1
|
Sonnemann HM, Pazdrak B, Nassif B, Sun Y, Elzohary L, Talukder AH, Katailiha AS, Bhat K, Lizée G. Placental co-transcriptional activator Vestigial-like 1 (VGLL1) drives tumorigenesis via increasing transcription of proliferation and invasion genes. Front Oncol 2024; 14:1403052. [PMID: 38912065 PMCID: PMC11190739 DOI: 10.3389/fonc.2024.1403052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Vestigial-like 1 (VGLL1) is a co-transcriptional activator that binds to TEA domain-containing transcription factors (TEADs). Its expression is upregulated in a variety of aggressive cancer types, including pancreatic and basal-like breast cancer, and increased transcription of VGLL1 is strongly correlated with poor prognosis and decreased overall patient survival. In normal tissues, VGLL1 is most highly expressed within placental trophoblast cells, which share the common attributes of rapid cellular proliferation and invasion with tumor cells. The impact of VGLL1 in cancer has not been fully elucidated and no VGLL1-targeted therapy currently exists. Methods The aim of this study was to evaluate the cellular function and downstream genomic targets of VGLL1 in placental, pancreatic, and breast cancer cells. Functional assays were employed to assess the role of VGLL1 in cellular invasion and proliferation, and ChIP-seq and RNAseq assays were performed to identify VGLL1 target genes and potential impact using pathway analysis. Results ChIP-seq analysis identified eight transcription factors with a VGLL1-binding motif that were common between all three cell types, including TEAD1-4, AP-1, and GATA6, and revealed ~3,000 shared genes with which VGLL1 interacts. Furthermore, increased VGLL1 expression led to an enhancement of cell invasion and proliferation, which was supported by RNAseq analysis showing transcriptional changes in several genes known to be involved in these processes. Discussion This work expands our mechanistic understanding of VGLL1 function in tumor cells and provides a strong rationale for developing VGLL1-targeted therapies for treating cancer patients.
Collapse
Affiliation(s)
- Heather M. Sonnemann
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Barbara Pazdrak
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Barbara Nassif
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Yimo Sun
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Lama Elzohary
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Amjad H. Talukder
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Arjun S. Katailiha
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Krishna Bhat
- Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Gregory Lizée
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
- Department of Immunology, UT MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
2
|
Qu L, Yin Y, Yin T, Zhang X, Zhou X, Sun L. NCOA2-induced secretion of leptin leads to fetal growth restriction via the NF-κB signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:166. [PMID: 36923094 PMCID: PMC10009567 DOI: 10.21037/atm-22-6444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 02/15/2023]
Abstract
Background Fetal growth restriction (FGR) is one of the most common fetal complications during pregnancy in the obstetrics department, with poor therapeutic efficacy. The local inflammatory response of the placenta has gradually become known as the main mechanism for the occurrence and development of FGR. The aim of this study was to improve the knowledge of placental inflammatory response mechanisms in regulating gene expression. Methods The differentially expressed genes (DEGs) in FGR patients were analyzed through bioinformatics analysis. The expression of gene level was detected by immunohistochemistry (IHC) staining, quantitative polymerase chain reaction (qPCR), or enzyme-linked immunosorbent assay (ELISA). The proliferation, migration, and apoptosis of HTR-8/SVneo trophoblast cells stimulated with lipopolysaccharide (LPS) was performed by Cell Counting Kit-8 (CCK-8) assay, clone formation assay, Transwell assay, and flow cytometry. The mechanisms of gene expression in regulating placental inflammatory response were elucidated by western blotting. Results Nuclear receptor coactivator 2 (NCOA2) was identified as a very critical gene in the progression of FGR by bioinformatics analysis and the expression of NCOA2 was shown to be down-regulated in FGR patients. Overexpression of NCOA2 promoted the proliferation, migration, and inhibited apoptosis and pro-inflammatory cytokines secretion in HTR-8/SVneo trophoblast cells stimulated with LPS via the nuclear factor (NF)-κB pathway. In addition, leptin was increased in both tissue and peripheral blood samples of FGR patients, and overexpression of NCOA2 inhibited the secretion of leptin in HTR-8/SVneo trophoblast cells stimulated with LPS. Conclusions All these findings suggest that NCOA2-induced secretion of leptin leads to FGR progression via the NF-κB pathway and provides a clinical therapeutic target in FGR and a potent marker for the identification of FGR.
Collapse
Affiliation(s)
- Lin Qu
- Department of Obstetrics, First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yin Yin
- Department of Obstetrics, First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Tingting Yin
- Department of Obstetrics, First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- Department of Obstetrics, First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xin Zhou
- Department of Obstetrics, First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Linzhou Sun
- Department of Obstetrics, First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Song Y, Wang J, Wang X, Zhang H, Niu X, Yang Y, Yang X, Yin L, Wang Y, Zhang C, Shui R, Zhang Q, Ji H. Analyzing the multi-target pharmacological mechanism of folium Artemisia argyi acting on breast cancer: a network pharmacology approach. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1368. [PMID: 36660662 PMCID: PMC9843367 DOI: 10.21037/atm-22-5769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
Background Folium Artemisia argyi (FAA) is a traditional Chinese herbal medicine that is widely used in the clinic. However, the underlying mechanisms of its anticancer effects have not been fully elucidated. Methods In this study, we applied a network pharmacology approach to identify the potential mechanisms of FAA against breast cancer. To be specific, we screened the active ingredients and potential targets of the FAA through the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Meanwhile, we employed the oral bioavailability (OB) and drug-likeness (DL) to search for potential bioactive compounds of FAA. Breast cancer-related target genes data were gathered from the GeneCards and Online Mendelian Inheritance in Man (OMIM) databases, and the protein-protein interaction (PPI) data were acquired from the Search Tool for the Retrieval of Interacting Genes (STRING) database. In addition, we constructed the network and performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Enrichment Analysis. Results We obtained a total of nine active ingredients and 236 potential targets from FAA to construct a network, which showed that quercetin served as the major ingredient in FAA. AKT1 (RAC-alpha serine/threonine-protein kinase), MYC (Myc proto-oncogene protein), CASP3 (Caspase-3), EGFR (Epidermal growth factor receptor), JUN (Transcription factor AP-1), CCND1 (G1/S-specific cyclin-D1), VEGFA (Vascular endothelial growth factor A), ESR1 (Estrogen receptor), MAPK1 (Mitogen-activated protein kinase 1), and EGF (pro-epidermal growth factor) were identified as key targets of FAA in the treatment of breast cancer. The PPI cluster demonstrated that AKT1 was the seed in this cluster, indicating that AKT1 played a crucial role in connecting other nodes in the PPI network. This enrichment demonstrated that FAA was highly related to signal transduction, endocrine system, replication and repair, as well as cell growth and death. The enrichment results also verified that the underlying mechanisms of FAA against breast cancer might be attributed to the coordinated regulation of several cancer-related pathways, such as the MAPK and mammalian target of rapamycin (mTOR) signaling pathways, among others. Conclusions This study identified the potential targets and pathways of FAA in the treatment of breast cancer using a network pharmacology approach, and systematically elucidated the mechanisms of FAA in the treatment of breast cancer.
Collapse
Affiliation(s)
- Ying Song
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Jinlu Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Xiuli Wang
- Department of Clinical Laboratory, The Seventh Hospital in Qiqihar, Qiqihar, China
| | - Han Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Xingjian Niu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Yue Yang
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Xudong Yang
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Lei Yin
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yiran Wang
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Cuiying Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Ruixue Shui
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Hongfei Ji
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
4
|
Li C, Chen S, Jia W, Li W, Wei D, Cao S, Qian Y, Guan R, Liu H, Lei D. Identify metabolism-related genes IDO1, ALDH2, NCOA2, SLC7A5, SLC3A2, LDHB, and HPRT1 as potential prognostic markers and correlate with immune infiltrates in head and neck squamous cell carcinoma. Front Immunol 2022; 13:955614. [PMID: 36090994 PMCID: PMC9455275 DOI: 10.3389/fimmu.2022.955614] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Hypopharyngeal squamous cell carcinoma (HSCC) is a kind of head and neck squamous cell carcinoma (HNSCC) with poor prognosis. Metabolic reprogramming may regulate the tumor microenvironment (TME) by adapting quickly to cellular stress and regulating immune response, but its role in HSCC has not been reported. We used the nCounter® Metabolic Pathways Panel to investigate metabolic reprogramming, cellular stress, and their relationship in HSCC tissues and adjacent normal tissues. Metabolism-related pathways nucleotide synthesis and glycolysis pathways were significantly upregulated, while amino acid synthesis and fatty acid oxidation pathways were significantly downregulated in HSCC tissues compared to adjacent normal tissues. There is a significant correlation between metabolism-related pathways and cellular stress pathways. Enrichment of immune cell and tumor infiltrating lymphocyte (TIL) analysis showed changes in immune responses between HSCC tissues and adjacent normal tissues. Overall survival analysis showed that upregulated genes CD276, LDHB, SLC3A2, EGFR, SLC7A5, and HPRT1 are potential unfavorable prognostic markers in HNSCC, while downregulated genes EEA1, IDO1, NCOA2, REST, CCL19, and ALDH2 are potential favorable prognostic markers in HNSCC. Moreover, metabolism-related genes IDO1, ALDH2, NCOA2, SLC7A5, SLC3A2, LDHB, and HPRT1 are correlated with immune infiltrates in HNSCC. These results suggest that metabolic reprogramming occurs and correlates with cellular stress and immune response in HSCC, which may help researchers understand mechanisms of metabolic reprogramming and develop effective immunotherapeutic strategies in HNSCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Heng Liu
- *Correspondence: Dapeng Lei, ; Heng Liu,
| | - Dapeng Lei
- *Correspondence: Dapeng Lei, ; Heng Liu,
| |
Collapse
|
5
|
Utilizing Bioinformatics Technology to Explore the Potential Mechanism of Danggui Buxue Decoction against NSCLC. DISEASE MARKERS 2022; 2022:5296830. [PMID: 35256890 PMCID: PMC8898125 DOI: 10.1155/2022/5296830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022]
Abstract
While lung cancer poses a serious threat to human health, non-small-cell lung cancer (NSCLC) is the most common type of lung cancer. Danggui Buxue Decoction (DBD) is a classical traditional antitumor medicine commonly used in China. However, the potential mechanism of DBD against NSCLC has not yet been expounded. Therefore, this study clarified the potential molecular mechanism and key targets of DBD in NSCLC treatment through several technological advances, such as network pharmacology, molecular docking, and bioinformatics. Firstly, the relative active ingredients and key DBD targets were analyzed, and subsequently, a drug-ingredient-target-disease network diagram was constructed for NSCLC treatment with DBD, resulting in the identification of five main active ingredients and ten core targets according to the enrichment degree. The enrichment analysis revealed that DBD can achieve the purpose of treating NSCLC through the AGE-RAGE signaling pathway in diabetic complications. Secondly, the molecular docking approach predicted that quercetin and hederagenin have the best working mechanisms with PDE3A and PTGS1, while the survival analysis results depicted that high PDE3A gene expression has a relatively poor prognosis for NSCLC patients (p < 0.05). Additionally, PDE3A is mainly distributed in the LU65 cell line that originated from Asian population. In summary, our study results showed that DBD can treat NSCLC through the synergistic correlation between multiple ingredients, multiple targets, and multiple pathways, thus effectively improving NSCLC prognosis. This study not only reflected the medicinal value of DBD but also provided a solid structural basis for future new drug developments and targeted therapies.
Collapse
|
6
|
Ohki K, Kiyokawa N, Watanabe S, Iwafuchi H, Nakazawa A, Ishiwata K, Ogata-Kawata H, Nakabayashi K, Okamura K, Tanaka F, Fukano R, Hata K, Mori T, Moriya Saito A, Hayashi Y, Taga T, Sekimizu M, Kobayashi R. Characteristics of genetic alterations of peripheral T-cell lymphoma in childhood including identification of novel fusion genes: the Japan Children's Cancer Group (JCCG). Br J Haematol 2021; 194:718-729. [PMID: 34258755 DOI: 10.1111/bjh.17639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022]
Abstract
Peripheral T-cell lymphoma (PTCL) is a group of heterogeneous non-Hodgkin lymphomas showing a mature T-cell or natural killer cell phenotype, but its molecular abnormalities in paediatric patients remain unclear. By employing next-generation sequencing and multiplex ligation-dependent probe amplification of tumour samples from 26 patients, we identified somatic alterations in paediatric PTCL including Epstein-Barr virus (EBV)-negative (EBV- ) and EBV-positive (EBV+ ) patients. As recurrent mutational targets for PTCL, we identified several previously unreported genes, including TNS1, ZFHX3, LRP2, NCOA2 and HOXA1, as well as genes previously reported in adult patients, e.g. TET2, CDKN2A, STAT3 and TP53. However, for other reported mutations, VAV1-related abnormalities were absent and mutations of NRAS, GATA3 and JAK3 showed a low frequency in our cohort. Concerning the association of EBV infection, two novel fusion genes: STAG2-AFF2 and ITPR2-FSTL4, and deletion and alteration of CDKN2A/2B, LMO1 and HOXA1 were identified in EBV- PTCL, but not in EBV+ PTCL. Conversely, alterations of PCDHGA4, ADAR, CUL9 and TP53 were identified only in EBV+ PTCL. Our observations suggest a clear difference in the molecular mechanism of onset between paediatric and adult PTCL and a difference in the characteristics of genetic alterations between EBV- and EBV+ paediatric PTCL.
Collapse
Affiliation(s)
- Kentaro Ohki
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Satoru Watanabe
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hideto Iwafuchi
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pathology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Astuko Nakazawa
- Department of Clinical Research, Saitama Children's Medical Center, Saitama, Japan
| | - Keisuke Ishiwata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroko Ogata-Kawata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Fumiko Tanaka
- Department of Pediatrics, Saiseikai Yokohamashi Nanbu Hospital, Kanagawa, Japan
| | - Reiji Fukano
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tetsuya Mori
- Department of Pediatrics, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Akiko Moriya Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yasuhide Hayashi
- Institute of Physiology and Medicine, Jobu University, Takasaki, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Masahiro Sekimizu
- Department of Pediatrics, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Ryoji Kobayashi
- Department of Hematology/Oncology for Children and Adolescents, Sapporo Hokuyu Hospital, Hokkaido, Japan
| | | |
Collapse
|
7
|
Choo F, Rakheja D, Davis LE, Davare M, Park JY, Timmons CF, Neff T, Beadling C, Corless CL, Davis JL. GAB1-ABL1 fusions in tumors that have histologic overlap with NTRK-rearranged spindle cell tumors. Genes Chromosomes Cancer 2021; 60:623-630. [PMID: 34036664 DOI: 10.1002/gcc.22972] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
Fibroblastic spindle cell tumors are a heterogeneous group of rare soft tissue tumors that are increasingly recognized as associated with a variety of kinase gene fusions. We report two cases of GAB1-ABL1 fusions in spindle cell tumors that histologically overlap with neurotrophic tyrosine receptor kinase (NTRK)-rearranged spindle cell tumors. The first case occurred in a 76-year-old female who had a large deep-seated spindle cell tumor composed of monotonous ovoid to spindle cells in a background of thick stromal collagen bands with prominent hyalinized vessels and inconspicuous mitoses (<1/10 HPF). Immunohistochemical stains showed co-expression of S100 and CD34. A GAB1-ABL1 fusion was detected by whole transcriptome RNA sequencing. The patient had a partial response to imatinib. The second case was previously described as a solitary fibrous tumor, occurring in a 9-year-old female with a cellular spindle cell tumor with patchy CD34 immunoexpression but no expression of S100. Upon clinicopathologic re-review, including anchored multiplex next-generation sequencing, a GAB1-ABL1 fusion was identified. In summary, we report the first two cases of spindle cell tumors with variable expression of CD34 and/or S100, driven by GAB1-ABL1 gene fusions with histologic overlap with NTRK-rearranged spindle cell tumors, suggesting that ABL-fusions may also be oncogenic drivers within this spectrum of tumors. These cases highlight the evolving understanding of fibroblastic spindle cell tumor biology and the utility of sequencing in identifying a targetable alteration.
Collapse
Affiliation(s)
- Florence Choo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Children's Health, Dallas, Texas, USA
| | - Lara E Davis
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA.,Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Monika Davare
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Jason Y Park
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Children's Health, Dallas, Texas, USA
| | - Charles F Timmons
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Children's Health, Dallas, Texas, USA
| | - Tanaya Neff
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Carol Beadling
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Christopher L Corless
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA.,Department of Pathology, Oregon Health & Science University, Portland, Oregon, USA
| | - Jessica L Davis
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA.,Department of Pathology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|