1
|
Xu H, Huang J, Zeng Y, Wang X, Lian H, Zhang S, Guo R. Network pharmacology and molecular analysis of mechanisms underlying the therapeutic effects of Rhubarb in treating atherosclerosis and abdominal aortic aneurysm. Heliyon 2025; 11:e41906. [PMID: 40028580 PMCID: PMC11867279 DOI: 10.1016/j.heliyon.2025.e41906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 03/05/2025] Open
Abstract
Aim of the study The aim of this study was to systematically investigate the effects and mechanisms of Rhubarb in the treatment of Atherosclerosis (AS) and Abdominal Aortic Aneurysm (AAA) by utilizing network pharmacology and molecular docking techniques. Materials and methods TCMSP systematic pharmacology database was utilized to search for active chemical components of Rhubarb. Disease-related targets were retrieved from the GEO dataset and Disgenet database. Gene interactions were utilized to identify common targets of Rhubarb with AS/AAA, and interaction networks were constructed using Cytoscape 3.9.1. Protein-protein interaction (PPI) networks for the core targets were constructed using the STRING database. GO and KEGG pathway enrichment analysis was performed using DAVID. Molecular docking is used to assess the potential target-active compound interactions. Results In our study, 16 active compounds were screened from Rhubarb, along with 310 targets. Additionally, 110 AS/AAA target genes were screened out. Topological analysis of the PPI protein network yielded 23 core targets. The targets, biological functions and signaling pathways of Rhubarb in AS/AAA were further investigated. The analysis indicated that Rhubarb may be effective in treating AS/AAA through processes such as lipids, atherosclerosis, extracellular matrix catabolism, collagenolytic metabolic processes, and the extracellular environment. Five core pharmacological targets were also identified: TNF, IL-1β MMP9, TP53, and PPARG. Molecular docking showed a strong binding ability between the active compounds and the screened targets. Conclusions This study successfully predicted the molecular functions, pharmacological targets, and pathways associated with Rhubarb for treating AS/AAA. In addition, identified potential active ingredients can be used as a source for AS/AAA drug screening.
Collapse
Affiliation(s)
- Huilin Xu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jun Huang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Youjie Zeng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xia Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Huilin Lian
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Siyi Zhang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
2
|
Otvagin VF, Krylova LV, Peskova NN, Kuzmina NS, Fedotova EA, Nyuchev AV, Romanenko YV, Koifman OI, Vatsadze SZ, Schmalz HG, Balalaeva IV, Fedorov AY. A first-in-class β-glucuronidase responsive conjugate for selective dual targeted and photodynamic therapy of bladder cancer. Eur J Med Chem 2024; 269:116283. [PMID: 38461680 DOI: 10.1016/j.ejmech.2024.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
In this report, we present a novel prodrug strategy that can significantly improve the efficiency and selectivity of combined therapy for bladder cancer. Our approach involved the synthesis of a conjugate based on a chlorin-e6 photosensitizer and a derivative of the tyrosine kinase inhibitor cabozantinib, linked by a β-glucuronidase-responsive linker. Upon activation by β-glucuronidase, which is overproduced in various tumors and localized in lysosomes, this conjugate released both therapeutic modules within targeted cells. This activation was accompanied by the recovery of its fluorescence and the generation of reactive oxygen species. Investigation of photodynamic and dark toxicity in vitro revealed that the novel conjugate had an excellent safety profile and was able to inhibit tumor cells proliferation at submicromolar concentrations. Additionally, combined therapy effects were also observed in 3D models of tumor growth, demonstrating synergistic suppression through the activation of both photodynamic and targeted therapy.
Collapse
Affiliation(s)
- Vasilii F Otvagin
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation.
| | - Lubov V Krylova
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation
| | - Nina N Peskova
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation
| | - Natalia S Kuzmina
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation
| | - Ekaterina A Fedotova
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation
| | - Alexander V Nyuchev
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation
| | - Yuliya V Romanenko
- Research Institute of Macroheterocycles, Ivanovo State University of Chemical Technology, 153000, Ivanovo, Russian Federation
| | - Oscar I Koifman
- Research Institute of Macroheterocycles, Ivanovo State University of Chemical Technology, 153000, Ivanovo, Russian Federation
| | - Sergey Z Vatsadze
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow, 119991, Russian Federation
| | - Hans-Günther Schmalz
- Department of Chemistry, University of Cologne, Greinstrasse 4, 50939, Cologne, Germany
| | - Irina V Balalaeva
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation.
| | - Alexey Yu Fedorov
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation.
| |
Collapse
|
3
|
Nowak-Perlak M, Ziółkowski P, Woźniak M. A promising natural anthraquinones mediated by photodynamic therapy for anti-cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155035. [PMID: 37603973 DOI: 10.1016/j.phymed.2023.155035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Experimental studies emphasize the therapeutic potential of plant-derived photosensitizers used in photodynamic therapy. Moreover, several in vitro and in vivo research present the promising roles of less-known anthraquinones that can selectively target cancer cells and eliminate them after light irradiation. This literature review summarizes the current knowledge of chosen plant-based-photosensitizers in PDT to show the results of emodin, aloe-emodin, parietin, rubiadin, hypericin, and soranjidiol in photodynamic therapy of cancer treatment and describe the comprehensive perspective of their role as natural photosensitizers. METHODS Literature searches of chosen anthraquinones were conducted on PubMed.gov with keywords: "emodin", "aloe-emodin", "hypericin", "parietin", "rubiadin", "soranjidiol" with "cancer" and "photodynamic therapy". RESULTS According to literature data, this review concentrated on all existing in vitro and in vivo studies of emodin, aloe-emodin, parietin, rubiadin, soranjidiol used as natural photosensitizers emphasizing their effectiveness and detailed mechanism of action in anticancer therapy. Moreover, comprehensive preclinical and clinical studies on hypericin reveal that the above-described substances may be included in the phototoxic treatment of different cancers. CONCLUSIONS Overall, this review presented less-known anthraquinones with their promising molecular mechanisms of action. It is expected that in the future they may be used as natural PSs in cancer treatment as well as hypericin.
Collapse
Affiliation(s)
- Martyna Nowak-Perlak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, Karola Marcinkowskiego 1 Street, 50-368, Wroclaw, Poland.
| | - Piotr Ziółkowski
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, Karola Marcinkowskiego 1 Street, 50-368, Wroclaw, Poland
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, Karola Marcinkowskiego 1 Street, 50-368, Wroclaw, Poland
| |
Collapse
|
4
|
Pourhajibagher M, Bahrami R, Bazarjani F, Bahador A. Anti-multispecies microbial biofilms and anti-inflammatory effects of antimicrobial photo-sonodynamic therapy based on acrylic resin containing nano-resveratrol. Photodiagnosis Photodyn Ther 2023; 43:103669. [PMID: 37356699 DOI: 10.1016/j.pdpdt.2023.103669] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/30/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Polymethylmethacrylate (PMMA)-based removable orthodontic appliances are susceptible to microbial colonization due to the surface porosity, and accumulating the biofilms causes denture stomatitis. the present study evaluated the anti-biofilm and antiinflammatory effects of antimicrobial photo-sonodynamic therapy (aPSDT) against multispecies microbial biofilms (Candida albicans, Staphylococcus aureus, Streptococcus sobrinus, and Actinomyces naeslundii) formed on acrylic resin modified with nanoresveratrol (NR). MATERIALS AND METHODS Following the determination of the minimum biofilm inhibitory concentration (MBIC) of NR, in vitro anti-biofilm activity of NR was evaluated. The antibiofilm efficacy against multispecies microbial biofilm including C. albicans, S. aureus, S. sobrinus, and A. naeslundii, were assessed by biofilm inhibition test and the results were measured. To reveal the anti-inflammatory effects of aPSDT on human gingival fibroblast (HGF) cells, the gene expression levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were evaluated via quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS According to the results, the MBIC dose of NR against multispecies microbial biofilm was considered 512 µg/mL. The highest biofilm reduction activity was observed in MBIC treated with aPSDT and 2 × MBIC exposed to light emitting diode (LED) and ultrasound waves (UW). The expression level of TNF-α and IL-6 genes were significantly increased when HGF cells were exposed to multispecies microbial biofilms (P<0.05), while after treatment with aPSDT, the expression levels of genes were significantly downregulated in all groups (P<0.05). CONCLUSION Overall, NR-mediated aPSDT reduced the growth of the multispecies microbial biofilm and downregulated the expression of TNF-α and IL-6 genes. Therefore, modified PMMA with NR can be serving as a promising new orthodontic acrylic resin against multispecies microbial biofilms and the effect of this new material is amplified when exposed to LED and UW.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rashin Bahrami
- Department of Orthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
5
|
An ex vivo evaluation of physico-mechanical and anti-biofilm properties of resin-modified glass ionomer containing ultrasound waves-activated nanoparticles against Streptococcus mutans biofilm around orthodontic bands. Photodiagnosis Photodyn Ther 2022; 40:103051. [PMID: 35932962 DOI: 10.1016/j.pdpdt.2022.103051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The present study evaluated the physico-mechanical and antimicrobial properties of ultrasound waves-activated modified-resin glass ionomer containing nanosonosensitizers such as nano-curcumin (n-Cur), nano-emodin (n-Emo), and nano-quercetin (n-Qct) against Streptococcus mutans biofilm on the surface of modified-resin glass ionomer bonded orthodontic bands. MATERIALS AND METHODS A total of 50 human molar teeth were used in this study. The shear bond strength (SBS), adhesive remnant index (ARI), setting time, and fluoride release of modified orthodontics cement containing different concentrations of n-Cur, n-Emo, and n-Qct (0, 2, 5, and 10%) were measured. The antimicrobial effectiveness was assessed against S. mutans by the biofilm inhibition test, and the Log10 colony-forming unit (CFU)/mL was evaluated. RESULTS SBS and setting time of modified glass ionomer decreased compared with the control group. 5% n-Emo, 2% n-Qct, and 5% n-Cur were the highest concentrations that had an insignificant difference in comparison with Transbond XT (P = 0.647, 0.819, and 0.292, respectively). The groups were not significantly different in terms of ARI score (P > 0.05). The highest and lowest setting time belonged to the control and 5% n-Emo groups, respectively; this difference in setting time was significant (P < 0.05). Ultrasound waves and 0.2% CHX significantly reduced S. mutans biofilms compared with the control group (P < 0.001), and minimum S. mutans colony count was shown in 0.2% CHX and 5% n-Emo groups. The addition of nanosonosensitizers to the glass ionomer did not compromise the fluoride release of the glass ionomer. CONCLUSION It could be concluded that resin-modified glass ionomer containing ultrasound waves-activated 5% n-Emo reduces S. mutans biofilm around orthodontic bands with no adverse effect on SBS, ARI, and its application in the clinic.
Collapse
|
6
|
Zhang Y, Wang L, Lu L, Liu M, Yuan Z, Yang L, Liu C, Huang S, Rao Y. Highly efficient decontamination of tetracycline and pathogen by a natural product-derived Emodin/HAp photocatalyst. CHEMOSPHERE 2022; 305:135401. [PMID: 35738405 DOI: 10.1016/j.chemosphere.2022.135401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
To address the water pollution induced by pharmaceuticals, especially antibiotics, and pathogens, natural product emodin, a traditional Chinese medicine with the characteristic large π-conjugation anthraquinone structure, was used to rationally develop a novel Emodin/HAp photocatalyst by integrating with a thermally stable and recyclable support material hydroxyapatite (HAp) through a simple preparation method. It was found that its photocatalytic activity to generate reactive oxygen species (ROS) was greatly improved due to the migration of photogenerated electrons and holes between emodin and HAp upon visible light irradiation. Thus, this Emodin/HAp photocatalyst not only quickly photodegraded tetracycline with 99.0% removal efficiency but also exhibited complete photodisinfection of pathogenic bacteria Staphylococcus aureus upon visible light irradiation. Therefore, this study offers a new route for the design and preparation of multifunctional photocatalysts using widely available natural products for environmental remediation.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Lijun Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Liushen Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Meiling Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Lifeng Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Changmei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Shuping Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
7
|
Lv G, Dong Z, Zhao Y, Ma N, Jiang X, Li J, Wang J, Wang J, Zhang W, Lin X, Hu Z. Precision Killing of Sinoporphyrin Sodium-Mediated Photodynamic Therapy against Malignant Tumor Cells. Int J Mol Sci 2022; 23:10561. [PMID: 36142474 PMCID: PMC9503352 DOI: 10.3390/ijms231810561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Photodynamic therapy (PDT) has significant advantages in the treatment of malignant tumors, such as high efficiency, minimal invasion and less side effects, and it can preserve the integrity and quality of the organs. The power density, irradiation time and photosensitizer (PS) concentration are three main parameters that play important roles in killing tumor cells. However, until now, the underlying relationships among them for PDT outcomes have been unclear. In this study, human malignant glioblastoma U-118MG and melanoma A375 cells were selected, and the product of the power density, irradiation time and PS concentration was defined as the total photodynamic parameter (TPP), in order to investigate the mechanisms of PS sinoporphyrin sodium (DVDMS)-mediated PDT (DVDMS-PDT). The results showed that the survival rates of the U-118MG and A375 cells were negatively correlated with the TPP value in the curve, and the correlation exactly filed an e-exponential function. Moreover, according to the formula, we realized controllable killing effects of the tumor cells by randomly adjusting the three parameters, and we finally verified the accuracy and repeatability of the formula. In conclusion, the establishment and implementation of a newly functional relationship among the PDT parameters are essential for predicting PDT outcomes and providing personalized precise treatment, and they are contributive to the development of PDT dosimetry.
Collapse
Affiliation(s)
- Guixiang Lv
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150086, China
| | - Zhihui Dong
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150086, China
| | - Yunhan Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150086, China
| | - Ning Ma
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150086, China
| | - Xiaochen Jiang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150086, China
| | - Jia Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150086, China
| | - Jinyue Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150086, China
| | - Jiaxin Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150086, China
| | - Wenxiu Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150086, China
| | - Xin Lin
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150086, China
| | - Zheng Hu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150086, China
- Laboratory of Sono- and Photo-Theranostic Technologies, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
8
|
Nowak-Perlak M, Bromke MA, Ziółkowski P, Woźniak M. The Comparison of the Efficiency of Emodin and Aloe-Emodin in Photodynamic Therapy. Int J Mol Sci 2022; 23:ijms23116276. [PMID: 35682955 PMCID: PMC9181794 DOI: 10.3390/ijms23116276] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022] Open
Abstract
Skin cancer (melanoma and non-melanoma) is the most frequent type of malignancy in the Caucasian population. Photodynamic therapy (PDT) as an interesting and unique strategy may potentially boost standard therapeutic approaches. In the present study, the potential of emodin and aloe-emodin as photosensitizers in photodynamic therapy has been investigated. The conducted research presents for the first-time comparison of the phototoxic and anti-cancerous effects of emodin and aloe-emodin on skin cancer cell lines, including SCC-25 representing cutaneous squamous cell carcinoma, MUG-Mel2 representing a melanoma cell line, and normal human keratinocytes HaCaT representing control normal skin cells. To assess the effectiveness of emodin and aloe-emodin as a photosensitizer in PDT on different skin cell lines, we performed MTT assay measuring cytotoxicity of natural compounds, cellular uptake, apoptosis with flow cytometry, and a wound-healing assay. Although emodin and aloe-emodin are isomers and differ only in the position of one hydroxyl group, our phototoxicity and apoptosis detection results show that both substances affect skin cancer cells (SSC-25 squamous cell carcinoma and MUG-Mel2 melanoma) and normal keratinocytes (HaCaT cell line) in other ways. In conclusion, our study provides evidence suggesting that emodin and aloe-emodin mediated PDT exhibits the potential for clinical development as a new effective and safe photosensitizer to treat skin cancer.
Collapse
Affiliation(s)
- Martyna Nowak-Perlak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.N.-P.); (P.Z.)
| | - Mariusz A. Bromke
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Ziółkowski
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.N.-P.); (P.Z.)
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.N.-P.); (P.Z.)
- Correspondence:
| |
Collapse
|
9
|
Advances in Understanding the Role of Aloe Emodin and Targeted Drug Delivery Systems in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7928200. [PMID: 35087619 PMCID: PMC8789423 DOI: 10.1155/2022/7928200] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/06/2021] [Accepted: 12/18/2021] [Indexed: 12/20/2022]
Abstract
Cancer is one of the important causes of death worldwide. Despite remarkable improvements in cancer research in the past few decades, several cancer patients still cannot be cured owing to the development of drug resistance. Natural sources might have prominence as potential drug candidates. Among the several chemical classes of natural products, anthraquinones are characterized by their large structural variety, noticeable biological activity, and low toxicity. Aloe emodin, an anthraquinone derivative, is a natural compound found in the roots and rhizomes of many plants. This compound has proven its antineoplastic, anti-inflammatory, antiangiogenic, and antiproliferative potential as well as ability to prevent cancer metastasis and potential in reversing multidrug resistance of cancer cells. The anticancer property of aloe emodin, a broad-spectrum inhibitory agent of cancer cells, has been detailed in many biological pathways. In cancer cells, these molecular mechanisms consist of inhibition of cell growth and proliferation, cell cycle arrest deterioration, initiation of apoptosis, antimetastasis, and antiangiogenic effect. In accordance with the strategy of developing potential drug candidates from natural products, aloe emodin's low bioavailability has been tried to be overcome by structural modifications and nanocarrier systems. Consequently, this review summarizes the antiproliferative and anticarcinogenic properties of aloe emodin, as well as the enhanced activity of its derivatives and the advantages of drug delivery systems on bioavailability.
Collapse
|
10
|
He Y, Duan L, Wu H, Chen S, Lu T, Li T, He Y. Integrated Transcriptome Analysis Reveals the Impact of Photodynamic Therapy on Cerebrovascular Endothelial Cells. Front Oncol 2021; 11:731414. [PMID: 34881175 PMCID: PMC8645902 DOI: 10.3389/fonc.2021.731414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/03/2021] [Indexed: 01/10/2023] Open
Abstract
Blood vessels in the brain tissue form a compact vessel structure and play an essential role in maintaining the homeostasis of the neurovascular system. The low dosage of photodynamic intervention (PDT) significantly affects the expression of cellular biomarkers. To understand the impact of photodynamic interventions on cerebrovascular endothelial cells, we evaluated the dosage-dependent impact of porfimer sodium-mediated PDT on B.END3 cells using flow cytometer, comet assay, RNA sequencing, and bioinformatics analysis. To examine whether PDT can induce disorder of intracellular organelles, we did not observe any significance damage of DNA and cellular skeleton. Moreover, expression levels of cellular transporters-related genes were significantly altered, implying the drawbacks of PDT on cerebrovascular functions. To address the potential molecular mechanisms of these phenotypes, RNA sequencing and bioinformatics analysis were employed to identify critical genes and pathways among these processes. The gene ontology (GO) analysis and protein-protein interaction (PPI) identified 15 hub genes, highly associated with cellular mitosis process (CDK1, CDC20, MCM5, MCM7, MCM4, CCNA2, AURKB, KIF2C, ESPL1, BUB1B) and DNA replication (POLE2, PLOE, CDC45, CDC6). Gene set enrichment analysis (GSEA) reveals that TNF-α/NF-κB and KRAS pathways may play a critical role in regulating expression levels of transporter-related genes. To further perform qRT-PCR assays, we find that TNF-α/NF-κB and KRAS pathways were substantially up-regulated, consistent with GSEA analysis. The current findings suggested that a low dosage of PDT intervention may be detrimental to the homeostasis of blood-brain barrier (BBB) by inducing the inflammatory response and affecting the expression of surface biomarkers.
Collapse
Affiliation(s)
- Yanyan He
- Department of Cerebrovascular Disease, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan International Joint Laboratory of Cerebrovascular Disease, Zhengzhou, China
| | - Lin Duan
- Department of Cerebrovascular Disease, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan International Joint Laboratory of Cerebrovascular Disease, Zhengzhou, China
| | - Haigang Wu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Song Chen
- Translational Research Institute, Henan Provincial People’s Hospital, Zhengzhou University, Academy of Medical Science, Zhengzhou, China
| | - Taoyuan Lu
- Department of Cerebrovascular Disease, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan International Joint Laboratory of Cerebrovascular Disease, Zhengzhou, China
| | - Tianxiao Li
- Department of Cerebrovascular Disease, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan International Joint Laboratory of Cerebrovascular Disease, Zhengzhou, China
| | - Yingkun He
- Department of Cerebrovascular Disease, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan International Joint Laboratory of Cerebrovascular Disease, Zhengzhou, China
| |
Collapse
|
11
|
Hammerle F, Quirós-Guerrero L, Rutz A, Wolfender JL, Schöbel H, Peintner U, Siewert B. Feature-Based Molecular Networking-An Exciting Tool to Spot Species of the Genus Cortinarius with Hidden Photosensitizers. Metabolites 2021; 11:791. [PMID: 34822449 PMCID: PMC8619139 DOI: 10.3390/metabo11110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Fungi have developed a wide array of defense strategies to overcome mechanical injuries and pathogen infections. Recently, photoactivity has been discovered by showing that pigments isolated from Cortinarius uliginosus produce singlet oxygen under irradiation. To test if this phenomenon is limited to dermocyboid Cortinarii, six colourful Cortinarius species belonging to different classical subgenera (i.e., Dermocybe, Leprocybe, Myxacium, Phlegmacium, and Telamonia) were investigated. Fungal extracts were explored by the combination of in vitro photobiological methods, UHPLC coupled to high-resolution tandem mass spectrometry (UHPLC-HRMS2), feature-based molecular networking (FBMN), and metabolite dereplication techniques. The fungi C. rubrophyllus (Dermocybe) and C. xanthophyllus (Phlegmacium) exhibited promising photobiological activity in a low concentration range (1-7 µg/mL). Using UHPLC-HRMS2-based metabolomic tools, the underlying photoactive principle was investigated. Several monomeric and dimeric anthraquinones were annotated as compounds responsible for the photoactivity. Furthermore, the results showed that light-induced activity is not restricted to a single subgenus, but rather is a trait of Cortinarius species of different phylogenetic lineages and is linked to the presence of fungal anthraquinones. This study highlights the genus Cortinarius as a promising source for novel photopharmaceuticals. Additionally, we showed that putative dereplication of natural photosensitizers can be done by FBMN.
Collapse
Affiliation(s)
- Fabian Hammerle
- Institute of Pharmacy, Pharmacognosy, Center for Molecular Biosciences (CMBI), University of Innsbruck, CCB—Innrain 80/82, 6020 Innsbruck, Austria;
| | - Luis Quirós-Guerrero
- Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland; (L.Q.-G.); (A.R.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Adriano Rutz
- Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland; (L.Q.-G.); (A.R.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Jean-Luc Wolfender
- Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland; (L.Q.-G.); (A.R.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Harald Schöbel
- Department of Biotechnology, MCI—The Entrepreneurial School, Maximilianstraße 2, 6020 Innsbruck, Austria;
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria;
| | - Bianka Siewert
- Institute of Pharmacy, Pharmacognosy, Center for Molecular Biosciences (CMBI), University of Innsbruck, CCB—Innrain 80/82, 6020 Innsbruck, Austria;
| |
Collapse
|
12
|
Otieno W, Liu C, Ji Y. Aloe-Emodin-Mediated Photodynamic Therapy Attenuates Sepsis-Associated Toxins in Selected Gram-Positive Bacteria In Vitro. J Microbiol Biotechnol 2021; 31:1200-1209. [PMID: 34319262 PMCID: PMC9705996 DOI: 10.4014/jmb.2105.05024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022]
Abstract
Sepsis is an acute inflammatory response that leads to life-threatening complications if not quickly and adequately treated. Cytolysin, hemolysin, and pneumolysin are toxins produced by gram-positive bacteria and are responsible for resistance to antimicrobial drugs, cause virulence and lead to sepsis. This work assessed the effects of aloe-emodin (AE) and photodynamic therapy (PDT) on sepsis-associated gram-positive bacterial toxins. Standard and antibiotic-resistant Enterococcus faecalis, Staphylococcus aureus, and Streptococcus pneumonia bacterial strains were cultured in the dark with varying AE concentrations and later irradiated with 72 J/cm-2 light. Colony and biofilm formation was determined. CCK-8, Griess reagent reaction, and ELISA assays were done on bacteria-infected RAW264.7 cells to determine the cell viability, NO, and IL-1β and IL-6 pro-inflammatory cytokines responses, respectively. Hemolysis and western blot assays were done to determine the effect of treatment on hemolysis activity and sepsis-associated toxins expressions. AE-mediated PDT reduced bacterial survival in a dose-dependent manner with 32 μg/ml of AE almost eliminating their survival. Cell proliferation, NO, IL-1β, and IL-6 cytokines production were also significantly downregulated. Further, the hemolytic activities and expressions of cytolysin, hemolysin, and pneumolysin were significantly reduced following AE-mediated PDT. In conclusion, combined use of AE and light (435 ± 10 nm) inactivates MRSA, S. aureus (ATCC 29213), S. pneumoniae (ATCC 49619), MDR-S. pneumoniae, E. faecalis (ATCC 29212), and VRE (ATCC 51299) in an AE-dose dependent manner. AE and light are also effective in reducing biofilm formations, suppressing pro-inflammatory cytokines, hemolytic activities, and inhibiting the expressions of toxins that cause sepsis.
Collapse
Affiliation(s)
- Woodvine Otieno
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, P.R. China
| | - Chengcheng Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, P.R. China
| | - Yanhong Ji
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, P.R. China
| |
Collapse
|
13
|
Pecere T, Ponterio E, Di Iorio E, Carli M, Fassan M, Santoro L, Bissaro M, Bernabè G, Moro S, Castagliuolo I, Palù G. On the mechanism of tumor cell entry of aloe-emodin, a natural compound endowed with anticancer activity. Int J Cancer 2021; 149:1129-1136. [PMID: 33990938 PMCID: PMC8361998 DOI: 10.1002/ijc.33686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/19/2021] [Accepted: 04/27/2021] [Indexed: 01/17/2023]
Abstract
Aloe-emodin (1,8-dihydroxy-3-[hydroxymethyl]-anthraquinone), AE, is one of the active constituents of a number of plant species used in traditional medicine. We have previously identified, for the first time, AE as a new antitumor agent and shown that its selective in vitro and in vivo killing of neuroblastoma cells was promoted by a cell-specific drug uptake process. However, the molecular mechanism underlying the cell entry of AE has remained elusive as yet. In this report, we show that AE enters tumor cells via two of the five somatostatin receptors: SSTR2 and SSTR5. This observation was suggested by gene silencing, receptor competition, imaging and molecular modeling experiments. Furthermore, SSTR2 was expressed in all surgical neuroblastoma specimens we analyzed by immunohistochemistry. The above findings have strong implications for the clinical adoption of this natural anthraquinone molecule as an antitumor agent.
Collapse
Affiliation(s)
- Teresa Pecere
- Department of Molecular MedicineUniversity of PadovaPadovaItaly
| | | | - Enzo Di Iorio
- Department of Molecular MedicineUniversity of PadovaPadovaItaly
| | - Modesto Carli
- Hematology Oncology Division, Department of Women's and Children's HealthUniversity of PadovaPadovaItaly
| | - Matteo Fassan
- Department of MedicineUniversity of PadovaPadovaItaly
| | | | - Maicol Bissaro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
| | - Giulia Bernabè
- Department of Molecular MedicineUniversity of PadovaPadovaItaly
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
| | | | - Giorgio Palù
- Department of Molecular MedicineUniversity of PadovaPadovaItaly
| |
Collapse
|
14
|
Svitina H, Hamman JH, Gouws C. Molecular mechanisms and associated cell signalling pathways underlying the anticancer properties of phytochemical compounds from Aloe species (Review). Exp Ther Med 2021; 22:852. [PMID: 34178125 PMCID: PMC8220653 DOI: 10.3892/etm.2021.10284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
Naturally occurring components from various species of Aloe have been used as traditional folk medicine since the ancient times. Over the last few decades, the therapeutic effects of extracts and phytochemical compounds obtained from Aloe vera have been proven in preclinical and clinical studies. Recently, compounds from other Aloe species apart from Aloe vera have been investigated for the treatment of different diseases, with a particular focus on cancer. In the present review, the effects of phytochemical compounds obtained from different Aloe species are discussed, with a specific focus on the effects on cell signalling in cancer and normal cells, and their selectivity and efficacy. This information will be useful for the application of Aloe-derived compounds as therapeutic agents, either alone or in combination with other standard drugs for cancer treatment.
Collapse
Affiliation(s)
- Hanna Svitina
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, North West 2520, South Africa.,Department of Functional Genomics, Institute of Molecular Biology and Genetics of NASU, Kyiv 03143, Ukraine
| | - Josias H Hamman
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, North West 2520, South Africa
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, North West 2520, South Africa
| |
Collapse
|
15
|
Senapathy GJ, George BP, Abrahamse H. Exploring the Role of Phytochemicals as Potent Natural Photosensitizers in Photodynamic Therapy. Anticancer Agents Med Chem 2021; 20:1831-1844. [PMID: 32619181 DOI: 10.2174/1871520620666200703192127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cancer is still considered a deadly disease worldwide due to difficulties in diagnosis, painful treatment procedures, costly therapies, side effects, and cancer relapse. Cancer treatments using conventional methods like chemotherapy and radiotherapy were not convincing due to its post-treatment toxicity in the host. In Photodynamic Therapy (PDT), three individual non-toxic components including a photosensitizer, light source and oxygen cause damage to the cells and tissues when they are combined. OBJECTIVE In recent years, phytochemicals are being increasingly recognized as potent complementary drugs for cancer because of its natural availability, less toxicity and therapeutic efficiency in par with commercial drugs. Hence, the idea of using phytochemicals as natural photosensitizers in PDT resulted in a multiple pool of research studies with promising results in preclinical and clinical investigations. METHODS In this review, the potential of phytochemicals to act as natural photosensitizers for PDT, their mode of action, drawbacks, challenges and possible solutions are discussed in detail. RESULTS In PDT, natural photosensitizers, when used alone or in combination with other photosensitizers, induced cell death by apoptosis and necrosis, increased oxidative stress, altered cancer cell death signaling pathways, increased cytotoxicity and DNA damage in cancer cells. The pro-oxidant nature of certain antioxidant polyphenols, hormesis phenomenon, Warburg effect and DNA damaging potential plays a significant role in the photosensitizing mechanism of phytochemicals in PDT. CONCLUSION This review explores the role of phytochemicals that can act as photosensitizers alone or in combination with PDT and its mechanism of action on different cancers.
Collapse
Affiliation(s)
- Giftson J Senapathy
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
16
|
Emodin enhances cisplatin sensitivity in non-small cell lung cancer through Pgp downregulation. Oncol Lett 2021; 21:230. [PMID: 33613719 PMCID: PMC7856686 DOI: 10.3892/ol.2021.12491] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Cisplatin resistance is one of the main causes of chemotherapy failure and tumor progression in non-small cell lung cancer (NSCLC). Emodin has been demonstrated to induce NSCLC cell apoptosis and act as a potential cancer therapeutic agent. However, whether emodin could affect NSCLC cell sensitivity toward cisplatin remains unclear. The present study aimed to determine the effect of emodin and cisplatin combination on the chemosensitivity of NSCLC cells. A549 and H460 cells were treated with different concentrations of cisplatin and/or emodin. Cell Counting Kit-8, fluorescence microscopy, immunofluorescence assays and flow cytometry were used to determine cell proliferation, drug efflux, DNA damage level and cell apoptosis, respectively. P-glycoprotein (Pgp) and multidrug resistance-associated protein 1 (MRP1) expression was detected by western blotting. The results demonstrated that emodin and cisplatin inhibited the proliferation of A549 and H460 cells. Furthermore, emodin inhibited the drug efflux in A549 and H460 cells in a dose-dependent manner. In addition, emodin enhanced cisplatin-induced apoptosis and DNA damage in A549 and H460 cells. Emodin also decreased Pgp expression in A549 and H460 cells in a dose-dependent manner; however, it had no effect on MRP1 expression. Taken together, the results from the present study demonstrated that emodin can increase A549 and H460 cell sensitivity to cisplatin by inhibiting Pgp expression. Emodin may therefore be considered as an effective adjuvant for cisplatin treatment.
Collapse
|
17
|
Cui Y, Chen LJ, Huang T, Ying JQ, Li J. The pharmacology, toxicology and therapeutic potential of anthraquinone derivative emodin. Chin J Nat Med 2020; 18:425-435. [PMID: 32503734 DOI: 10.1016/s1875-5364(20)30050-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Indexed: 02/06/2023]
Abstract
Emodin (1, 3, 8-trihydroxy-6-methylanthraquinone) is a derived anthraquinone compound extracted from roots and barks of pharmaceutical plants, including Rheum palmatum, Aloe vera, Giant knotweed, Polygonum multiflorum and Polygonum cuspidatum. The review aims to provide a scientific summary of emodin in pharmacological activities and toxicity in order to identify the therapeutic potential for its use in human specific organs as a new medicine. Based on the fundamental properties, such as anticancer, anti-inflammatory, antioxidant, antibacterial, antivirs, anti-diabetes, immunosuppressive and osteogenesis promotion, emodin is expected to become an effective preventive and therapeutic drug of cancer, myocardial infarction, atherosclerosis, diabetes, acute pancreatitis, asthma, periodontitis, fatty livers and neurodegenerative diseases. This article intends to provide a novel insight for further development of emodin, hoping to reveal the potential of emodin and necessity of further studies in this field.
Collapse
Affiliation(s)
- Ya Cui
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China
| | - Liu-Jing Chen
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China
| | - Tu Huang
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China
| | - Jian-Qiong Ying
- West China Hospital of Clinical Medicine, Sichuan University, Chengdu 610041, China
| | - Juan Li
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China.
| |
Collapse
|
18
|
Chen C, Hunag Z, Wang M, Huang Z, Chen X, Huang A, Zheng B, Wu L, Liu Y, Wang X, Xu W. Endothelial transdifferentiation of human HGC-27 gastric cancer cells in vitro. Oncol Lett 2020; 20:303. [PMID: 33093912 PMCID: PMC7573880 DOI: 10.3892/ol.2020.12166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 08/18/2020] [Indexed: 11/15/2022] Open
Abstract
Malignant tumor cells are able to transdifferentiate into other cell types in various tissues or organs. Recent studies have demonstrated the ability of cancer cells to transdifferentiate into functional endothelial cells (ECs). However, whether human gastric cancer (GC) cells are able to transdifferentiate into other cell types has remained largely elusive. Furthermore, whether HGC-27 cells are able to participate in GC angiogenesis remains to be clarified. In the present study, the HGC-27 cell line grown under hypoxic conditions for 4 days exhibited the typical ‘flagstone’ appearance, which is typical for cultured ECs. HGC-27 cells cultured on Matrigel under hypoxic conditions gradually formed net-like structures. Furthermore, the cultured HGC-27 cells expressed CD31, CD34 and von Willebrand factor, the molecular markers for ECs, under hypoxic conditions. These results indicated that HGC-27 cells, cultured under hypoxic conditions, are able to transdifferentiate into EC-like cells in vitro.
Collapse
Affiliation(s)
- Changxin Chen
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Zhixin Hunag
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350005, P.R. China
| | - Mucheng Wang
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Zicheng Huang
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Xiangbo Chen
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Anye Huang
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Binbin Zheng
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Lishan Wu
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Yi Liu
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Xinwen Wang
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Weifeng Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| |
Collapse
|
19
|
Sánchez M, González-Burgos E, Iglesias I, Gómez-Serranillos MP. Pharmacological Update Properties of Aloe Vera and its Major Active Constituents. Molecules 2020; 25:molecules25061324. [PMID: 32183224 PMCID: PMC7144722 DOI: 10.3390/molecules25061324] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 01/23/2023] Open
Abstract
Aloe vera has been traditionally used to treat skin injuries (burns, cuts, insect bites, and eczemas) and digestive problems because its anti-inflammatory, antimicrobial, and wound healing properties. Research on this medicinal plant has been aimed at validating traditional uses and deepening the mechanism of action, identifying the compounds responsible for these activities. The most investigated active compounds are aloe-emodin, aloin, aloesin, emodin, and acemannan. Likewise, new actions have been investigated for Aloe vera and its active compounds. This review provides an overview of current pharmacological studies (in vitro, in vivo, and clinical trials), written in English during the last six years (2014–2019). In particular, new pharmacological data research has shown that most studies refer to anti-cancer action, skin and digestive protective activity, and antimicrobial properties. Most recent works are in vitro and in vivo. Clinical trials have been conducted just with Aloe vera, but not with isolated compounds; therefore, it would be interesting to study the clinical effect of relevant metabolites in different human conditions and pathologies. The promising results of these studies in basic research encourage a greater number of clinical trials to test the clinical application of Aloe vera and its main compounds, particularly on bone protection, cancer, and diabetes.
Collapse
|
20
|
Huang L, Lin H, Chen Q, Yu L, Bai D. MPPa-PDT suppresses breast tumor migration/invasion by inhibiting Akt-NF-κB-dependent MMP-9 expression via ROS. BMC Cancer 2019; 19:1159. [PMID: 31783821 PMCID: PMC6884812 DOI: 10.1186/s12885-019-6374-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
Background Breast cancer is one of the most commonly diagnosed cancers in women, with high morbidity and mortality. Tumor metastasis is implicated in most breast cancer deaths; thus, inhibiting metastasis may provide a therapeutic direction for breast cancer. In the present study, pyropheophorbide-α methyl ester-mediated photodynamic therapy (MPPa-PDT) was used to inhibit metastasis in MCF-7 breast cancer cells. Methods Uptake of MPPa was detected by fluorescence microscopy. Cell viability was evaluated by the Cell Counting Kit-8 (CCK-8). ROS generation was detected by 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA). The migration of cells was assessed by wound healing assay, and invasion ability was assessed by Matrigel invasion assay. Levels of MMP2 and MMP9 were measured by PCR. Akt, phospho-Akt (Ser473), phospho-NF-κB p65 (Ser536) and NF-κB p65 were measured by western blotting. The F-actin cytoskeleton was observed by immunofluorescence. Lung tissue was visualized by hematoxylin and eosin staining. Results Following MPPa-PDT, migration and invasion were decreased in the MCF-7 cells. MPPa-PDT downregulated the expression of MMP2 and MMP9, which are responsible for the initiation of metastasis. MPPa-PDT reduced the phosphorylation of Akt and NF-κB. MPPa-PDT also reduced the expression of F-actin in cytoskeleton in MCF-7 cells. These effects were blocked by the reactive oxygen species scavenger NAC or the Akt activator SC79, while the PI3K inhibitor LY294002 or the Akt inhibitor triciribine enhanced these effects. Moreover, MPPa-PDT inhibited tumor metastasis and destroyed F-actin in vivo. Conclusion Taken together, these results demonstrate that MPPa-PDT inhibits the metastasis of MCF-7 cells both in vitro and in vivo and may be involved in the Akt/NF-κB-dependent MMP-9 signaling pathway. Thus, MPPa-PDT may be a promising treatment to inhibit metastasis.
Collapse
Affiliation(s)
- Liyi Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Haidan Lin
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qing Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lehua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Dingqun Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
21
|
Zhang J, Wang Q, Wang Q, Guo P, Wang Y, Xing Y, Zhang M, Liu F, Zeng Q. Chrysophanol exhibits anti-cancer activities in lung cancer cell through regulating ROS/HIF-1a/VEGF signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:469-480. [PMID: 31655854 DOI: 10.1007/s00210-019-01746-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
In the present study, we explored the anti-tumor and anti-angiogenesis effects of chrysophanol, and to investigate the underlying mechanism of the chrysophanol on anti-tumor and anti-angiogenesis in human lung cancer. The viability of cells was measured by CCK-8 assay, cell apoptosis was measured by Annexin-FITC/PI staining assay, and the cell migration and invasion were analyzed by wound-healing assay and transwell assay. ROS generation and mitochondrial membrane potential were analyzed by DCFH-DA probe and mitochondrial staining kit. Angiogenesis was analyzed by tube formation assay. The expression of CD31 was analyzed by immunofluorescence. The levels of proteins were measured by western blot assay. The anti-tumor effects of chrysophanol in vivo were detected by established xenograft mice model. In this study, we found that the cell proliferation, migration, invasion, tube formation, the mitochondrial membrane potential, and the expression of CD31 were inhibited by chrysophanol in a dose-dependent manner, but cell apoptotic ratios and ROS levels were increased by chrysophanol in a dose-dependent manner. Furthermore, the effects of chrysophanol on A549, H738, and HUVEC cell apoptotic rates were reversed by the ROS inhibitor NAC. Besides, the effects of chrysophanol on HUVEC cell tube formation were reversed by the HIF-1α inhibitor KC7F2 and the VEGF inhibitor axitinib in vitro. Moreover, tumor growth was reduced by chrysophanol, and the expression of CD31, CD34, and angiogenin was suppressed by chrysophanol in vivo. Our finding demonstrated that chrysophanol is a highly effective and low-toxic drug for inhibition of tumor growth especially in high vascularized lung cancer.
Collapse
Affiliation(s)
- Jie Zhang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Qian Wang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China.,Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Qiang Wang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Peng Guo
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Yong Wang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Yuqing Xing
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Mengmeng Zhang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Fujun Liu
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Qingyun Zeng
- Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China.
| |
Collapse
|
22
|
Miao LJ, Yan S, Zhuang QF, Mao QY, Xue D, He XZ, Chen JP. miR-106b promotes proliferation and invasion by targeting Capicua through MAPK signaling in renal carcinoma cancer. Onco Targets Ther 2019; 12:3595-3607. [PMID: 31190862 PMCID: PMC6525582 DOI: 10.2147/ott.s184674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Background: miR-106b has been reported to play a vital role in pathogenesis of some types of cancer, whilst the role of miR-106b in renal carcinoma cancer (RCC) remains unknown. Purpose: The objective of this study was to identify the mechanism of miR-106b regulating the progression of renal carcinoma. Method: The expression of miR-106b was analyzed in RCC cell lines, RCC and adjacent normal renal tissues through qRT-PCR assays. Target mRNA of miR-106b was predicted with databases and verified by luciferase reporter assays. And the effects of miR-106b or targeted mRNA on cell proliferation, invasion, the process of epithelial-mesenchymal transitions (EMTs) were assessed in vitrothrough CCK-8, transwell cell invasion assays, qRT-PCR and Western blotting assays respectively. In addition, the effects of miR-106b on the growth of xenografts mice were analyzedin vivo. Results: The results demonstrated that miR-106b was significantly increased both in RCC tissues and cell lines. Luciferase reporter assays revealed that miR-106b inhibited Capicua expression by targeting its 3'-UTR sequence. And miR-106b promoted cell proliferation, invasion, EMT progression in RCC cellin vitro, as well as promoted the tumor growth of 786-O cells derived xenografts mice. Additionally, loss of Capicua promoted the activation of MAPK signaling pathway. Conclusion: The study suggested that miR-106b regulated RCC progression through MAPK signaling pathway partly by targeting Capicua, which might provide valuable evidence for therapeutic target development of RCC.
Collapse
Affiliation(s)
- Lu-Jie Miao
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University, Changzhou, 213161, People's Republic of China
| | - Shu Yan
- Department of General Practice, The Third Affiliated Hospital of Soochow University, Changzhou, 213161, People's Republic of China
| | - Qian-Feng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213161, People's Republic of China
| | - Qing-Yan Mao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213161, People's Republic of China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213161, People's Republic of China
| | - Xiao-Zhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213161, People's Republic of China
| | - Jian-Ping Chen
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University, Changzhou, 213161, People's Republic of China
| |
Collapse
|
23
|
Das SS, Sinha R, Chakravorty N. Integrative microRNA and gene expression analysis identifies new drug repurposing candidates for fetal hemoglobin induction in β-hemoglobinopathies. Gene 2019; 706:77-83. [PMID: 31048070 DOI: 10.1016/j.gene.2019.04.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/18/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022]
Abstract
Therapeutic induction of fetal hemoglobin (HbF) is one of the most promising approaches to ameliorate the severity of hemoglobinopathies like β-thalassemia and sickle cell anemia. Although several pharmacological agents have been investigated for HbF induction in adults, the majority of these are associated with significant side-effects. While drug repurposing is known to open new doors for the use of approved drugs in unexplored clinical conditions, the primary challenge lies in identifying such candidates. In this study, we aimed to identify repurposing candidates for HbF induction using a novel in silico approach utilizing microRNA-pathway-drug relationships. A computational drug repurposing strategy identified several unique candidates for HbF induction; among which Curcumin, Ginsenoside, Valproate, and Vorinostat were found to be most suitable for future trials. This study identified new drug repurposing candidates for HbF induction and demonstrates an easily adaptable methodology that can be used for other pathophysiological conditions.
Collapse
Affiliation(s)
- Sankha Subhra Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| | - Rashmi Sinha
- B. C. Roy Technology Hospital, Indian Institute of Technology Kharagpur, West Bengal 721302, India; Plant Hospital, Bharatiya Reserve Bank Note Mudran Private Limited (BRBNMPL), Salboni, West Bengal 721132, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|