1
|
Yao X, Wang H, Yang J. 18 F-FDG PET/CT Finding of Bilateral Breast Relapse in a Male Acute Lymphoblastic Leukemia Patient. Clin Nucl Med 2025; 50:248-249. [PMID: 39466657 DOI: 10.1097/rlu.0000000000005514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
ABSTRACT Extramedullary relapse with involvement of the breasts by acute lymphoblastic leukemia is rare. Herein, we report a case of bilateral breast relapse of acute B-cell lymphoblastic leukemia in a man detected by 18 F-FDG PET/CT. After systematic therapy, follow-up PET/CT showed a complete response of the bilateral breasts and the axillary lymph nodes.
Collapse
Affiliation(s)
- Xilan Yao
- From the Department of Nuclear Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing, China
| | - Hongrong Wang
- Department of Nuclear Medicine, Beijing Boren Hospital, Beijing, China
| | - Jigang Yang
- From the Department of Nuclear Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Fang J, Chen J, Li X, Li P, Liu X, He Y, Zhou F. Clinical value of 18F-FDG PET/CT in patients with newly diagnosed acute leukemia. Cell Oncol (Dordr) 2024; 47:2135-2145. [PMID: 39316251 DOI: 10.1007/s13402-024-00993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
PURPOSE To explore the correlation between semi-quantitative parameters of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) scans findings and the clinical features of patients with acute leukemia (AL), as well as to evaluate the clinical utility of 18F-FDG PET/CT in the management of AL. METHODS A retrospective study was conducted with 44 patients newly diagnosed with acute leukemia (AL) at Zhongnan Hospital of Wuhan University between January 2019 and August 2024. RESULTS Multivariate analysis revealed that age at diagnosis of AL (odds ratio [OR]: 0.888, P < 0.01) and percentage of blasts in the peripheral blood (PB) (OR: 1.061, P < 0.05) were independent predictors of the appearance of active extramedullary disease (EMD). Kaplan-Meier survival analysis for patients with EMD(+) indicated that those with organ infiltration beyond the lymph nodes experienced markedly reduced overall survival (OS) compared to those without such infiltration (157 days and 806 days, respectively). Furthermore, in the AL subgroup with EMD, the ratio of the maximum standardized uptake value (SUVmax) in the bone marrow (BM) to SUVmax of the liver emerged as an independent prognostic factor for OS (Hazard ratio [HR]: 2.372; 95% confidence interval [CI]: 1.079-5.214, P < 0.05). CONCLUSION 18F-FDG PET/CT offers the benefits of being non-invasive and highly sensitive for the thorough evaluation of disease status in patients newly diagnosed with AL. Furthermore, the SUVmax BM/liver ratio is of significant clinical importance for prognosticating outcomes in patients with AL presenting EMD.
Collapse
Affiliation(s)
- Jiamin Fang
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430071, China
| | - Jie Chen
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430071, China
| | - Xinqi Li
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430071, China
| | - Pengpeng Li
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430071, China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430071, China.
| | - Yong He
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430071, China.
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430071, China.
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, Hubei, 430071, China.
| |
Collapse
|
3
|
Kar S, Gupta H, Shaikh N, Lele V. Beyond the Marrow: Unveiling Uncommon Sites of ALL Relapse with 18 F-FDG PET/CT. World J Nucl Med 2024; 23:282-284. [PMID: 39677342 PMCID: PMC11637637 DOI: 10.1055/s-0044-1787894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Extramedullary infiltration of acute lymphoblastic leukemia/lymphoma (ALL) to genital organs is extremely rare. Here, we present a case report of an asymptomatic 49-year-old female, known case of precursor B-cell ALL, who was incidentally detected with thickened and heterogeneously hyperechoic endometrium on sonography. Contrast magnetic resonance imaging detected large polypoidal enhancing lesions showing intense diffusion restriction occupying the endometrial cavity and similar lesions in the left adnexa, left ovary, and fallopian tube which were suspicious for leukemic infiltration because of the clinical history and atypical appearance of the lesions. 18 F-fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) was done which revealed intensely metabolically active lesion in the endometrial cavity, left adnexa, omental nodules, retroperitoneal lymph node, pancreatic lesion, and few irregular nodules in the right lower lobe. Biopsy findings confirmed extramedullary relapse of ALL. Hence, 18 F-FDG PET/CT can act as a good whole body survey to look for extramedullary sites of relapse.
Collapse
Affiliation(s)
- Siven Kar
- Department of Nuclear Medicine and PET-CT, Jaslok Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Harshita Gupta
- Department of Nuclear Medicine and PET-CT, Jaslok Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Nusrat Shaikh
- Department of Nuclear Medicine and PET-CT, Jaslok Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Vikram Lele
- Department of Nuclear Medicine and PET-CT, Jaslok Hospital and Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
4
|
Parghane RV, Basu S. Role of Novel Quantitative Imaging Techniques in Hematological Malignancies. PET Clin 2024; 19:543-559. [PMID: 38944639 DOI: 10.1016/j.cpet.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Hematological malignancies exhibit a widespread distribution, necessitating evaluation of disease activity over the entire body. In clinical practice, visual analysis and semiquantitative parameters are used to assess 18F-FDGPET/CT imaging, which solely represents measurements of disease activity from limited area and may not adequately reflect global disease assessment. An efficient method for assessing the global disease burden of hematological malignancies is to employ PET/computed tomography based novel quantitative parameters. In this article, we explored novel quantitative parameters on PET/CT imaging for assessing global disease burden and the potential role of artificial intelligence (AI) to determine these parameters in evaluation of hematological malignancies.
Collapse
Affiliation(s)
- Rahul V Parghane
- Radiation Medicine Centre (BARC), Tata Memorial Hospital Annexe, Parel, Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Sandip Basu
- Radiation Medicine Centre (BARC), Tata Memorial Hospital Annexe, Parel, Mumbai, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
5
|
Dondi F, Bertagna F. Applications of 18F-Fluorodesoxyglucose PET Imaging in Leukemia. PET Clin 2024; 19:535-542. [PMID: 38909010 DOI: 10.1016/j.cpet.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The main finding that 18F-FDG PET imaging can reveal in patients with leukemias is the presence of bone marrow (BM) infiltration in both acute or chronic forms. This ability can influence and guide the use of BM biopsy but also assess to therapy response. Additionally 18F-FDG PET imaging has been reported as particularly useful for the diagnosis of leukemias in patients with non specific symptoms. In the case of acute leukemias it revealed also a role for the evaluation of extramedullary forms while in the case of chronic forms a role for the assessment of Richter transformation has been reported.
Collapse
Affiliation(s)
- Francesco Dondi
- Nuclear Medicine, Department of Medicine and Surgery, Università degli Studi di Brescia and ASST Spedali Civili di Brescia, Brescia, 25123, Italy.
| | - Francesco Bertagna
- Nuclear Medicine, Department of Medicine and Surgery, Università degli Studi di Brescia and ASST Spedali Civili di Brescia, Brescia, 25123, Italy
| |
Collapse
|
6
|
Hu Y, Dai W, Wang P, Feng Y, Feng H, Li J. Case report: 18F-FDG PET/CT skeletal superscan-like in an adult patient with acute lymphoblastic leukemia. Front Oncol 2024; 14:1401453. [PMID: 39077465 PMCID: PMC11284062 DOI: 10.3389/fonc.2024.1401453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
We herein describe a rare case of adult acute lymphoblastic leukemia with an 18florine-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) skeletal superscan-like appearance. The degree of bone marrow uptake was so intense that it far exceeded the level of physiological cerebral uptake and radiourinary activity. The distribution was remarkably similar to a superscan seen on skeletal scintigraphy. Skeletal superscans of 18F-FDG PET/CT have been reported in hematological diseases, solid tumors with extensive bone metastasis, and metabolic diseases. Thus, we reviewed the PET/CT images of cases reported, indicating that more homogeneous distribution, without primary tumor and specific mandibular and skull activity, may be suggestive of hematological diseases.
Collapse
Affiliation(s)
| | - Wenli Dai
- Department of Nuclear Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | | | | | | | | |
Collapse
|
7
|
Al-Ibraheem A, Allouzi S, Abdlkadir AS, Mikhail-Lette M, Al-Rabi K, Ma'koseh M, Knoll P, Abdelrhman Z, Shahin O, Juweid ME, Paez D, Lopci E. PET/CT in leukemia: utility and future directions. Nucl Med Commun 2024; 45:550-563. [PMID: 38646840 DOI: 10.1097/mnm.0000000000001846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
2-Deoxy-2-[ 18 F]fluoro- d -glucose PET/computed tomography ([ 18 F]FDG PET/CT) has proven to be a sensitive method for the detection and evaluation of hematologic malignancies, especially lymphoma. The increasing incidence and mortality rates of leukemia have raised significant concerns. Through the utilization of whole-body imaging, [ 18 F]FDG PET/CT provides a thorough assessment of the entire bone marrow, complementing the limited insights provided by biopsy samples. In this regard, [ 18 F]FDG PET/CT has the ability to assess diverse types of leukemia The utilization of [ 18 F]FDG PET/CT has been found to be effective in evaluating leukemia spread beyond the bone marrow, tracking disease relapse, identifying Richter's transformation, and assessing the inflammatory activity associated with acute graft versus host disease. However, its role in various clinical scenarios in leukemia remains unacknowledged. Despite their less common use, some novel PET/CT radiotracers are being researched for potential use in specific scenarios in leukemia patients. Therefore, the objectives of this review are to provide a thorough assessment of the current applications of [ 18 F]FDG PET/CT in the staging and monitoring of leukemia patients, as well as the potential for an expanding role of PET/CT in leukemia patients.
Collapse
Affiliation(s)
- Akram Al-Ibraheem
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC),
- Department of Radiology and Nuclear Medicine, School of Medicine, University of Jordan, Amman, Jordan,
| | - Sudqi Allouzi
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC),
| | | | - Miriam Mikhail-Lette
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria,
| | - Kamal Al-Rabi
- Department of Medical Oncology, King Hussein Cancer Center (KHCC), Amman, Jordan,
| | - Mohammad Ma'koseh
- Department of Medical Oncology, King Hussein Cancer Center (KHCC), Amman, Jordan,
| | - Peter Knoll
- Dosimetry and Medical Radiation Physics Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria,
| | - Zaid Abdelrhman
- Department of Medical Oncology, King Hussein Cancer Center (KHCC), Amman, Jordan,
| | - Omar Shahin
- Department of Medical Oncology, King Hussein Cancer Center (KHCC), Amman, Jordan,
| | - Malik E Juweid
- Department of Radiology and Nuclear Medicine, University of Jordan, Amman, Jordan and
| | - Diana Paez
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria,
| | - Egesta Lopci
- Department of Nuclear Medicine, IRCCS - Humanitas Clinical and Research Hospital, Rozzano (MI), Italy
| |
Collapse
|
8
|
Hani U, Gowda BHJ, Haider N, Ramesh K, Paul K, Ashique S, Ahmed MG, Narayana S, Mohanto S, Kesharwani P. Nanoparticle-Based Approaches for Treatment of Hematological Malignancies: a Comprehensive Review. AAPS PharmSciTech 2023; 24:233. [PMID: 37973643 DOI: 10.1208/s12249-023-02670-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023] Open
Abstract
Blood cancer, also known as hematological malignancy, is one of the devastating types of cancer that has significantly paved its mortality mark globally. It persists as an extremely deadly cancer type and needs utmost attention owing to its negligible overall survival rate. Major challenges in the treatment of blood cancer include difficulties in early diagnosis, as well as severe side effects resulting from chemotherapy. In addition, immunotherapies and targeted therapies can be prohibitively expensive. Over the past two decades, scientists have devised a few nanoparticle-based drug delivery systems aimed at overcoming this challenge. These therapeutic strategies are engineered to augment the cellular uptake, pharmacokinetics, and effectiveness of anticancer drugs. However, there are still numerous types of nanoparticles that could potentially improve the efficacy of blood cancer treatment, while also reducing treatment costs and mitigating drug-related side effects. To the best of our knowledge, there has been limited reviews published on the use of nano-based drug delivery systems for the treatment of hematological malignancies. Therefore, we have made a concerted effort to provide a comprehensive review that draws upon recent literature and patents, with a focus on the most promising results regarding the use of nanoparticle-based approaches for the treatment of hematological malignancies. All these crucial points covered under a common title would significantly help researchers and scientists working in the area.
Collapse
Affiliation(s)
- Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, 61421, Abha, Saudi Arabia.
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India.
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, BT9 7BL, UK.
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, 61421, Abha, Saudi Arabia
| | - Kvrns Ramesh
- Department of Pharmaceutics, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, 11172, Ras Al Khaimah, United Arab Emirates
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, Karnataka, India
| | - Sumel Ashique
- Department of Pharmaceutics, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal, 713378, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Tamil Nadu, India.
| |
Collapse
|
9
|
Epperly R, Shulkin BL, Bag AK, Cheng C, Inaba H, Lucas JT, Naik S, Triplett BM, Gottschalk S, Talleur AC. CD19 CAR T-cell therapy demonstrates activity against extramedullary disease in pediatric patients with B-ALL. Blood Adv 2023; 7:6320-6324. [PMID: 37595052 PMCID: PMC10589782 DOI: 10.1182/bloodadvances.2023010461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Affiliation(s)
- Rebecca Epperly
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN
| | - Barry L. Shulkin
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN
| | - Asim K. Bag
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - John T. Lucas
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Swati Naik
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN
| | - Brandon M. Triplett
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN
| | - Aimee C. Talleur
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
10
|
Schultz L, Davis KL, Walkush A, Baggott C, Erickson C, Ramakrishna S, Aftandilian C, Lacayo N, Nadel HR, Oak J, Mackall CL. Role of peripheral blood MRD and 18F-FDG PET in the post-CAR relapse setting: a case study of discordant peripheral blood and bone marrow MRD. J Immunother Cancer 2023; 11:jitc-2022-004851. [PMID: 36849202 PMCID: PMC9972424 DOI: 10.1136/jitc-2022-004851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cell therapy is an effective salvage therapy for pediatric relapsed B-cell acute lymphoblastic leukemia (B-ALL), yet is challenged by high rates of post-CAR relapse. Literature describing specific relapse patterns and extramedullary (EM) sites of involvement in the post-CAR setting remains limited, and a clinical standard for post-CAR disease surveillance has yet to be established. We highlight the importance of integrating peripheral blood minimal residual disease (MRD) testing and radiologic imaging into surveillance strategies, to effectively characterize and capture post-CAR relapse. MAIN BODY Here, we describe the case of a child with multiply relapsed B-ALL who relapsed in the post-CAR setting with gross non-contiguous medullary and EM disease. Interestingly, her relapse was identified first from peripheral blood flow cytometry MRD surveillance, in context of a negative bone marrow aspirate (MRD <0.01%). Positron emission tomography with 18F-fluorodeoxyglucose revealed diffuse leukemia with innumerable bone and lymph node lesions, interestingly sparing her sacrum, the site of her bone marrow aspirate sampling. CONCLUSIONS We highlight this case as both peripheral blood MRD and 18F-fluorodeoxyglucose positron emission tomography imaging were more sensitive than standard bone marrow aspirate testing in detecting this patient's post-CAR relapse. Clinical/Biologic Insight: In the multiply relapsed B-ALL setting, where relapse patterns may include patchy medullary and/or EM disease, peripheral blood MRD and/or whole body imaging, may carry increased sensitivity at detecting relapse in patient subsets, as compared with standard bone marrow sampling.
Collapse
Affiliation(s)
- Liora Schultz
- Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Kara Lynn Davis
- Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Ann Walkush
- Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Christina Baggott
- Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Courtney Erickson
- Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Sneha Ramakrishna
- Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | | | - Norman Lacayo
- Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Helen Ruth Nadel
- Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Jean Oak
- Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Crystal L Mackall
- Pediatrics and Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
11
|
Salem AE, Shah HR, Covington MF, Koppula BR, Fine GC, Wiggins RH, Hoffman JM, Morton KA. PET-CT in Clinical Adult Oncology: I. Hematologic Malignancies. Cancers (Basel) 2022; 14:cancers14235941. [PMID: 36497423 PMCID: PMC9738711 DOI: 10.3390/cancers14235941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/28/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
PET-CT is an advanced imaging modality with many oncologic applications, including staging, assessment of response to therapy, restaging and evaluation of suspected recurrence. The goal of this 6-part series of review articles is to provide practical information to providers and imaging professionals regarding the best use of PET-CT for the more common adult malignancies. In the first article of this series, hematologic malignancies are addressed. The classification of these malignancies will be outlined, with the disclaimer that the classification of lymphomas is constantly evolving. Critical applications, potential pitfalls, and nuances of PET-CT imaging in hematologic malignancies and imaging features of the major categories of these tumors are addressed. Issues of clinical importance that must be reported by the imaging professionals are outlined. The focus of this article is on [18F] fluorodeoxyglucose (FDG), rather that research tracers or those requiring a local cyclotron. This information will serve as a resource for the appropriate role and limitations of PET-CT in the clinical management of patients with hematological malignancy for health care professionals caring for adult patients with hematologic malignancies. It also serves as a practical guide for imaging providers, including radiologists, nuclear medicine physicians and their trainees.
Collapse
Affiliation(s)
- Ahmed Ebada Salem
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA
- Department of Radiodiagnosis and Intervention, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Harsh R. Shah
- Department of Medicine, Division of Hematology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Matthew F. Covington
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Bhasker R. Koppula
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Gabriel C. Fine
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Richard H. Wiggins
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - John M. Hoffman
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Kathryn A. Morton
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA
- Intermountain Healthcare Hospitals, Murray, UT 84123, USA
- Correspondence: ; Tel.: +1-1801-581-7553
| |
Collapse
|
12
|
Characterization of Extramedullary Disease in B-ALL and Response to CAR T-cell Therapy. Blood Adv 2021; 6:2167-2182. [PMID: 34920453 PMCID: PMC9006258 DOI: 10.1182/bloodadvances.2021006035] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
A substantial fraction of patients with relapsed/refractory B-ALL will have non-CNS EMD. CAR T cells may have limited efficacy in multifocal non-CNS EMD, and serial imaging is needed to identify and monitor EMD.
Chimeric antigen receptor (CAR) T cells effectively eradicate medullary B-cell acute lymphoblastic leukemia (B-ALL) and can traffic to and clear central nervous system (CNS) involvement. CAR T-cell activity in non-CNS extramedullary disease (EMD) has not been well characterized. We systematically evaluated CAR T-cell kinetics, associated toxicities, and efficacy in B-ALL non-CNS EMD. We conducted a retrospective review of B-ALL patients with non-CNS EMD who were screened for/enrolled on one of three CAR trials (CD19, CD22, and CD19/22) at our institution. Non-CNS EMD was identified according to histology or radiographic imaging at extramedullary sites excluding the cerebrospinal fluid and CNS parenchyma. Of ∼180 patients with relapsed/refractory B-ALL screened across multiple early-phase trials over an 8-year period, 38 (21.1%) presented with isolated non-CNS EMD (n = 5) or combined medullary/non-CNS EMD (n = 33) on 18-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) imaging. A subset receiving CAR T cells (18 infusions) obtained FDG PET/CT scans preinfusion and postinfusion to monitor response. At best response, 72.2% (13 of 18) of patients showed a medullary minimal residual disease–negative complete remission and complete (n = 7) or partial (n = 6) non-CNS EMD response. Non-CNS EMD responses to CAR T cells were delayed (n = 3), and residual non-CNS EMD was substantial; rarely, discrepant outcomes (marrow response without EMD response) were observed (n = 2). Unique CAR-associated toxicities at non-CNS EMD sites were seen in select patients. CAR T cells are active in B-ALL non-CNS EMD. Still, non-CNS EMD response to CAR T cells may be delayed and suboptimal, particularly with multifocal disease. Serial FDG PET/CT scans are necessary for identifying and monitoring non-CNS EMD.
Collapse
|
13
|
Kidney Failure and Abdominal Discomfort as Initial Signs of Extramedullary Acute Myelogenous Leukemia. Clin Pract 2021; 11:459-466. [PMID: 34449553 PMCID: PMC8395402 DOI: 10.3390/clinpract11030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
Although rare, acute myelogenous leukemia (AML) can include extramedullary manifestations, sometimes presenting as a solid tumor called a myeloid sarcoma. Myeloid sarcoma can be the cause of the initial presenting complaint before AML diagnosis, or may be detected as a sign of disease-relapse after treatment. Here, we report a case in which the initial presentation included abdominal discomfort and signs of kidney failure. Further investigation revealed signs of unilateral hydronephrosis. Due to a diagnostic delay, the patient was diagnosed with AML with extramedullary manifestation only after the development of full-blown leukemia. Biopsy of the compressive tumor confirmed an extramedullary myeloid sarcoma, and [18F]-FDG-PET/CT proved useful for patient diagnosis and follow-up. This case report illustrates the importance of thorough examination and diagnosis, as a serious underlying disease with a rare cause can debut with an unusual presentation.
Collapse
|