1
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
2
|
Jiang X, Xu Z, Jiang S, Wang H, Xiao M, Shi Y, Wang K. PDZ and LIM Domain-Encoding Genes: Their Role in Cancer Development. Cancers (Basel) 2023; 15:5042. [PMID: 37894409 PMCID: PMC10605254 DOI: 10.3390/cancers15205042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
PDZ-LIM family proteins (PDLIMs) are a kind of scaffolding proteins that contain PDZ and LIM interaction domains. As protein-protein interacting molecules, PDZ and LIM domains function as scaffolds to bind to a variety of proteins. The PDLIMs are composed of evolutionarily conserved proteins found throughout different species. They can participate in cell signal transduction by mediating the interaction of signal molecules. They are involved in many important physiological processes, such as cell differentiation, proliferation, migration, and the maintenance of cellular structural integrity. Studies have shown that dysregulation of the PDLIMs leads to tumor formation and development. In this paper, we review and integrate the current knowledge on PDLIMs. The structure and function of the PDZ and LIM structural domains and the role of the PDLIMs in tumor development are described.
Collapse
Affiliation(s)
| | | | | | | | | | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; (X.J.); (Z.X.); (S.J.); (H.W.); (M.X.)
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; (X.J.); (Z.X.); (S.J.); (H.W.); (M.X.)
| |
Collapse
|
3
|
Lv S, Chen Z, Mi H, Yu X. Cofilin Acts as a Booster for Progression of Malignant Tumors Represented by Glioma. Cancer Manag Res 2022; 14:3245-3269. [PMID: 36452435 PMCID: PMC9703913 DOI: 10.2147/cmar.s389825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/10/2022] [Indexed: 07/20/2023] Open
Abstract
Cofilin, as a depolymerization factor of actin filaments, has been widely studied. Evidences show that cofilin has a role in actin structural reorganization and dynamic regulation. In recent years, several studies have demonstrated a regulatory role for cofilin in the migration and invasion mediated by cell dynamics and epithelial to mesenchymal transition (EMT)/EMT-like process, apoptosis, radiotherapy resistance, immune escape, and transcriptional dysregulation of malignant tumor cells, particularly glioma cells. On this basis, it is practical to evaluate cofilin as a biomarker for predicting tumor metastasis and prognosis. Targeting cofilin regulating kinases, Lin11, Isl-1 and Mec-3 kinases (LIM kinases/LIMKs) and their major upstream molecules inhibits tumor cell migration and invasion and targeting cofilin-mediated mitochondrial pathway induces apoptosis of tumor cells represent effective options for the development of novel anti-malignant tumor drug, especially anti-glioma drugs. This review explores the structure, general biological function, and regulation of cofilin, with an emphasis on the critical functions and prospects for clinical therapeutic applications of cofilin in malignant tumors represented by glioma.
Collapse
Affiliation(s)
- Shihong Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang Medical College, Mudanjiang, 157011, People’s Republic of China
| | - Zhiye Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Hailong Mi
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xingjiang Yu
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
4
|
Collins R, Lee H, Jones DH, Elkins JM, Gillespie JA, Thomas C, Baldwin AG, Jones K, Waters L, Paine M, Atack JR, Ward SE, Grubisha O, Foley DW. Comparative Analysis of Small-Molecule LIMK1/2 Inhibitors: Chemical Synthesis, Biochemistry, and Cellular Activity. J Med Chem 2022; 65:13705-13713. [PMID: 36205722 PMCID: PMC9619402 DOI: 10.1021/acs.jmedchem.2c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 11/30/2022]
Abstract
LIM domain kinases 1 and 2 (LIMK1 and LIMK2) regulate actin dynamics and subsequently key cellular functions such as proliferation and migration. LIMK1 and LIMK2 phosphorylate and inactivate cofilin leading to increased actin polymerization. As a result, LIMK inhibitors are emerging as a promising treatment strategy for certain cancers and neurological disorders. High-quality chemical probes are required if the role of these kinases in health and disease is to be understood. To that end, we report the results of a comparative assessment of 17 reported LIMK1/2 inhibitors in a variety of in vitro enzymatic and cellular assays. Our evaluation has identified three compounds (TH-257, LIJTF500025, and LIMKi3) as potent and selective inhibitors suitable for use as in vitro and in vivo pharmacological tools for the study of LIMK function in cell biology.
Collapse
Affiliation(s)
- Ross Collins
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Hyunah Lee
- Centre
for Medicines Discovery, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - D. Heulyn Jones
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Jonathan M. Elkins
- Centre
for Medicines Discovery, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Jason A. Gillespie
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Carys Thomas
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Alex G. Baldwin
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Kimberley Jones
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Loren Waters
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Marie Paine
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - John R. Atack
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Simon E. Ward
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Olivera Grubisha
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - David W. Foley
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
5
|
Liu X, Song Q, Wang D, Liu Y, Zhang Z, Fu W. LIMK1: A promising prognostic and immune infiltration indicator in colorectal cancer. Oncol Lett 2022; 24:234. [PMID: 35720504 PMCID: PMC9185146 DOI: 10.3892/ol.2022.13354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/10/2022] [Indexed: 12/09/2022] Open
Abstract
Studies have shown that LIM domain kinase 1 (LIMK1) is upregulated in a variety of tumors and may be a potential detection target. The present study analyzed the expression difference of LIMK1 and its relationship with tumor clinicopathological characteristics and tumor microenvironment in colorectal cancer (CRC). The transcriptomic data of LIMK1 with CRC were downloaded from The Cancer Genome Atlas (TCGA) database and GEO databases for analyzing the expression of LIMK1 mRNA and the correlation with the prognosis of patients. The protein expression of LIMK1 was obtained from the Human Protein Atlas. The receiver operating characteristic (ROC) curve and Kaplan-Meier was used to evaluate the expression characteristics and prognostic differences of LIMK1 in CRC. STRING was used to analyze co-expression genes of LIMK1. The tumor immune estimation resource was applied to the correlation between LIMK1 expression and immune infiltrates. The present study verified LIMK1 expression at the level of clinical samples collected from the Tianjin Medical University General Hospital and cell lines using reverse transcription-quantitative PCR. The mRNA and protein expression of LIMK1 were both upregulated in tumor tissues compared with adjacent tissues in CRC. The expression levels of LIMK1 were positively associated with clinical-pathological features of CRC including lymphatic invasion (P=4.00×10−2) and high pathologic stages (P=4.20×10−2). The AUC value of LIMK1 in CRC was 0.937 (95% CI: 0.918-0.957) through ROC analysis. Under the best cut-off value (4.009), the sensitivity and specificity were 98 and 81.9%. LIMK1 expression was mainly related to CD4+ T cells, macrophages and dendritic cells in the immune microenvironment of CRC. In conclusion, the high expression of LIMK1 in CRC was closely related to the clinical features and prognosis of patients. Therefore, LIMK1 was a promising prognostic indicator and a potential target for immunotherapy in CRC.
Collapse
Affiliation(s)
- Xin Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Qiang Song
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Daohan Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yubiao Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhixiang Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
6
|
Lu G, Zhou Y, Zhang C, Zhang Y. Upregulation of LIMK1 Is Correlated With Poor Prognosis and Immune Infiltrates in Lung Adenocarcinoma. Front Genet 2021; 12:671585. [PMID: 34149814 PMCID: PMC8209497 DOI: 10.3389/fgene.2021.671585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/06/2021] [Indexed: 01/10/2023] Open
Abstract
Background Protein-coding gene LIM Domain Kinase 1 (LIMK1) is upregulated in various tumors and reported to promote tumor invasion and metastasis. However, the prognostic values of LIMK1 and correlation with immune infiltrates in lung adenocarcinoma are still not understood. Therefore, we evaluated the prognostic role of LIMK1 and its correlation with immune infiltrates in lung adenocarcinoma. Methods Transcriptional expression profiles of LIMK1 between lung adenocarcinoma tissues and normal tissues were downloaded from the Cancer Genome Atlas (TCGA). The LIMK1 protein expression was assessed by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the Human Protein Atlas. Receiver operating characteristic (ROC) curve was used to differentiate lung adenocarcinoma from adjacent normal tissues. Kaplan-Meier method was conducted to assess the effect of LIMK1 on survival. Protein-protein interaction (PPI) networks were constructed by the STRING. Functional enrichment analyses were performed using the “ClusterProfiler” package. The relationship between LIMK1 mRNA expression and immune infiltrates was determined by tumor immune estimation resource (TIMER) and tumor-immune system interaction database (TISIDB). Results The expression of LIMK1 in lung adenocarcinoma tissues was significantly upregulated than those in adjacent normal tissues. Increased LIMK1 mRNA expression was associated with lymph node metastases and high TNM stage. The ROC curve analysis showed that with a cutoff level of 4.908, the accuracy, sensitivity, and specificity for LIMK1 differentiate lung adenocarcinoma from adjacent controls were 69.5, 93.2, and 71.9%, respectively. Kaplan-Meier survival analysis showed lung adenocarcinoma patients with high- LIMK1 had a worse prognosis than those with low- LIMK1 (43.1 vs. 55.1 months, P = 0.028). Correlation analysis indicated LIMK1 mRNA expression was correlated with tumor purity and immune infiltrates. Conclusion Upregulated LIMK1 is significantly correlated with poor survival and immune infiltrates in lung adenocarcinoma. Our study suggests that LIMK1 can be used as a biomarker of poor prognosis and potential immune therapy target in lung adenocarcinoma.
Collapse
Affiliation(s)
- Guojun Lu
- Department of Respiratory Medicine, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Ying Zhou
- Central Laboratory, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Chenxi Zhang
- Central Laboratory, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yu Zhang
- Department of Respiratory Medicine, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Wang X, Zou S, Ren T, Zhao LJ, Yu LF, Li XY, Yan X, Zhang LJ. Alantolactone suppresses the metastatic phenotype and induces the apoptosis of glioblastoma cells by targeting LIMK kinase activity and activating the cofilin/G‑actin signaling cascade. Int J Mol Med 2021; 47:68. [PMID: 33649781 PMCID: PMC7952248 DOI: 10.3892/ijmm.2021.4901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/05/2021] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma (GBM) is the most common aggressive brain tumor and is associated with an extremely poor prognosis, as the current standard of care treatments have limited efficacy. Natural compounds have attracted increasing attention as potential anticancer drugs. Alantolactone (ATL) is a natural small molecule inhibitor, that has antitumor properties. In the present study, U87MG and U251 cells were treated ATL and changes in actin/G-actin/F-actin/cofilin pathway were detected in whole cells, in the cytoplasm and mitochondria by western blot analysis. Immunofluorescence and immunoprecipitation analysis identified changes in the expression levels of target proteins and interactions, respectively. A LIMK enzyme inhibitor was also applied to assess the effects of ATL on the migration and invasion of GBM cells. Flow cytometry was used to detect the levels of apoptosis of GBM cells. The expression of matrix metalloproteinase (MMP)-2/MMP-9, caspase-3/caspase-9/poly(ADP-ribose) polymerase (PARP)/cytochrome c, were determined by western blot analysis to assess the effects of targeting LIMK. The in vitro findings were verified in vivo by characterizing changes in the expression of cofilin/LIMK in xenograft tumors in immunodeficient mice. It was found that ATL activated cofilin through the targeted inhibition of LIMK enzyme activity and it thus upregulated the ratio of G/F actin, and inhibited GBM cell migration and invasion. Conversely, the activation of cofilin and G-actin could be co-transferred to the mitochondria to initiate the mitochondrial-cytochrome c pathway to induce apoptosis. On the whole, the findings of the present study further illustrate the molecular mechanisms through which ATL inhibits the metastatic phenotype of GBM cells and induces apoptosis. Given previous findings, it can be deduced that ATL can function through multiple pathways and has multiple targets in GBM models, highlighting its potential for use in clinical applications.
Collapse
Affiliation(s)
- Xun Wang
- Department of Neurosurgery, The Third People's Hospital of Dalian, Non‑Directly Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Shuang Zou
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Tong Ren
- Department of Neurosurgery, The Third People's Hospital of Dalian, Non‑Directly Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Li-Jun Zhao
- Department of Ophthalmology, The Third People's Hospital of Dalian, Non‑Directly Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Li-Fei Yu
- Department of Ophthalmology, The Third People's Hospital of Dalian, Non‑Directly Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Xiang-Yu Li
- Department of Neurosurgery, The Third People's Hospital of Dalian, Non‑Directly Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Xin Yan
- Department of Medical Oncology, The Third People's Hospital of Dalian, Non‑Directly Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Li-Jun Zhang
- Department of Ophthalmology, The Third People's Hospital of Dalian, Non‑Directly Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| |
Collapse
|
8
|
Huang J, Wu Y, Lin Y, Cai H, Chen S, Sun X, Li X, Wei Y, Zheng Q, Xu N, Xue X. Up-regulation of LIMK1 expression in prostate cancer is correlated with poor pathological features, lymph node metastases and biochemical recurrence. J Cell Mol Med 2020; 24:4698-4706. [PMID: 32168432 PMCID: PMC7176864 DOI: 10.1111/jcmm.15138] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 01/12/2023] Open
Abstract
This study aimed to explore the association between LIM domain kinase 1 (LIMK1) expression in prostate cancer (PCa) tissues with advanced pathological features, lymph node metastases and biochemical recurrence. A total of 279 PCa specimens from patients who underwent radical prostatectomy and 50 benign prostatic hyperplasia (BPH) specimens were collected to construct tissue microarray, which were subjected to immunohistochemical staining for LIMK1 expression subsequently. Logistic and Cox regression analysis were used to evaluate the relationship between LIMK1 expression and clinicopathological features of patients with PCa. Immunohistochemical staining assay demonstrated that LIMK1 expression was significantly higher in PCa than BPH specimens (77.1% vs 26.0%; P < .001). LIMK1 expression was significantly higher in positive lymph node specimens than corresponding PCa specimens (P = .002; P < .001). Up-regulation of LIMK1 was associated with prostate volume, prostate-specific antigen, prostate-specific antigen density, Gleason score, T stage, lymph node metastases, extracapsular extension and seminal vesicle invasion, and positive surgical margin. Multivariate logistic regression analysis demonstrated that LIMK1 was an independent risk factor for PCa lymph node metastasis (P < .05). Multivariate Cox regression analysis revealed that the up-regulation of LIMK1 was an independent risk factor for biochemical recurrence. Kaplan-Meier analysis indicated that up-regulation LIMK1 was associated with shortened biochemical-free survival (BFS) after radical prostatectomy (P < .001). In conclusion, LIMK1 was significantly up-regulated in PCa and positive lymph node specimens and correlated with lymph node metastasis and shortened BFS of PCa. The underlying molecular mechanism of LIMK1 in PCa should be further evaluated.
Collapse
Affiliation(s)
- Jin‐Bei Huang
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Yu‐Peng Wu
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Yun‐Zhi Lin
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Hai Cai
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Shao‐Hao Chen
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Xiong‐Lin Sun
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Xiao‐Dong Li
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Yong Wei
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Qing‐Shui Zheng
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Ning Xu
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Xue‐Yi Xue
- Departments of UrologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| |
Collapse
|
9
|
Chen P, Zeng M, Zhao Y, Fang X. Upregulation of Limk1 caused by microRNA-138 loss aggravates the metastasis of ovarian cancer by activation of Limk1/cofilin signaling. Oncol Rep 2014; 32:2070-6. [PMID: 25190487 DOI: 10.3892/or.2014.3461] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/24/2014] [Indexed: 11/06/2022] Open
Abstract
LIM kinase 1 (Limk1) is associated with cell prolife-ration and metastasis and its dysregulated expression has been observed in many types of cancer. The present study aimed to examine the role of Limk1 in the development of ovarian cancer, as well as the underlying molecular mechanism involved. The results showed that increased Limk1 and decreased miR-138 expression co-existed in ovarian cancer. Furthermore, knockout of Limk1 or the overexpression of miR-138 resulted in reduced cell invasion and migration, while silencing of miR-138 led to enhancement of the invasion and migration of ovarian cancer cells. Cell growth was inhibited by the overexpression of miR-138, although not by the knockout of Limk1. miR-138 directly targeted Limk1 and inhibited ovarian cancer cell growth by PCNA and Bcl-2. Moreover, Limk1/cofilin/p-cofilin is likely a critical signaling pathway involving in miR-138 modulation of ovarian cancer cell metastasis. The results provide evidence supporting miR-138/Limk1 as a novel diagnostic or therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Puxiang Chen
- Department of Gynecology and Obstetrics, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Mengjun Zeng
- Department of Gynecology and Obstetrics, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yan Zhao
- Department of Gynecology and Obstetrics, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xiaolin Fang
- Department of Gynecology and Obstetrics, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
10
|
Zhou J, Liu R, Luo C, Zhou X, Xia K, Chen X, Zhou M, Zou Q, Cao P, Cao K. MiR-20a inhibits cutaneous squamous cell carcinoma metastasis and proliferation by directly targeting LIMK1. Cancer Biol Ther 2014; 15:1340-9. [PMID: 25019203 DOI: 10.4161/cbt.29821] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND MicroRNA-20a (miR-20a) plays a key role in tumorigenesis and progression. But its function is reverse in different kinds of malignant tumor, and its role and mechanism in cutaneous squamous cell carcinoma (CSCC) remains unclear. OBJECT To determine the miR-20a's roles in CSCC and confirm whether LIMK1 is a direct target gene of miR-20a. METHODS First miR-20a and LIMK1 expression levels were detected in six pairs of CSCC tissues and corresponding normal skin by qRT-PCR. Then MTT assays and colony formation assays were performed to evaluate the impact of miR-20a on cell proliferation. In addition, scratch migration assays and transwell invasion assays were performed to check miR-20a's effect on cell metastasis. Since LIMK1 (LIM kinase-1) was predicted as a target gene of miR-20a, the changes of LIMK1 protein and mRNA were measured by western blot and qRT-RCR methods after miR-20a overexpression. Moreover the dual reporter gene assay was performed to confirm whether LIMK1 is a direct target gene of miR-20a. Finally LIMK1 mRNA and miR-20a in other 30 cases of CSCC pathological specimens were determined and a correlation analysis was evaluated. RESULTS The miR-20a significantly low-expressed in CSCC tissues compared with that in matched normal tissues while LIMK1 has a relative higher expression. MiR-20a inhibited A431 and SCL-1 proliferation and metastasis. Both of LIMK1 protein and mRNA levels were downregulated after miR-20a overexpression. The dual reporter gene assays revealed that LIMK1 is a direct target gene of miR-20a. Furthermore, qRT-PCR results of LIMK1 mRNA and miR-20a in 30 cases of CSCC pathological specimens showed miR-20a is inversely correlated with LIMK1 expression. CONCLUSION Our study demonstrated that miR-20a is involved in the tumor inhibition of CSCC by directly targeting LIMK1 gene. This finding provides potential novel strategies for therapeutic interventions of CSCC.
Collapse
Affiliation(s)
- Jianda Zhou
- Department of Plastic and Reconstructive Surgery; Third Xiangya Hospital; Central South University; Changsha City, Hunan, PR China
| | - Rui Liu
- Department of Plastic and Reconstructive Surgery; Third Xiangya Hospital; Central South University; Changsha City, Hunan, PR China
| | - Chengqun Luo
- Department of Plastic and Reconstructive Surgery; Third Xiangya Hospital; Central South University; Changsha City, Hunan, PR China
| | - Xiao Zhou
- Department of Oncoplastic and Reconstructive Surgery; The Affiliated Tumor Hospital of Xiangya Medical School; Changsha City, Hunan, PR China
| | - Kun Xia
- State Key Laboratory of Medical Genetics; Changsha City, Hunan, PR China
| | - Xiang Chen
- Department of Dermatology; Xiangya Hospital; Changsha City, Hunan, PR China
| | - Ming Zhou
- Cancer Research Institute; Key Laboratory of Carcinogenesis of Ministry of Health; Changsha City, Hunan, PR China
| | - Qiong Zou
- Department of Pathology; Third Xiangya Hospital; Central South University; Changsha City, Hunan, PR China
| | - Peiguo Cao
- Department of Oncology; Third Xiangya Hospital; Central South University; Changsha City, Hunan, PR China
| | - Ke Cao
- Department of Oncology; Third Xiangya Hospital; Central South University; Changsha City, Hunan, PR China
| |
Collapse
|