1
|
Vékony RG, Tamás A, Lukács A, Ujfalusi Z, Lőrinczy D, Takács-Kollár V, Bukovics P. Exploring the Role of Neuropeptide PACAP in Cytoskeletal Function Using Spectroscopic Methods. Int J Mol Sci 2024; 25:8063. [PMID: 39125632 PMCID: PMC11311697 DOI: 10.3390/ijms25158063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The behavior and presence of actin-regulating proteins are characteristic of various clinical diseases. Changes in these proteins significantly impact the cytoskeletal and regenerative processes underlying pathological changes. Pituitary adenylate cyclase-activating polypeptide (PACAP), a cytoprotective neuropeptide abundant in the nervous system and endocrine organs, plays a key role in neuron differentiation and migration by influencing actin. This study aims to elucidate the role of PACAP as an actin-regulating polypeptide, its effect on actin filament formation, and the underlying regulatory mechanisms. We examined PACAP27, PACAP38, and PACAP6-38, measuring their binding to actin monomers via fluorescence spectroscopy and steady-state anisotropy. Functional polymerization tests were used to track changes in fluorescent intensity over time. Unlike PACAP27, PACAP38 and PACAP6-38 significantly reduced the fluorescence emission of Alexa488-labeled actin monomers and increased their anisotropy, showing nearly identical dissociation equilibrium constants. PACAP27 showed weak binding to globular actin (G-actin), while PACAP38 and PACAP6-38 exhibited robust interactions. PACAP27 did not affect actin polymerization, but PACAP38 and PACAP6-38 accelerated actin incorporation kinetics. Fluorescence quenching experiments confirmed structural changes upon PACAP binding; however, all studied PACAP fragments exhibited the same effect. Our findings indicate that PACAP38 and PACAP6-38 strongly bind to G-actin and significantly influence actin polymerization. Further studies are needed to fully understand the biological significance of these interactions.
Collapse
Affiliation(s)
- Roland Gábor Vékony
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| | - Andrea Tamás
- Department of Anatomy, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - András Lukács
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| | - Zoltán Ujfalusi
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| | - Dénes Lőrinczy
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| | - Veronika Takács-Kollár
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| | - Péter Bukovics
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.G.V.); (A.L.); (Z.U.); (D.L.); (V.T.-K.)
| |
Collapse
|
2
|
Šorli J, Lenasi H. The Effect of Acute Hyperglycaemia Induced by Oral Glucose Load on Heart Rate Variability and Skin Microvascular Reactivity in Young Adults. Life (Basel) 2023; 14:56. [PMID: 38255671 PMCID: PMC10817604 DOI: 10.3390/life14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
We aimed to elucidate the effects of acute hyperglycaemia, induced by an oral glucose tolerance test (OGTT), on the autonomic nervous system (ANS) and skin microvascular reactivity at the time point of peak plasma glucose concentration (cglc) in 20 young, healthy participants. We assessed their heart rate variability (HRV) as a measure of the ANS activity and the parameters of post-occlusive reactive hyperaemia (PORH) to estimate skin microvascular reactivity as measured by laser Doppler (LD) fluxmetry. The tests were repeated 30 min after a standard OGTT (75 g glucose dissolved in 250 mL water) and, in a separate control experiment, after drinking the same amount of water. Participants had their cglc and serum insulin measured at three consecutive time-points according to the testing protocol. The low-frequency (LF) spectral power, the LF to high-frequency (LF/HF) ratio, and the diastolic blood pressure increased significantly more after water than after OGTT, and there was a trend of the peak LD flux of PORH decreasing more after OGTT than after water. Significant correlations between some PORH and all the HRV parameters and cglc increase after OGTT were found, implying diminished vascular reactivity evoked by hyperglycaemia in healthy subjects with lower glucose tolerance.
Collapse
Affiliation(s)
- Jernej Šorli
- General Hospital Dr. Franc Derganc, 5290 Šempeter pri Gorici, Slovenia
| | - Helena Lenasi
- Institute of Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Protective Effects of PACAP in a Rat Model of Diabetic Neuropathy. Int J Mol Sci 2021; 22:ijms221910691. [PMID: 34639032 PMCID: PMC8509403 DOI: 10.3390/ijms221910691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023] Open
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide with a widespread occurrence and diverse effects. PACAP has well-documented neuro- and cytoprotective effects, proven in numerous studies. Among others, PACAP is protective in models of diabetes-associated diseases, such as diabetic nephropathy and retinopathy. As the neuropeptide has strong neurotrophic and neuroprotective actions, we aimed at investigating the effects of PACAP in a rat model of streptozotocin-induced diabetic neuropathy, another common complication of diabetes. Rats were treated with PACAP1-38 every second day for 8 weeks starting simultaneously with the streptozotocin injection. Nerve fiber morphology was examined with electron microscopy, chronic neuronal activation in pain processing centers was studied with FosB immunohistochemistry, and functionality was assessed by determining the mechanical nociceptive threshold. PACAP treatment did not alter body weight or blood glucose levels during the 8-week observation period. However, PACAP attenuated the mechanical hyperalgesia, compared to vehicle-treated diabetic animals, and it markedly reduced the morphological signs characteristic for neuropathy: axon–myelin separation, mitochondrial fission, unmyelinated fiber atrophy, and basement membrane thickening of endoneurial vessels. Furthermore, PACAP attenuated the increase in FosB immunoreactivity in the dorsal spinal horn and periaqueductal grey matter. Our results show that PACAP is a promising therapeutic agent in diabetes-associated complications, including diabetic neuropathy.
Collapse
|
4
|
Moody TW, Jensen RT. Pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal peptide [Part 1]: biology, pharmacology, and new insights into their cellular basis of action/signaling which are providing new therapeutic targets. Curr Opin Endocrinol Diabetes Obes 2021; 28:198-205. [PMID: 33449573 PMCID: PMC7957349 DOI: 10.1097/med.0000000000000617] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To discuss recent advances of vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating polypeptide (PACAP) receptors in pharmacology, cell biology, and intracellular signaling in cancer. RECENT FINDINGS Recent studies provide new insights into the pharmacology, cell biology of the VIP/PACAP system and show they play important roles in a number of human cancers, as well as in tumor growth/differentiation and are providing an increased understanding of their signaling cascade that is suggesting new treatment targets/approaches. SUMMARY Recent insights from studies of VIP/PACAP and their receptors in both central nervous system disorders and inflammatory disorders suggest possible new treatment approaches. Elucidation of the exact roles of VIP/PACAP in these disorders and development of new therapeutic approaches involving these peptides have been limited by lack of specific pharmacological tools, and exact signaling mechanisms involved, mediating their effects. Reviewed here are recent insights from the elucidation of structural basis for VIP/PACAP receptor activation as well as the signaling cascades mediating their cellular effects (using results primarily from the study of their effects in cancer) that will likely lead to novel targets and treatment approaches in these diseases.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, National Cancer Institute, Center for Cancer Training
| | - Robert T Jensen
- National Institutes of Health, National Institute of Diabetes, Digestive and Kidney Diseases, Digestive Diseases Branch, Bethesda, Maryland 20892, USA
| |
Collapse
|
5
|
Szabo D, Sarszegi Z, Polgar B, Saghy E, Nemeth A, Reglodi D, Makkos A, Gorbe A, Helyes Z, Ferdinandy P, Herczeg R, Gyenesei A, Cziraki A, Tamas A. PACAP-38 in Acute ST-Segment Elevation Myocardial Infarction in Humans and Pigs: A Translational Study. Int J Mol Sci 2021; 22:2883. [PMID: 33809145 PMCID: PMC8002092 DOI: 10.3390/ijms22062883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Acute myocardial infarction (MI) is one of the most common causes of death worldwide. Pituitary adenylate cyclase activating polypeptide (PACAP) is a cardioprotective neuropeptide expressing its receptors in the cardiovascular system. The aim of our study was to examine tissue PACAP-38 in a translational porcine MI model and plasma PACAP-38 levels in patients with ST-segment elevation myocardial infarction (STEMI). Significantly lower PACAP-38 levels were detected in the non-ischemic region of the left ventricle (LV) in MI heart compared to the ischemic region of MI-LV and also to the Sham-operated LV in porcine MI model. In STEMI patients, plasma PACAP-38 level was significantly higher before percutaneous coronary intervention (PCI) compared to controls, and decreased after PCI. Significant negative correlation was found between plasma PACAP-38 and troponin levels. Furthermore, a significant effect was revealed between plasma PACAP-38, hypertension and HbA1c levels. This was the first study showing significant changes in cardiac tissue PACAP levels in a porcine MI model and plasma PACAP levels in STEMI patients. These results suggest that PACAP, due to its cardioprotective effects, may play a regulatory role in MI and could be a potential biomarker or drug target in MI.
Collapse
Affiliation(s)
- Dora Szabo
- Heart Institute, Medical School, University of Pecs, 7624 Pecs, Hungary; (D.S.); (Z.S.); (A.N.); (A.C.)
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Zsolt Sarszegi
- Heart Institute, Medical School, University of Pecs, 7624 Pecs, Hungary; (D.S.); (Z.S.); (A.N.); (A.C.)
| | - Beata Polgar
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Eva Saghy
- MTA-SE System Pharmacology Research Group and Cardiovascular and Metabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (E.S.); (A.M.); (A.G.); (P.F.)
| | - Adam Nemeth
- Heart Institute, Medical School, University of Pecs, 7624 Pecs, Hungary; (D.S.); (Z.S.); (A.N.); (A.C.)
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Andras Makkos
- MTA-SE System Pharmacology Research Group and Cardiovascular and Metabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (E.S.); (A.M.); (A.G.); (P.F.)
| | - Aniko Gorbe
- MTA-SE System Pharmacology Research Group and Cardiovascular and Metabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (E.S.); (A.M.); (A.G.); (P.F.)
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, 7624 Pecs, Hungary;
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (R.H.); (A.G.)
- PharmInVivo Ltd., 7629 Pecs, Hungary
| | - Peter Ferdinandy
- MTA-SE System Pharmacology Research Group and Cardiovascular and Metabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (E.S.); (A.M.); (A.G.); (P.F.)
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Robert Herczeg
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (R.H.); (A.G.)
| | - Attila Gyenesei
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary; (R.H.); (A.G.)
| | - Attila Cziraki
- Heart Institute, Medical School, University of Pecs, 7624 Pecs, Hungary; (D.S.); (Z.S.); (A.N.); (A.C.)
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pecs, 7624 Pecs, Hungary;
| |
Collapse
|
6
|
D’Amico AG, Maugeri G, Musumeci G, Reglodi D, D’Agata V. PACAP and NAP: Effect of Two Functionally Related Peptides in Diabetic Retinopathy. J Mol Neurosci 2021; 71:1525-1535. [DOI: 10.1007/s12031-020-01769-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
|
7
|
Toth D, Szabo E, Tamas A, Juhasz T, Horvath G, Fabian E, Opper B, Szabo D, Maugeri G, D'Amico AG, D'Agata V, Vicena V, Reglodi D. Protective Effects of PACAP in Peripheral Organs. Front Endocrinol (Lausanne) 2020; 11:377. [PMID: 32765418 PMCID: PMC7381171 DOI: 10.3389/fendo.2020.00377] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide widely distributed in the nervous system, where it exerts strong neuroprotective effects. PACAP is also expressed in peripheral organs but its peripheral protective effects have not been summarized so far. Therefore, the aim of the present paper is to review the existing literature regarding the cytoprotective effects of PACAP in non-neuronal cell types, peripheral tissues, and organs. Among others, PACAP has widespread expression in the digestive system, where it shows protective effects in various intestinal pathologies, such as duodenal ulcer, small bowel ischemia, and intestinal inflammation. PACAP is present in both the exocrine and endocrine pancreas as well as liver where it reduces inflammation and steatosis by interfering with hepatic pathology related to obesity. It is found in several exocrine glands and also in urinary organs, where, with its protective effects being mainly published regarding renal pathologies, PACAP is protective in numerous conditions. PACAP displays anti-inflammatory effects in upper and lower airways of the respiratory system. In the skin, it is involved in the development of inflammatory pathology such as psoriasis and also has anti-allergic effects in a model of contact dermatitis. In the non-neuronal part of the visual system, PACAP showed protective effects in pathological conditions of the cornea and retinal pigment epithelial cells. The positive role of PACAP has been demonstrated on the formation and healing processes of cartilage and bone where it also prevents osteoarthritis and rheumatoid arthritis development. The protective role of PACAP was also demonstrated in the cardiovascular system in different pathological processes including hyperglycaemia-induced endothelial dysfunction and age-related vascular changes. In the heart, PACAP protects against ischemia, oxidative stress, and cardiomyopathies. PACAP is also involved in the protection against the development of pre-senile systemic amyloidosis, which is presented in various peripheral organs in PACAP-deficient mice. The studies summarized here provide strong evidence for the cytoprotective effects of the peptide. The survival-promoting effects of PACAP depend on a number of factors which are also shortly discussed in the present review.
Collapse
Affiliation(s)
- Denes Toth
- Department of Forensic Medicine, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Edina Szabo
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Tamas Juhasz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Gabriella Horvath
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Eszter Fabian
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Balazs Opper
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Dora Szabo
- Heart Institute, Medical School, University of Pécs, Pécs, Hungary
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Agata G. D'Amico
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Viktoria Vicena
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
- *Correspondence: Dora Reglodi
| |
Collapse
|
8
|
Epigenetic Profiles Reveal That ADCYAP1 Serves as Key Molecule in Gestational Diabetes Mellitus. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:6936175. [PMID: 31485258 PMCID: PMC6710731 DOI: 10.1155/2019/6936175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/21/2019] [Accepted: 07/24/2019] [Indexed: 11/17/2022]
Abstract
Gestational diabetes mellitus (GDM) refers to the condition which shows abnormal glucose metabolism that occurs during pregnancy, while normal glucose metabolism before pregnancy. In the present study, a novel analytical procedure was used to explore the key molecule of gestational diabetes mellitus. First, the weighted pathway model was carried out subsequently to eliminate the gene-overlapping effects among pathways. Second, we assessed the enriched pathways by a combination of Fisher's t-test and the Mann–Whitney U test. We carried out the functional principal component analysis by estimating F values of genes to identify the hub genes in the enriched pathways. Results showed that a total of 4 differential pathways were enriched. The key pathway was considered as the insulin secretion pathway. F values of each gene in the key pathway were calculated. Three hub molecules were identified as hub differentially methylated genes, namely, CAMK2B, ADCYAP1, and KCNN2. In addition, by further comparing the gene expression data in a validation cohort, one key molecule was obtained, ADCYAP1. Therefore, ADCYAP1 may serve as a potential target for the treatment of GDM.
Collapse
|
9
|
Fabian E, Reglodi D, Horvath G, Opper B, Toth G, Fazakas C, Vegh AG, Wilhelm I, Krizbai IA. Pituitary adenylate cyclase activating polypeptide acts against neovascularization in retinal pigment epithelial cells. Ann N Y Acad Sci 2019; 1455:160-172. [PMID: 31317557 DOI: 10.1111/nyas.14189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/30/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to determine whether pituitary adenylate cyclase activating polypeptide (PACAP) could influence the neovascularization processes in hyperosmotic and oxidative stress in retinal pigment epithelial cells. Hyperosmotic conditions and oxidative stress were induced by 200 mM sucrose and 250 µM hydrogen peroxide (H2 O2 ), respectively. Morphology and elasticity of adult retinal pigment epithelial (ARPE-19) cells were measured by atomic force microscopy, while the investigation of junctional molecules, such as occludin and ZO-1, was carried out using immunofluorescence. For cell viability measurement, the MTT test was used. The effect of PACAP on the key angiogenic factors, such as vascular endothelial growth factor, angiogenin, and endothelin-1, was measured by an angiogenesis array and flow cytometry. Hyperosmotic stress-induced reorganization of the cytoskeleton and impairment of the junctions decreased cell viability and upregulated several angiogenic factors. In oxidative stress, we found that opening of the junctions decreased viability and upregulated the expression of angiogenic factors. PACAP was shown to be protective in both conditions. Retinal pigment epithelium cells play an important role in several diseases, such as diabetic retinopathy and macular edema. Therefore, protecting retinal pigment epithelial (RPE) cells with PACAP could be a novel and potential treatment in these diseases.
Collapse
Affiliation(s)
- Eszter Fabian
- Department of Anatomy, University of Pécs, Medical School, MTA-PTE PACAP Research Group, Pécs, Hungary
| | - Dora Reglodi
- Department of Anatomy, University of Pécs, Medical School, MTA-PTE PACAP Research Group, Pécs, Hungary
| | - Gabriella Horvath
- Department of Anatomy, University of Pécs, Medical School, MTA-PTE PACAP Research Group, Pécs, Hungary
| | - Balazs Opper
- Department of Anatomy, University of Pécs, Medical School, MTA-PTE PACAP Research Group, Pécs, Hungary
| | - Gabor Toth
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Csilla Fazakas
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Attila G Vegh
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| | - Istvan A Krizbai
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| |
Collapse
|
10
|
Wei HJ, Liu L, Chen FL, Wang D, Wang L, Wang ZG, Jiang RC, Dong JF, Chen JL, Zhang JN. Decreased numbers of circulating endothelial progenitor cells are associated with hyperglycemia in patients with traumatic brain injury. Neural Regen Res 2019; 14:984-990. [PMID: 30762009 PMCID: PMC6404487 DOI: 10.4103/1673-5374.250577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hyperglycemia reduces the number of circulating endothelial progenitor cells, accelerates their senescence and impairs their function. However, the relationship between blood glucose levels and endothelial progenitor cells in peripheral blood of patients with traumatic brain injury is unclear. In this study, 101 traumatic brain injury patients admitted to the Department of Neurosurgery, Tianjin Medical University General Hospital or the Department of Neurosurgery, Tianjin Huanhu Hospital, China, were enrolled from April 2005 to March 2007. The number of circulating endothelial progenitor cells and blood glucose levels were measured at 1, 4, 7, 14 and 21 days after traumatic brain injury by flow cytometry and automatic biochemical analysis, respectively. The number of circulating endothelial progenitor cells and blood sugar levels in 37 healthy control subjects were also examined. Compared with controls, the number of circulating endothelial progenitor cells in traumatic brain injury patients was decreased at 1 day after injury, and then increased at 4 days after injury, and reached a peak at 7 days after injury. Compared with controls, blood glucose levels in traumatic brain injury patients peaked at 1 day and then decreased until 7 days and then remained stable. At 1, 4, and 7 days after injury, the number of circulating endothelial progenitor cells was negatively correlated with blood sugar levels (r = −0.147, P < 0.05). Our results verify that hyperglycemia in patients with traumatic brain injury is associated with decreased numbers of circulating endothelial progenitor cells. This study was approved by the Ethical Committee of Tianjin Medical University General Hospital, China (approval No. 200501) in January 2015.
Collapse
Affiliation(s)
- Hui-Jie Wei
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Li Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Fang-Lian Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Dong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Liang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin; Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Zeng-Guang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Rong-Cai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jing-Fei Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China; Thrombosis Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jie-Li Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China; Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Jian-Ning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
11
|
Abstract
Dysregulation of neuropeptides may play an important role in aging-induced impairments. In the long list of neuropeptides, pituitary adenylate cyclase-activating polypeptide (PACAP) represents a highly effective cytoprotective peptide that provides an endogenous control against a variety of tissue-damaging stimuli. PACAP has neuro- and general cytoprotective effects due to anti-apoptotic, anti-inflammatory, and antioxidant actions. As PACAP is also a part of the endogenous protective machinery, it can be hypothesized that the decreased protective effects in lack of endogenous PACAP would accelerate age-related degeneration and PACAP knockout mice would display age-related degenerative signs earlier. Recent results support this hypothesis showing that PACAP deficiency mimics aspects of age-related pathophysiological changes including increased neuronal vulnerability and systemic degeneration accompanied by increased apoptosis, oxidative stress, and inflammation. Decrease in PACAP expression has been shown in different species from invertebrates to humans. PACAP-deficient mice display numerous pathological alterations mimicking early aging, such as retinal changes, corneal keratinization and blurring, and systemic amyloidosis. In the present review, we summarize these findings and propose that PACAP deficiency could be a good model of premature aging.
Collapse
|