneous Recovery of Idiopathic Generalized Epilepsy during Adolescence. Psychiatry Investig 2017; 14:844-850. [PMID: 29209390 PMCID: PMC5714728 DOI: 10.4306/pi.2017.14.6.844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/24/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The anti-epileptogenic drug levetiracetam has anticonvulsant and anti-epileptogenesis effects. Synergy between cell death and inflammation can lead to increased levels of apoptosis inhibitory factors and brain-derived neurotrophic factor, aberrant neurogenesis and extended axon sprouting. Once hyperexcitation of the neural network occurs, spontaneous seizures or epileptogenesis develops. This study investigated whether the anti-epileptogenic effect of levetiracetam is due to its alternate apoptotic activity. METHODS Adult male Noda epileptic rats were treated with levetiracetam or vehicle control for two weeks. mRNA quantification of Bax, Bcl-2 and GAPDH expression were performed from prefrontal cortex and hippocampus tissue samples. RESULTS The levetiracetam-treated group showed a significant increase of Bax/Bcl-2 mRNA expression ratio in the prefrontal cortex than the control group, but no change in the Bax/Bcl-2 mRNA expression ratio in hippocampus. CONCLUSION Idiopathic generalized epilepsy including childhood absence epilepsy develop at childhood and recover spontaneously during adolescence. The aberrant neural excitable network is pruned by a neural-maturing action. This study suggests the mechanism of acquired anti-epileptogenesis by levetiracetam treatment may be similar to spontaneous recovery of idiopathic generalized epilepsy during adolescence.
Collapse
Affiliation(s)
- Hiroki Kikuyama
- Department of Neuropsychiatry, Osaka Medical College, Osaka, Japan
| | - Tadahito Hanaoka
- Department of Neuropsychiatry, Osaka Medical College, Osaka, Japan
| | | | - Yasushi Yoshida
- Department of Neuropsychiatry, Osaka Medical College, Osaka, Japan
| | - Takafumi Mizuno
- Department of Neuropsychiatry, Osaka Medical College, Osaka, Japan
| | - Hirotaka Toyoda
- Department of Neuropsychiatry, Osaka Medical College, Osaka, Japan
| | - Hiroshi Yoneda
- Department of Neuropsychiatry, Osaka Medical College, Osaka, Japan
| |
Collapse
|
7
|
Chen NC, Chuang YC, Huang CW, Lui CC, Lee CC, Hsu SW, Lin PH, Lu YT, Chang YT, Hsu CW, Chang CC. Interictal serum brain-derived neurotrophic factor level reflects white matter integrity, epilepsy severity, and cognitive dysfunction in chronic temporal lobe epilepsy. Epilepsy Behav 2016; 59:147-54. [PMID: 27152461 DOI: 10.1016/j.yebeh.2016.02.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/07/2016] [Accepted: 02/21/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Most patients with temporal lobe epilepsy (TLE) have epileptic foci originating from the medial temporal lobe, particularly the hippocampus. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin growth factor mainly expressed in the hippocampus, though it is not known whether the circulating level of BDNF reflects cognitive performance or white matter structural changes in chronic TLE. METHODS Thirty-four patients with TLE and 22 healthy controls were enrolled for standardized cognitive tests, diffusion tensor imaging, and serum BDNF measurement. The patients were further divided into a subgroup with unilateral TLE (n=23) and a subgroup with bilateral TLE (n=11) for clinical and neuroimaging comparisons. RESULTS There were significantly lower BDNF levels in the patients with TLE compared with the controls, with significance contributed mainly from the subgroup with bilateral TLE, which also had more frequent seizures. The BDNF levels correlated with epilepsy duration (σ=-0.355; p=0.040) and fractional anisotropy (FA) in the left temporal lobe, left thalamus, and right hippocampus. Using a regression model, BDNF level predicted verbal memory score. Further, design fluency scores were predicted by serum BDNF level via the interactions with left temporal FA. CONCLUSIONS Serum BDNF levels reflected longer epilepsy duration, impaired white matter integrity, and poor cognitive function in patients with chronic TLE.
Collapse
Affiliation(s)
- Nai-Ching Chen
- Cognition and Aging Center, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Health and Beauty, Shu-Zen College of Medicine and Management, Taiwan
| | - Yao-Chung Chuang
- Cognition and Aging Center, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Wei Huang
- Cognition and Aging Center, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Health and Beauty, Shu-Zen College of Medicine and Management, Taiwan
| | - Chun-Chung Lui
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chen-Chang Lee
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Wei Hsu
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pin-Hsuan Lin
- Department of Health and Beauty, Shu-Zen College of Medicine and Management, Taiwan
| | - Yan-Ting Lu
- Cognition and Aging Center, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ya-Ting Chang
- Cognition and Aging Center, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Health and Beauty, Shu-Zen College of Medicine and Management, Taiwan
| | - Che-Wei Hsu
- Cognition and Aging Center, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chiung-Chih Chang
- Cognition and Aging Center, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
8
|
Cai Z, Li S, Li S, Song F, Zhang Z, Qi G, Li T, Qiu J, Wan J, Sui H, Guo H. Antagonist Targeting microRNA-155 Protects against Lithium-Pilocarpine-Induced Status Epilepticus in C57BL/6 Mice by Activating Brain-Derived Neurotrophic Factor. Front Pharmacol 2016; 7:129. [PMID: 27303295 PMCID: PMC4885878 DOI: 10.3389/fphar.2016.00129] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/05/2016] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a severe brain disorder affecting numerous patients. Recently, it is inferred that modulation of microRNA-155 (miR-155) could serve as a promising treatment of mesial temporal lobe epilepsy. In the current study, the therapeutic potential of miR-155 antagonist against temporal lobe epilepsy (TLE) was evaluated and the underlying mechanism involved in this regulation was explored. TLE model was induced by lithium-pilocarpine method. The effect of miR-155 antagonist on epilepticus symptoms of TLE mice was assessed using Racine classification and electroencephalogram (EEG) recordings. The expression of brain-derived neurotrophic factor (BDNF) and its association with miR-155 were also assessed with a series of experiments. Our results showed that level of miR-155 was significantly up-regulated after induction of TLE model. Based on the results of EEG and behavior analyses, seizures in mice were alleviated by miR-155 antagonist. Moreover, administration of miR-155 antagonist also significantly increased the level of BDNF. The results of dual luciferase assay and Western blotting showed that miR-155 antagonist exerted its action on status epilepticus by directly regulating the activity of BDNF. Taken all the information together, our results demonstrated that miR-155 antagonist might firstly induce the expression of BDNF, which then contributed to the alleviation of epilepsy in the current study.
Collapse
Affiliation(s)
- Zhengxu Cai
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University Dalian, China
| | - Song Li
- Center for Translational Research on Neurological Diseases, The First Affiliated Hospital of Dalian Medical University Dalian, China
| | - Sheng Li
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University Dalian, China
| | - Fan Song
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University Dalian, China
| | - Zhen Zhang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University Dalian, China
| | - Guanhua Qi
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University Dalian, China
| | - Tianbai Li
- Center for Translational Research on Neurological Diseases, The First Affiliated Hospital of Dalian Medical University Dalian, China
| | - Juanjuan Qiu
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University Dalian, China
| | - Jiajia Wan
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University Dalian, China
| | - Hua Sui
- Central Laboratory, The First Affiliated Hospital of Dalian Medical UniversityDalian, China; Institute of Basic Research of Integrative Medicine, Dalian Medical UniversityDalian, China
| | - Huishu Guo
- Department of Neurology, The First Affiliated Hospital of Dalian Medical UniversityDalian, China; Central Laboratory, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| |
Collapse
|
9
|
Jakobsen LA, Karshenas A, Bach FW, Gazerani P. Alterations in pain responsiveness and serum biomarkers in juvenile myoclonic epilepsy: an age- and gender-matched controlled pilot study. FUTURE NEUROLOGY 2016. [DOI: 10.2217/fnl.16.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Serum levels of several biomarkers along with sensory responsiveness were investigated in juvenile myoclonic epilepsy patients in comparison with healthy controls. Methods: Ten epileptic patients (36.1 ± 3.4 years) and ten gender- and age-matched healthy controls were recruited. Mechanical sensitivity, cold pressor tolerance and serum levels of BDNF, CGRP, PGE2, S100B and TNF-α were investigated. Results: Mechanical sensitivity to pinprick was lower in patients (p < 0.05) while cold pain tolerance threshold was higher. Serum level of BDNF was higher in patients compared with controls (p < 0.01). The same pattern was evident for CGRP (p < 0.05). Serum level of PGE2 was lower in patients (p < 0.01). Conclusion: Juvenile myoclonic epilepsy patients had an altered serum biomarker pattern and sensory perception in comparison with controls.
Collapse
Affiliation(s)
- Lydia Anja Jakobsen
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Ali Karshenas
- Department of Neurology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Parisa Gazerani
- SMI® & Laboratory for Cancer Biology, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
10
|
Martínez-Levy GA, Rocha L, Lubin FD, Alonso-Vanegas MA, Nani A, Buentello-García RM, Pérez-Molina R, Briones-Velasco M, Recillas-Targa F, Pérez-Molina A, San-Juan D, Cienfuegos J, Cruz-Fuentes CS. Increased expression of BDNF transcript with exon VI in hippocampi of patients with pharmaco-resistant temporal lobe epilepsy. Neuroscience 2015; 314:12-21. [PMID: 26621122 DOI: 10.1016/j.neuroscience.2015.11.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 11/30/2022]
Abstract
A putative role of the brain-derived neurotrophic factor (BDNF) in epilepsy has emerged from in vitro and animal models, but few studies have analyzed human samples. We assessed the BDNF expression of transcripts with exons I (BDNFI), II (BDNFII), IV (BDNFIV) and VI (BDNFVI) and methylation levels of promoters 4 and 6 in the hippocampi of patients with pharmaco-resistant temporal lobe epilepsy (TLE) (n=24). Hippocampal sclerosis (HS) and pre-surgical pharmacological treatment were considered as clinical independent variables. A statistical significant increase for the BDNFVI (p<0.05) was observed in TLE patients compared to the autopsy control group (n=8). BDNFVI was also increased in anxiety/depression TLE (N=4) when compared to autopsies or to the remaining group of patients (p<0.05). In contrast, the use of the antiepileptic drug Topiramate (TPM) (N=3) was associated to a decrease in BDNFVI expression (p<0.05) when compared to the remaining group of patients. Methylation levels at the BDNF promoters 4 and 6 were similar between TLE and autopsies and in relation to the use of either Sertraline (SRT) or TPM. These results suggest an up-regulated expression of a specific BDNF transcript in patients with TLE, an effect that seems to be dependent on the use of specific drugs.
Collapse
Affiliation(s)
- G A Martínez-Levy
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico DF, Mexico
| | - L Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - F D Lubin
- Department of Neurobiology, Lubin Lab, University at Birmingham in Alabama, USA
| | - M A Alonso-Vanegas
- Neurosurgery Section, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - A Nani
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico DF, Mexico
| | - R M Buentello-García
- Neurosurgery Section, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - R Pérez-Molina
- Institute of Cell Physiology, National University of Mexico, UNAM, Mexico City, Mexico
| | - M Briones-Velasco
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico DF, Mexico
| | - F Recillas-Targa
- Institute of Cell Physiology, National University of Mexico, UNAM, Mexico City, Mexico
| | - A Pérez-Molina
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico DF, Mexico
| | - D San-Juan
- Clinical Research Department, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - J Cienfuegos
- Neurosurgery Section, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - C S Cruz-Fuentes
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico DF, Mexico.
| |
Collapse
|
11
|
Ho TY, Tang NY, Hsiang CY, Hsieh CL. Uncaria rhynchophylla and rhynchophylline improved kainic acid-induced epileptic seizures via IL-1β and brain-derived neurotrophic factor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:893-900. [PMID: 24636743 DOI: 10.1016/j.phymed.2014.01.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/08/2013] [Accepted: 01/31/2014] [Indexed: 06/03/2023]
Abstract
Uncaria rhynchophylla (UR) has been used for the treatment of convulsions and epilepsy in traditional Chinese medicine. This study reported the major anti-convulsive signaling pathways and effective targets of UR and rhynchophylline (RP) using genomic and immunohistochemical studies. Epileptic seizure model was established by intraperitoneal injection of kainic acid (KA) in rats. Electroencephalogram and electromyogram recordings indicated that UR and RP improved KA-induced epileptic seizures. Toll-like receptor (TLR) and neurotrophin signaling pathways were regulated by UR in both cortex and hippocampus of KA-treated rats. KA upregulated the expression levels of interleukin-1β (IL-1β) and brain-derived neurotrophin factor (BDNF), which were involved in TLR and neurotrophin signaling pathways, respectively. However, UR and RP downregulated the KA-induced IL-1β and BDNF gene expressions. Our findings suggested that UR and RP exhibited anti-convulsive effects in KA-induced rats via the regulation of TLR and neurotrophin signaling pathways, and the subsequent inhibition of IL-1β and BDNF gene expressions.
Collapse
Affiliation(s)
- Tin-Yun Ho
- Graduate Institute of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Nou-Ying Tang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Chien-Yun Hsiang
- Department of Microbiology, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Ching-Liang Hsieh
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Acupuncture Research Center, China Medical University, Taichung 40402, Taiwan; Department of Chinese Medicine, China Medical University Hospital, Taichung 40402, Taiwan.
| |
Collapse
|
12
|
Rocha L. Interaction between electrical modulation of the brain and pharmacotherapy to control pharmacoresistant epilepsy. Pharmacol Ther 2013; 138:211-28. [DOI: 10.1016/j.pharmthera.2013.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 01/07/2013] [Indexed: 12/15/2022]
|
13
|
Casillas-Espinosa PM, Powell KL, O'Brien TJ. Regulators of synaptic transmission: roles in the pathogenesis and treatment of epilepsy. Epilepsia 2013; 53 Suppl 9:41-58. [PMID: 23216578 DOI: 10.1111/epi.12034] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Synaptic transmission is the communication between a presynaptic and a postsynaptic neuron, and the subsequent processing of the signal. These processes are complex and highly regulated, reflecting their importance in normal brain functioning and homeostasis. Sustaining synaptic transmission depends on the continuing cycle of synaptic vesicle formation, release, and endocytosis, which requires proteins such as dynamin, syndapin, synapsin, and synaptic vesicle protein 2A. Synaptic transmission is regulated by diverse mechanisms, including presynaptic modulators of synaptic vesicle formation and release, postsynaptic receptors and signaling, and modulators of neurotransmission. Neurotransmitters released presynaptically can bind to their postsynaptic receptors, the inhibitory γ-aminobutyric acid (GABA)ergic receptors or the excitatory glutamate receptors. Once released, glutamate activates a variety of postsynaptic receptors including α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-D-aspartate (NMDA), kainate, and metabotropic receptors. The activation of the receptors triggers downstream signaling cascades generating a vast array of effects, which can be modulated by a numerous auxiliary regulatory subunits. Moreover, different neuropeptides such as neuropeptide Y, brain-derived neurotrophic factor (BDNF), somatostatin, ghrelin, and galanin, act as regulators of diverse synaptic functions and along with the classic neurotransmitters. Abnormalities in the regulation of synaptic transmission play a critical role in the pathogenesis of numerous brain diseases, including epilepsy. This review focuses on the different mechanisms involved in the regulation of synaptic transmission, which may play a role in the pathogenesis of epilepsy: the presynaptic modulators of synaptic vesicle formation and release, postsynaptic receptors, and modulators of neurotransmission, including the mechanism by which drugs can modulate the frequency and severity of epileptic seizures.
Collapse
Affiliation(s)
- Pablo M Casillas-Espinosa
- The Departments of Medicine and Neurology, The Royal Melbourne Hospital, The Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
14
|
Wang C, Wu H, He F, Jing X, Liang Q, Heng G, Wang L, Gao G, Zhang H. Alleviation of Ferric Chloride-Induced Seizures and Retarded Behaviour in Epileptic Rats by Cortical Electrical Stimulation Treatment. J Int Med Res 2012; 40:266-81. [PMID: 22429366 DOI: 10.1177/147323001204000127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE: To study the effects of low-frequency cortical electrical stimulation (CES) on seizures and behaviour in a rat model of epilepsy induced by ferric chloride (FeCl3). METHODS: Rats were randomly assigned into four groups ( n = 8 per group): normal healthy rats; saline-treated control rats; FeCl3-induced epileptic rats; CES-treated FeCl3-induced epileptic rats. Behavioural tests, analysis of the levels of brain-derived neurotrophic factor (BDNF) protein in brain tissue, and ultrastructural studies using transmission electron microscopy (TEM) were undertaken. RESULTS: CES significantly decreased the number and grade of seizures, and improved rat behaviour, compared with untreated epileptic rats. CES reduced levels of BDNF protein in the forebrain and increased levels of BDNF protein in the hippocampus compared with untreated epileptic rats. TEM showed less damage and ultrastructural changes in the neurons of CES-treated epileptic rats. CONCLUSIONS: CES inhibited seizures in FeCl3-induced epileptic rats and improved their behaviour. These effects might be mediated by altering BDNF protein levels in the brain.
Collapse
Affiliation(s)
- C Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - H Wu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - F He
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - X Jing
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - Q Liang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - G Heng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - L Wang
- Department of Biomedical Engineering, Fourth Military Medical University, ShanXi, Xi'an, China
| | - G Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - H Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| |
Collapse
|