1
|
Chang HJ, Ke CH, Wang YS, Kuo YC. Case Report: Effective management of residual glioblastoma with combined modality therapy. Front Oncol 2025; 15:1451408. [PMID: 40224189 PMCID: PMC11985788 DOI: 10.3389/fonc.2025.1451408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor with a poor prognosis, often characterized by rapid progression and resistance to conventional therapies. This case report discusses the comprehensive management of a 60-year-old female diagnosed with residual GBM following initial surgical intervention. The treatment regimen included craniectomy, concurrent chemoradiotherapy (CCRT), adjuvant temozolomide, and weekly sessions of modulated electro-hyperthermia (mEHT, Oncothermia). Remarkably, the patient exhibited significant tumor shrinkage, improved neurological symptoms, and an extended survival period compared to typical outcomes. mEHT was utilized to enhance the efficacy of chemoradiotherapy and temozolomide by selectively targeting cancer cells and improving drug delivery. Integrating mEHT into the standard treatment protocol appears to have contributed to better therapeutic outcomes and improved quality of life for the patient. This case underscores the potential benefits of incorporating mEHT into multimodal treatment strategies for GBM, highlighting its role in enhancing the effects of conventional therapies. Future research and clinical trials are warranted to further explore the synergistic effects of mEHT with standard GBM treatments, aiming to establish more effective protocols and improve overall patient survival and quality of life. This report adds to the growing body of evidence supporting the use of innovative, integrative approaches in the management of aggressive brain tumors like GBM.
Collapse
Affiliation(s)
- Heng-Jui Chang
- Department of Radiation Oncology, Wesing Surgery Hospital, Kaohsiung, Taiwan
| | - Chiao-Hsu Ke
- Department of Chemical Engineering and Biotechnology, Institute of Chemical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Yu-Shan Wang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Department of Research and Development, Uni-Pharma Co-Ltd., Taipei, Taiwan
| | - Yu-Cheng Kuo
- Department of Radiation Oncology, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Szasz A. Bioelectromagnetism for Cancer Treatment-Modulated Electro-Hyperthermia. Curr Oncol 2025; 32:158. [PMID: 40136362 PMCID: PMC11941104 DOI: 10.3390/curroncol32030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/27/2025] Open
Abstract
Bioelectromagnetism has the potential to revolutionize cancer treatment by providing a noninvasive, targeted, and potentially more effective complement to traditional therapies. Among bioelectromagnetic techniques, modulated electro-hyperthermia (mEHT) stands out due to its unique characteristics, which have been supported by experimental evidence and clinical validation. Unlike conventional hyperthermia methods, mEHT leverages nonthermal bioelectromagnetic processes, offering a distinct and promising approach in oncology. This differentiation underscores the broader potential for bioelectromagnetic applications in cancer treatment, paving the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Andras Szasz
- Department of Biotechnics, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
3
|
Nair PM, Palanisamy A, Ramalakshmi R, Devibala M, Saranya M, Sivaranjini S, Thangavelu R, Mahalingam M. Oncothermia and Integrative Medicine-A Novel Paradigm for Infratentorial Meningioma Management: A Case Report With One-Year Follow-Up. Cureus 2025; 17:e77005. [PMID: 39912042 PMCID: PMC11797076 DOI: 10.7759/cureus.77005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Infratentorial meningiomas (IM) pose unique challenges in treatment due to their location and proximity to critical neurovascular structures such as cranial nerves, arteries, veins, etc. This case report presents the efficacy of an integrative medicine approach in managing IM, highlighting the multidisciplinary collaboration of modern medicine, yoga, naturopathy, and homeopathy. A 60-year-old male with IM, deemed unsuitable for surgery, underwent a tailored integrative medicine protocol involving oncothermia, ozone therapy, high-dose vitamin C, hydrogen inhalation, time-restricted feeding, hydrotherapy, biologicals, acupuncture, and yoga. Follow-up assessments revealed significant symptom reduction, stable biochemical markers, and tumor size reduction observed in MRI scans. While individual modalities have demonstrated benefits in cancer care, this case underscores the potential of integrating diverse therapies to address the multifaceted challenges of IM. The findings offer valuable insights into the evolving landscape of integrative medicine in brain tumor management, suggesting promise for improved patient outcomes and enhanced quality of life. Further research and clinical trials are warranted to comprehensively evaluate the safety and efficacy of integrative approaches in IM treatment.
Collapse
Affiliation(s)
- Pradeep Mk Nair
- Department of Integrative Oncology, Mirakle Integrated Health Centre, Pollachi, IND
| | - Ayyappan Palanisamy
- Department of Medical Oncology, Mirakle Integrated Health Centre, Pollachi, IND
| | | | - Muniappan Devibala
- Department of Integrative Oncology, Mirakle Integrated Health Centre, Pollachi, IND
| | | | - Sekar Sivaranjini
- Department of Integrative Oncology, Mirakle Integrated Health Centre, Pollachi, IND
| | - R Thangavelu
- Department of General Medicine, Mirakle Integrated Health Centre, Pollachi, IND
| | - Manickam Mahalingam
- Department of Integrative Oncology, Mirakle Integrated Health Centre, Pollachi, IND
| |
Collapse
|
4
|
Viana PHL, Schvarcz CA, Danics LO, Besztercei B, Aloss K, Bokhari SMZ, Giunashvili N, Bócsi D, Koós Z, Benyó Z, Hamar P. Heat shock factor 1 inhibition enhances the effects of modulated electro hyperthermia in a triple negative breast cancer mouse model. Sci Rep 2024; 14:8241. [PMID: 38589452 PMCID: PMC11002009 DOI: 10.1038/s41598-024-57659-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Female breast cancer is the most diagnosed cancer worldwide. Triple negative breast cancer (TNBC) is the most aggressive type and there is no existing endocrine or targeted therapy. Modulated electro-hyperthermia (mEHT) is a non-invasive complementary cancer therapy using an electromagnetic field generated by amplitude modulated 13.56 MHz frequency that induces tumor cell destruction. However, we have demonstrated a strong induction of the heat shock response (HSR) by mEHT, which can result in thermotolerance. We hypothesized that inhibition of the heat shock factor 1 (HSF1) can synergize with mEHT and enhance tumor cell-killing. Thus, we either knocked down the HSF1 gene with a CRISPR/Cas9 lentiviral construct or inhibited HSF1 with a specific small molecule inhibitor: KRIBB11 in vivo. Wild type or HSF1-knockdown 4T1 TNBC cells were inoculated into the mammary gland's fat pad of BALB/c mice. Four mEHT treatments were performed every second day and the tumor growth was followed by ultrasound and caliper. KRIBB11 was administrated intraperitoneally at 50 mg/kg daily for 8 days. HSF1 and Hsp70 expression were assessed. HSF1 knockdown sensitized transduced cancer cells to mEHT and reduced tumor growth. HSF1 mRNA expression was significantly reduced in the KO group when compared to the empty vector group, and consequently mEHT-induced Hsp70 mRNA upregulation diminished in the KO group. Immunohistochemistry (IHC) confirmed the inhibition of Hsp70 upregulation in mEHT HSF1-KO group. Demonstrating the translational potential of HSF1 inhibition, combined therapy of mEHT with KRIBB11 significantly reduced tumor mass compared to either monotherapy. Inhibition of Hsp70 upregulation by mEHT was also supported by qPCR and IHC. In conclusion, we suggest that mEHT-therapy combined with HSF1 inhibition can be a possible new strategy of TNBC treatment with great translational potential.
Collapse
Affiliation(s)
- Pedro H L Viana
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Csaba A Schvarcz
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Lea O Danics
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Balázs Besztercei
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Kenan Aloss
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Syeda M Z Bokhari
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Nino Giunashvili
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Dániel Bócsi
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Zoltán Koós
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary.
| |
Collapse
|
5
|
Viana P, Hamar P. Targeting the heat shock response induced by modulated electro-hyperthermia (mEHT) in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189069. [PMID: 38176599 DOI: 10.1016/j.bbcan.2023.189069] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The Heat Shock Response (HSR) is a cellular stress reaction crucial for cell survival against stressors, including heat, in both healthy and cancer cells. Modulated electro-hyperthermia (mEHT) is an emerging non-invasive cancer therapy utilizing electromagnetic fields to selectively target cancer cells via temperature-dependent and independent mechanisms. However, mEHT triggers HSR in treated cells. Despite demonstrated efficacy in cancer treatment, understanding the underlying molecular mechanisms for improved therapeutic outcomes remains a focus. This review examines the HSR induced by mEHT in cancer cells, discussing potential strategies to modulate it for enhanced tumor-killing effects. Approaches such as HSF1 gene-knockdown and small molecule inhibitors like KRIBB11 are explored to downregulate the HSR and augment tumor destruction. We emphasize the impact of HSR inhibition on cancer cell viability, mEHT sensitivity, and potential synergistic effects, addressing challenges and future directions. This understanding offers opportunities for optimizing treatment strategies and advancing precision medicine in cancer therapy.
Collapse
Affiliation(s)
- Pedro Viana
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| |
Collapse
|
6
|
Van Gool SW, Makalowski J, Kampers LFC, Van de Vliet P, Sprenger T, Schirrmacher V, Stücker W. Dendritic cell vaccination for glioblastoma multiforme patients: has a new milestone been reached? Transl Cancer Res 2023; 12:2224-2228. [PMID: 37701100 PMCID: PMC10493805 DOI: 10.21037/tcr-23-603] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/10/2023] [Indexed: 09/14/2023]
|
7
|
Lee SY, Lee DH, Cho DH. Modulated electrohyperthermia in locally advanced cervical cancer: Results of an observational study of 95 patients. Medicine (Baltimore) 2023; 102:e32727. [PMID: 36701697 PMCID: PMC9857257 DOI: 10.1097/md.0000000000032727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Most federation of gynecology and obstetrics stage II or higher locally advanced cervical cancer (LACC) patients are treated with concurrent chemoradiotherapy (CCRT); however, recurrence is high, and the prognosis is poor. In this observational retrospective study, data from LACC patients treated with CCRT alone or combined with modulated electrohyperthermia (mEHT) were collected from 2011 to 2018. Ninety-five LACC patients, including 53 (%) treated with CCRT alone and 42 (%) treated with CCRT + mEHT, were enrolled. The complete remission rate significantly increased with CCRT + mEHT compared with CCRT alone among LACC cases with lymph node metastasis (45% vs 71%, P = .0377). Additionally, at the last follow-up point, the no-evidence-of-disease rate significantly improved with CCRT + mEHT compared with CCRT (58% vs 82%, P = .0315). Disease-free survival increased in the CCRT + mEHT group with lymph node metastasis (P = .04). The addition of mEHT to CCRT led to a better therapeutic response in LACC with regional lymph node metastasis without severe complications.
Collapse
Affiliation(s)
- Sun Young Lee
- Department of Radiation Oncology, Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Dong Hyun Lee
- Department of Obstetrics and Gynecology, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Dong-Hyu Cho
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Department of Obstetrics and Gynecology, Jeonbuk National University Hospital, Jeonju, Republic of Korea
- * Correspondence: Dong-Hyu Cho, Department of Obstetrics and Gynecology, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea (e-mail: )
| |
Collapse
|
8
|
Liebl CM, Kutschan S, Dörfler J, Käsmann L, Hübner J. Systematic review about complementary medical hyperthermia in oncology. Clin Exp Med 2022; 22:519-565. [PMID: 35767077 PMCID: PMC9244386 DOI: 10.1007/s10238-022-00846-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022]
Abstract
Hyperthermia is a generic term for different techniques using heat in cancer therapies. Temperatures of about 42° Celsius in combination with chemo- or radiotherapy may improve the effectiveness of those treatments. Clinical benefit is shown in "standard hyperthermia" with tumour temperatures assessed during treatment. This systematic review thoroughly assesses the state of evidence concerning the benefits and side effects of electro hyperthermia or whole-body hyperthermia ("alternative hyperthermia") in oncology. From 26 April 2021 to 09 May 2021, a systematic search was conducted searching five electronic databases (Embase, Cochrane, PsycINFO, CINAHL and Medline) to find studies concerning the use, effectiveness and potential harm of alternative medical hyperthermia therapy on cancer patients. From all 47,388 search results, 53 publications concerning 53 studies with 2006 patients were included in this systematic review. The patients were diagnosed with different types of cancer. The hyperthermic methods included whole-body hyperthermia (WBH) with different methods and electro hyperthermia (EH). The majority of the included studies were single-arm studies, counting in total 32 studies. Six studies were randomized controlled trials (RCT). In addition, one systematic review (SR) was found. The most critical endpoints were tumour response, survival data, pain relief, myelosuppression and toxicities. Outcome was heterogeneous, and considering the methodological limitations, clinical evidence for the benefit of alternative hyperthermia in cancer patients is lacking. Neither for whole-body hyperthermia nor for electro hyperthermia there is any evidence with respect to improvement of survival or quality of life in cancer patients.
Collapse
Affiliation(s)
- Christina Maria Liebl
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Sabine Kutschan
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Jennifer Dörfler
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Lukas Käsmann
- Klinik und Poliklinik für Strahlentherapie, LMU Klinikum, Munich, Germany
| | - Jutta Hübner
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
9
|
Germano IM, Ziu M, Wen P, Ormond DR, Olson JJ. Congress of Neurological Surgeons systematic review and evidence-based guidelines update on the role of cytotoxic chemotherapy and other cytotoxic therapies in the management of progressive glioblastoma in adults. J Neurooncol 2022; 158:225-253. [PMID: 35195819 DOI: 10.1007/s11060-021-03900-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022]
Abstract
TARGET POPULATION These recommendations apply to adult patients diagnosed with progressive glioblastoma (pGBM). QUESTION (Q1): In adult patients with pGBM does the use of temozolomide (TMZ) with alternative dosing or the use of TMZ in combination with other cytotoxic treatments result in increased overall survival compared to other chemotherapy? RECOMMENDATION Level III: Adult patients with pGBM might derive benefit in treatment with TMZ, especially those who progress after more than 5 months of TMZ-treatment free interval. LEVEL III Combination of TMZ with other cytotoxic agents such as nitrosourea, cisplatin, electrohyperthermia, or tamoxifen is not suggested in adult patients with pGBM as a stand-alone therapy. There is insufficient data to make a recommendation about which alternative TMZ dosing provides the best benefits. QUESTION (Q2): In adult patients with pGBM does the use of systemic or in situ nitrosourea result in increased overall survival compared to other chemotherapy? RECOMMENDATION Level III: In the setting of pGBM, fotemustine is suggested in elderly patients with methylated MGMT promoter status. There is insufficient evidence to compare fotemustine to other nitrosoureas. There is insufficient evidence to make a recommendation about the use of in situ nitrosourea in patients with pGBM who underwent the Stupp regimen. QUESTION (Q3): In adult patients with pGBM does the use of platinum compounds and topoisomerase result in increased survival compared to other chemotherapy? RECOMMENDATION Level III: Other chemotherapy including platinum compounds and topoisomerase inhibitors are not suggested to be used in adult patients with pGBM. LEVEL III Other cytotoxic therapies like perillyl acohol or ketogenic diet are not suggested for use in adult patients with pGBM as a stand-alone therapy. QUESTION (Q4): In adult patients with pGBM does the use of tumor treating field (TTF) result in increased overall survival compared to chemotherapy? RECOMMENDATION Level III: The use of TTF with other chemotherapy may be considered when treating adult patients with pGBM. There is insufficient evidence to recommend TTF to increase overall survival in adult patients with pGBM. QUESTION (Q5): In adult patients with pGBM does the use of oncolytic virotherapy result in increased survival compared to chemotherapy? RECOMMENDATION Level III: Oncolytic virotherapy is not suggested in patients with pGBM.
Collapse
Affiliation(s)
- Isabelle M Germano
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Mateo Ziu
- Department of Neurosurgery, Inova Neurosciences, Fairfax, VA, USA
| | - Patrick Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - D Ryan Ormond
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
10
|
Efficacy and Safety of Temozolomide Combined with Radiotherapy in the Treatment of Malignant Glioma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3477918. [PMID: 35211253 PMCID: PMC8863446 DOI: 10.1155/2022/3477918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 01/31/2023]
Abstract
MG is a clinical common intracranial tumor, with the characteristics of strong invasion. In our study, we aim to explore the efficacy and safety of temozolomide combined with radiotherapy in the treatment of malignant glioma (MG) and its influence on postoperative complications and survival rate of patients. 120 MG patients admitted to our hospital (January 2019-January 2020) were chosen as the research objects and were randomly divided into group A (n = 60) and group B (n = 60). All patients were treated with radiotherapy, and patients in group A were additionally treated with temozolomide. The clinical efficacy, quality of life, incidence of adverse reactions, incidence of postoperative complications, survival rates, and average survival time of the two groups were compared. The objective remission rate (ORR), disease control rate (DCR), survival rates after one year and two years of follow-up, and the number of patients with improved quality of life in group A were markedly higher compared with group B (P < 0.05). The incidence of postoperative complications in group A was remarkably lower compared with group B (P < 0.05). The average survival time of group A was dramatically longer compared with group B (P < 0.001). There was no significant difference in the incidence of adverse reactions between the two groups (P > 0.05), and no new adverse reactions occurred in the patients. Temozolomide combined with radiotherapy can effectively improve the quality of life, treatment effect, and survival rate of MG patients, with a lower incidence of postoperative complications and better tolerance. Our finding indicates that temozolomide combined with radiotherapy has a high clinical application value. In addition, it indicates that this treatment method should be promoted in practice.
Collapse
|
11
|
Heterogeneous Heat Absorption Is Complementary to Radiotherapy. Cancers (Basel) 2022; 14:cancers14040901. [PMID: 35205649 PMCID: PMC8870118 DOI: 10.3390/cancers14040901] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary This review shows the advantages of heterogeneous heating of selected malignant cells in harmonic synergy with radiotherapy. The main clinical achievement of this complementary therapy is its extreme safety and minimal adverse effects. Combining the two methods opens a bright perspective, transforming the local radiotherapy to the antitumoral impact on the whole body, destroying the distant metastases by “teaching” the immune system about the overall danger of malignancy. Abstract (1) Background: Hyperthermia in oncology conventionally seeks the homogeneous heating of the tumor mass. The expected isothermal condition is the basis of the dose calculation in clinical practice. My objective is to study and apply a heterogenic temperature pattern during the heating process and show how it supports radiotherapy. (2) Methods: The targeted tissue’s natural electric and thermal heterogeneity is used for the selective heating of the cancer cells. The amplitude-modulated radiofrequency current focuses the energy absorption on the membrane rafts of the malignant cells. The energy partly “nonthermally” excites and partly heats the absorbing protein complexes. (3) Results: The excitation of the transmembrane proteins induces an extrinsic caspase-dependent apoptotic pathway, while the heat stress promotes the intrinsic caspase-dependent and independent apoptotic signals generated by mitochondria. The molecular changes synergize the method with radiotherapy and promote the abscopal effect. The mild average temperature (39–41 °C) intensifies the blood flow for promoting oxygenation in combination with radiotherapy. The preclinical experiences verify, and the clinical studies validate the method. (4) Conclusions: The heterogenic, molecular targeting has similarities with DNA strand-breaking in radiotherapy. The controlled energy absorption allows using a similar energy dose to radiotherapy (J/kg). The two therapies are synergistically combined.
Collapse
|
12
|
Forika G, Kiss E, Petovari G, Danko T, Gellert AB, Krenacs T. Modulated Electro-Hyperthermia Supports the Effect of Gemcitabine Both in Sensitive and Resistant Pancreas Adenocarcinoma Cell Lines. Pathol Oncol Res 2021; 27:1610048. [PMID: 34955688 PMCID: PMC8702438 DOI: 10.3389/pore.2021.1610048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/17/2021] [Indexed: 12/09/2022]
Abstract
The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is frequently associated to high treatment resistance. Gemcitabine (GEM) alone or in combination is the most used chemotherapy for unresecable PDACs. Here we studied whether modulated electro-hyperthermia (mEHT), a non-invasive complementary treatment, can support the effect of GEM on PDAC cells in vitro. The LD20 for the GEM-resistant Panc1 cells proved to be 200× higher than for the drug-sensitive Capan1. The mEHT alone caused significant apoptosis in Capan1 cultures as confirmed by the elevated SubG1 phase cell fraction and increased number of cleaved Caspase-3 positive cells 48 h after treatment, with an additive effect when GEM was used after hyperthermia. These were accompanied by reduced number of G1, S, and G2/M phase cells and elevated expression of the cyclin-dependent kinase inhibitor p21waf1 protein. In GEM-resistant Panc1 cells, an initial apoptosis was detected by flow cytometry 24 h after mEHT ± GEM treatment, which however diminished by 48 h at persistent number of cleaved Caspase-3 positive tumor cells. Though GEM monotherapy reduced the number of tumor progenitor colonies in Capan1 cell line, an additive colony inhibitory effect of mEHT was observed after mEHT + GEM treatment. The heat shock induced Hsp27 and Hsp70 proteins, which are known to sensitize PDAC cells to GEM were upregulated in both Capan1 and Panc1 cells 24 h after mEHT treatment. The level of E-Cadherin, a cell adhesion molecule, increased in Capan1 cells after mEHT + GEM treatment. In conclusion, in GEM-sensitive PDAC cells mEHT treatment alone induced cell death and cell cycle inhibition and improved GEM efficiency in combination, which effects were milder and short-term up to 24 h in the GEM-resistant Panc1 cells. Our data further support the inclusion of hyperthermia, in particular of mEHT, into the traditional oncotherapy regimens of PDAC.
Collapse
Affiliation(s)
- Gertrud Forika
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Eva Kiss
- 1st Department of Internal Medicine and Oncology, Oncology Profile, Semmelweis University, Budapest, Hungary
| | - Gabor Petovari
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Titanilla Danko
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Aron Bertram Gellert
- Department of Thoracic Surgery, National Institute of Oncology and Semmelweis University, Budapest, Hungary
| | - Tibor Krenacs
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- *Correspondence: Tibor Krenacs,
| |
Collapse
|
13
|
Wust P, Stein U, Ghadjar P. Non-thermal membrane effects of electromagnetic fields and therapeutic applications in oncology. Int J Hyperthermia 2021; 38:715-731. [PMID: 33910472 DOI: 10.1080/02656736.2021.1914354] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The temperature-independent effects of electromagnetic fields (EMF) have been controversial for decades. Here, we critically analyze the available literature on non-thermal effects of radiofrequency (RF) and microwave EMF. We present a literature review of preclinical and clinical data on non-thermal antiproliferative effects of various EMF applications, including conventional RF hyperthermia (HT, cRF-HT). Further, we suggest and evaluate plausible biophysical and electrophysiological models to decipher non-thermal antiproliferative membrane effects. Available preclinical and clinical data provide sufficient evidence for the existence of non-thermal antiproliferative effects of exposure to cRF-HT, and in particular, amplitude modulated (AM)-RF-HT. In our model, transmembrane ion channels function like RF rectifiers and low-pass filters. cRF-HT induces ion fluxes and AM-RF-HT additionally promotes membrane vibrations at specific resonance frequencies, which explains the non-thermal antiproliferative membrane effects via ion disequilibrium (especially of Ca2+) and/or resonances causing membrane depolarization, the opening of certain (especially Ca2+) channels, or even hole formation. AM-RF-HT may be tumor-specific owing to cancer-specific ion channels and because, with increasing malignancy, membrane elasticity parameters may differ from that in normal tissues. Published literature suggests that non-thermal antiproliferative effects of cRF-HT are likely to exist and could present a high potential to improve future treatments in oncology.
Collapse
Affiliation(s)
- Peter Wust
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Centrum (MDC), Berlin, Germany
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
14
|
Oberacker E, Diesch C, Nadobny J, Kuehne A, Wust P, Ghadjar P, Niendorf T. Patient-Specific Planning for Thermal Magnetic Resonance of Glioblastoma Multiforme. Cancers (Basel) 2021; 13:cancers13081867. [PMID: 33919701 PMCID: PMC8070230 DOI: 10.3390/cancers13081867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hyperthermia was proven to enhance the efficacy of chemo- and radiation therapy treatment of glioblastoma multiforme, an aggressive brain tumor of poor prognosis. Despite good clinical results in other tumor types and locations, hyperthermia induced by electromagnetic waves in the radiofrequency range is not available so far for the treatment of brain tumors due to the highly sensitive surrounding tissue and lack of non-invasive therapy monitoring. ThermalMR integrates non-invasive diagnosis, therapy, and therapy monitoring in a single RF applicator device by employing radiowaves for magnetic resonance imaging, radiofrequency heating, as well as magnetic resonance thermometry. This work examines three optimization algorithms for hyperthermia treatment planning and up to ten RF applicator configurations for a cohort of nine patient models with glioblastoma multiforme. Clinical diversity is represented in target size and location and the inclusion of post-operative models. Our findings indicate the need and potential for patient-specific treatment planning and RF applicator design when targeting brain tumors. Abstract Thermal intervention is a potent sensitizer of cells to chemo- and radiotherapy in cancer treatment. Glioblastoma multiforme (GBM) is a potential clinical target, given the cancer’s aggressive nature and resistance to current treatment options. This drives research into optimization algorithms for treatment planning as well as radiofrequency (RF) applicator design for treatment delivery. In this work, nine clinically realistic GBM target volumes (TVs) for thermal intervention are compared using three optimization algorithms and up to ten RF applicator designs for thermal magnetic resonance. Hyperthermia treatment planning (HTP) was successfully performed for all cases, including very small, large, and even split target volumes. Minimum requirements formulated for the metrics assessing HTP outcome were met and exceeded for all patient specific cases. Results indicate a 16 channel two row arrangement to be most promising. HTP of TVs with a small extent in the cranial–caudal direction in conjunction with a large radial extent remains challenging despite the advanced optimization algorithms used. In general, deep seated targets are favorable. Overall, our findings indicate that a one-size-fits-all RF applicator might not be the ultimate approach in hyperthermia of brain tumors. It stands to reason that modular and reconfigurable RF applicator configurations might best suit the needs of targeting individual GBM geometry.
Collapse
Affiliation(s)
- Eva Oberacker
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (C.D.); (T.N.)
- Department Radiation Oncology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (J.N.); (P.W.); (P.G.)
- Department of Physics, Faculty of Mathematics and Natural Sciences, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-(0)30-450-557188
| | - Cecilia Diesch
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (C.D.); (T.N.)
| | - Jacek Nadobny
- Department Radiation Oncology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (J.N.); (P.W.); (P.G.)
| | | | - Peter Wust
- Department Radiation Oncology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (J.N.); (P.W.); (P.G.)
| | - Pirus Ghadjar
- Department Radiation Oncology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (J.N.); (P.W.); (P.G.)
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (C.D.); (T.N.)
- MRI.TOOLS GmbH, 13125 Berlin, Germany;
- Experimental and Clinical Research Center, Joint Cooperation between Charité Unversitätsmedizin and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| |
Collapse
|
15
|
Vancsik T, Máthé D, Horváth I, Várallyaly AA, Benedek A, Bergmann R, Krenács T, Benyó Z, Balogh A. Modulated Electro-Hyperthermia Facilitates NK-Cell Infiltration and Growth Arrest of Human A2058 Melanoma in a Xenograft Model. Front Oncol 2021; 11:590764. [PMID: 33732640 PMCID: PMC7959784 DOI: 10.3389/fonc.2021.590764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
Modulated electro-hyperthermia (mEHT), induced by 13.56 MHz radiofrequency, has been demonstrated both in preclinical and clinical studies to efficiently induce tumor damage and complement other treatment modalities. Here, we used a mouse xenograft model of human melanoma (A2058) to test mEHT (~42°C) both alone and combined with NK-cell immunotherapy. A single 30 min shot of mEHT resulted in significant tumor damage due to induced stress, marked by high hsp70 expression followed by significant upregulation of cleaved/activated caspase-3 and p53. When mEHT was combined with either primary human NK cells or the IL-2 independent NK-92MI cell line injected subcutaneously, the accumulation of NK cells was observed at the mEHT pretreated melanoma nodules but not at the untreated controls. mEHT induced the upregulation of the chemoattractant CXCL11 and increased the expression of the matrix metalloproteinase MMP2 which could account for the NK-cell attraction into the treated melanoma. In conclusion, mEHT monotherapy of melanoma xenograft tumors induced irreversible heat and cell stress leading to caspase dependent apoptosis to be driven by p53. mEHT could support the intratumoral attraction of distantly injected NK-cells, contributed by CXCL11 and MMP2 upregulation, resulting in an additive tumor destruction and growth inhibition. Therefore, mEHT may offer itself as a good partner for immunotherapy.
Collapse
Affiliation(s)
- Tamás Vancsik
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Ildikó Horváth
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | | | - Anett Benedek
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ralf Bergmann
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Tibor Krenács
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Andrea Balogh
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
16
|
Alshaibi HF, Al-shehri B, Hassan B, Al-zahrani R, Assiss T. Modulated Electrohyperthermia: A New Hope for Cancer Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8814878. [PMID: 33274226 PMCID: PMC7683119 DOI: 10.1155/2020/8814878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/14/2020] [Accepted: 10/31/2020] [Indexed: 12/26/2022]
Abstract
According to the World Health Organization, the prevalence of cancer has increased worldwide. Oncological hyperthermia is a group of methods that overheat the malignant tissues locally or systematically. Nevertheless, hyperthermia is not widely accepted, primarily because of the lack of selectivity for cancer cells and because the temperature-triggered higher blood flow increases the nutrient supply to the tumor, raising the risk of metastases. These problems with classical hyperthermia led to the development of modulated electrohyperthermia (mEHT). The biophysical differences of the cancer cells and their healthy hosts allow for selective energy absorption on the membrane rafts of the plasma membrane of the tumor cells, triggering immunogenic cell death. Currently, this method is used in only 34 countries. The effectiveness of conventional oncotherapies increases when it is applied in combination with mEHT. In silico, in vitro, and in vivo preclinical research studies have all shown the extraordinary ability of mEHT to kill malignant cells. Clinical applications have improved the quality of life and the survival of patients. For these reasons, many other research studies are presently in progress worldwide. Thus, the objective of this review is to highlight the capabilities and advantages of mEHT and provide new hopes for cancer patients worldwide.
Collapse
Affiliation(s)
- Huda F. Alshaibi
- Faculty of Science Biochemistry Department, King Abdulaziz University, Saudi Arabia P.O. Box 52502, Jeddah 21573
| | - Bashayr Al-shehri
- Faculty of Science Biochemistry Department, Undergraduate Students at King Abdulaziz University, Saudi Arabia
| | - Basmah Hassan
- Faculty of Science Biochemistry Department, Undergraduate Students at King Abdulaziz University, Saudi Arabia
| | - Raghad Al-zahrani
- Faculty of Science Biochemistry Department, Undergraduate Students at King Abdulaziz University, Saudi Arabia
| | - Taghreed Assiss
- Faculty of Science Biochemistry Department, Undergraduate Students at King Abdulaziz University, Saudi Arabia
| |
Collapse
|
17
|
Lee SY, Fiorentini G, Szasz AM, Szigeti G, Szasz A, Minnaar CA. Quo Vadis Oncological Hyperthermia (2020)? Front Oncol 2020; 10:1690. [PMID: 33014841 PMCID: PMC7499808 DOI: 10.3389/fonc.2020.01690] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Heating as a medical intervention in cancer treatment is an ancient approach, but effective deep heating techniques are lacking in modern practice. The use of electromagnetic interactions has enabled the development of more reliable local-regional hyperthermia (LRHT) techniques whole-body hyperthermia (WBH) techniques. Contrary to the relatively simple physical-physiological concepts behind hyperthermia, its development was not steady, and it has gone through periods of failures and renewals with mixed views on the benefits of heating seen in the medical community over the decades. In this review we study in detail the various techniques currently available and describe challenges and trends of oncological hyperthermia from a new perspective. Our aim is to describe what we believe to be a new and effective approach to oncologic hyperthermia, and a change in the paradigm of dosing. Physiological limits restrict the application of WBH which has moved toward the mild temperature range, targeting immune support. LRHT does not have a temperature limit in the tumor (which can be burned out in extreme conditions) but a trend has started toward milder temperatures with immune-oriented goals, developing toward immune modulation, and especially toward tumor-specific immune reactions by which LRHT seeks to target the malignancy systemically. The emerging research of bystander and abscopal effects, in both laboratory investigations and clinical applications, has been intensified. Our present review summarizes the methods and results, and discusses the trends of hyperthermia in oncology.
Collapse
Affiliation(s)
- Sun-Young Lee
- Department of Radiation Oncology, Chonbuk National University Hospital, Jeonbuk, South Korea
| | | | - Attila Marcell Szasz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Gyula Szigeti
- Innovation Center, Semmelweis University, Budapest, Hungary
| | - Andras Szasz
- Biotechnics Department, St. Istvan University, Godollo, Hungary
| | - Carrie Anne Minnaar
- Department of Radiation Oncology, Wits Donald Gordon Medical Center, Johannesburg, South Africa
| |
Collapse
|
18
|
Krenacs T, Meggyeshazi N, Forika G, Kiss E, Hamar P, Szekely T, Vancsik T. Modulated Electro-Hyperthermia-Induced Tumor Damage Mechanisms Revealed in Cancer Models. Int J Mol Sci 2020; 21:E6270. [PMID: 32872532 PMCID: PMC7504298 DOI: 10.3390/ijms21176270] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
The benefits of high-fever range hyperthermia have been utilized in medicine from the Ancient Greek culture to the present day. Amplitude-modulated electro-hyperthermia, induced by a 13.56 MHz radiofrequency current (mEHT, or Oncothermia), has been an emerging means of delivering loco-regional clinical hyperthermia as a complementary of radiation-, chemo-, and molecular targeted oncotherapy. This unique treatment exploits the metabolic shift in cancer, resulting in elevated oxidative glycolysis (Warburg effect), ion concentration, and electric conductivity. These promote the enrichment of electric fields and induce heat (controlled at 42 °C), as well as ion fluxes and disequilibrium through tumor cell membrane channels. By now, accumulating preclinical studies using in vitro and in vivo models of different cancer types have revealed details of the mechanism and molecular background of the oncoreductive effects of mEHT monotherapy. These include the induction of DNA double-strand breaks, irreversible heath and cell stress, and programmed cells death; the upregulation of molecular chaperones and damage (DAMP) signaling, which may contribute to a secondary immunogenic tumor cell death. In combination therapies, mEHT proved to be a good chemosensitizer through increasing drug uptake and tumor reductive effects, as well as a good radiosensitizer by downregulating hypoxia-related target genes. Recently, immune stimulation or intratumoral antigen-presenting dendritic cell injection have been able to extend the impact of local mEHT into a systemic "abscopal" effect. The complex network of pathways emerging from the published mEHT experiments has not been overviewed and arranged yet into a framework to reveal links between the pieces of the "puzzle". In this paper, we review the mEHT-related damage mechanisms published in tumor models, which may allow some geno-/phenotype treatment efficiency correlations to be exploited both in further research and for more rational clinical treatment planning when mEHT is involved in combination therapies.
Collapse
Affiliation(s)
- Tibor Krenacs
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (N.M.); (G.F.); (T.S.)
| | - Nora Meggyeshazi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (N.M.); (G.F.); (T.S.)
| | - Gertrud Forika
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (N.M.); (G.F.); (T.S.)
| | - Eva Kiss
- Institute of Oncology at 1st Department of Internal Medicine, Semmelweis University, H-1083 Budapest, Hungary;
| | - Peter Hamar
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary; (P.H.); (T.V.)
| | - Tamas Szekely
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (N.M.); (G.F.); (T.S.)
| | - Tamas Vancsik
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary; (P.H.); (T.V.)
| |
Collapse
|
19
|
Kao PHJ, Chen CH, Tsang YW, Lin CS, Chiang HC, Huang CC, Chi MS, Yang KL, Li WT, Kao SJ, Minnaar CA, Chi KH, Wang YS. Relationship between Energy Dosage and Apoptotic Cell Death by Modulated Electro-Hyperthermia. Sci Rep 2020; 10:8936. [PMID: 32488092 PMCID: PMC7265408 DOI: 10.1038/s41598-020-65823-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/08/2020] [Indexed: 11/23/2022] Open
Abstract
Modulated electro-hyperthermia (mEHT) is a form of mild hyperthermia (HT) used for cancer treatment. The principle utility of HT is the ability not only to increase cell temperature, but also to increase blood flow and associated pO2 to the microenvironment. While investigational evidence has shown the unique ability of mEHT to elicit apoptosis in cancer cells, in vivo and in vitro, the same trait has not been observed with conventional HT. There is dissension as to what allows mEHT to elicit apoptosis despite heating to only mild temperatures, with the predominant opinion in favor of increased temperature at a cellular level as the driving force. For this study, we hypothesized that in addition to temperature, the amount of electrical energy delivered is a major factor in induction of apoptosis by mEHT. To evaluate the impact of electrical energy on apoptosis, we divided generally practiced mEHT treatment into 3 phases: Phase I (treatment start to 10 min. mark): escalation from 25 °C to 37 °C Phase II (10 min. mark to 15 min. mark): escalation from 37 °C to 42 °C Phase III (15 min. mark to 45 min. mark): maintenance at 42 °C Combinations of mEHT at 18 W power, mEHT at 7.5 W power, water bath, and incubator were applied to each of the three phases. Power output was recorded per second and calculated as average power per second. Total number of corresponding Joules emitted per each experiment was also recorded. The biological effect of apoptotic cell death was assayed by annexin-V assay. In group where mEHT was applied for all three phases, apoptosis rate was measured at 31.18 ± 1.47%. In group where mEHT was only applied in Phases II and III, apoptosis rate dropped to 20.2 ± 2.1%. Where mEHT was only applied in Phase III, apoptosis was 6.4 ± 1.7%. Interestingly, when mEHT was applied in Phases I and II, whether Phase III was conducted in either water bath at 42 °C or incubator at 37 °C, resulted in nearly identical apoptosis rates, 26 ± 4.4% and 25.9 ± 3.1%, respectively. These results showed that accumulation of mEHT at high-powered setting (18 W/sec) during temperature escalation (Phase I and Phase II), significantly increased apoptosis of tested cancer cells. The data also showed that whereas apoptosis rate was significantly increased during temperature escalation by higher power (18 W/sec), apoptosis was limited during temperature maintenance with lower power (7.5 W/sec). This presents that neither maintenance of 42 °C nor accumulation of Joules by mEHT has immediate correlating effect on apoptosis rate. These findings may offer a basis for direction of clinical application of mEHT treatment.
Collapse
Affiliation(s)
- Patrick Hung-Ju Kao
- Division of Cardiovascular Surgery, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chia-Hung Chen
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Yuk-Wah Tsang
- Department of Radiation Oncology, Chiayi Christian Hospital, Chiayi, Taiwan
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Chen-Si Lin
- Institute of Veterinary Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Chien Chiang
- Institute of Veterinary Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Chung Huang
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mau-Shin Chi
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Kai-Lin Yang
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Institute of Radiation Science and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wen-Tyng Li
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Shang-Jyh Kao
- Division of Chest Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Carrie Anne Minnaar
- Department of Radiation Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kwan-Hwa Chi
- Institute of Veterinary Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Institute of Radiation Science and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Shan Wang
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan.
- Institute of Veterinary Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.
| |
Collapse
|
20
|
Van Gool SW, Makalowski J, Bonner ER, Feyen O, Domogalla MP, Prix L, Schirrmacher V, Nazarian J, Stuecker W. Addition of Multimodal Immunotherapy to Combination Treatment Strategies for Children with DIPG: A Single Institution Experience. MEDICINES 2020; 7:medicines7050029. [PMID: 32438648 PMCID: PMC7281768 DOI: 10.3390/medicines7050029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 01/29/2023]
Abstract
Background: The prognosis of children with diffuse intrinsic pontine glioma (DIPG) remains dismal despite radio- and chemotherapy or molecular-targeted therapy. Immunotherapy is a powerful and promising approach for improving the overall survival (OS) of children with DIPG. Methods: A retrospective analysis for feasibility, immune responsiveness, and OS was performed on 41 children treated in compassionate use with multimodal therapy consisting of Newcastle disease virus, hyperthermia, and autologous dendritic cell vaccines as part of an individualized combinatorial treatment approach for DIPG patients. Results: Patients were treated at diagnosis (n = 28) or at the time of progression (n = 13). In the case of 16 patients, histone H3K27M mutation was confirmed by analysis of biopsy (n = 9) or liquid biopsy (n = 9) specimens. PDL1 mRNA expression was detected in circulating tumor cells of ten patients at diagnosis. Multimodal immunotherapy was feasible as scheduled, until progression, in all patients without major toxicity. When immunotherapy was part of primary treatment, median PFS and OS were 8.4 m and 14.4 m from the time of diagnosis, respectively, with a 2-year OS of 10.7%. When immunotherapy was given at the time of progression, median PFS and OS were 6.5 m and 9.1 m, respectively. A longer OS was associated with a Th1 shift and rise in PanTum Detect test scores. Conclusions: Multimodal immunotherapy is feasible without major toxicity, and warrants further investigation as part of a combinatorial treatment approach for children diagnosed with DIPG.
Collapse
Affiliation(s)
- Stefaan W. Van Gool
- Immun-Onkologisches Zentrum Köln, Hohenstaufenring 30-32, 50674 Köln, Germany; (J.M.); (M.P.D.); (V.S.); (W.S.)
- Correspondence: ; Tel.: +49-221-420-39925
| | - Jennifer Makalowski
- Immun-Onkologisches Zentrum Köln, Hohenstaufenring 30-32, 50674 Köln, Germany; (J.M.); (M.P.D.); (V.S.); (W.S.)
| | - Erin R. Bonner
- Center for Genetic Medicine, Children’s National Health System, Washington, DC 20010, USA;
- Institute for Biomedical Sciences, The George Washington University School of Medicine and health Sciences, Washington, DC 20052, USA
| | - Oliver Feyen
- Zyagnum, Reißstrasse 1, 64319 Pfungstadt, Germany;
| | - Matthias P. Domogalla
- Immun-Onkologisches Zentrum Köln, Hohenstaufenring 30-32, 50674 Köln, Germany; (J.M.); (M.P.D.); (V.S.); (W.S.)
| | - Lothar Prix
- Biofocus, Berghäuser Strasse 295, 45659 Recklinghausen, Germany;
| | - Volker Schirrmacher
- Immun-Onkologisches Zentrum Köln, Hohenstaufenring 30-32, 50674 Köln, Germany; (J.M.); (M.P.D.); (V.S.); (W.S.)
| | - Javad Nazarian
- DIPG Research Institute, Universitäts-Kinderspital Zürich; Steinwiesstrasse 75, Ch-8032 Zürich, Switzerland;
| | - Wilfried Stuecker
- Immun-Onkologisches Zentrum Köln, Hohenstaufenring 30-32, 50674 Köln, Germany; (J.M.); (M.P.D.); (V.S.); (W.S.)
| |
Collapse
|
21
|
Jun HJ, Park SJ, Kang HJ, Lee GY, Lee N, Park JH, Yoo HS. The Survival Benefit of Combination Therapy With Mild Temperature Hyperthermia and an Herbal Prescription of Gun-Chil-Jung in 54 Cancer Patients Treated With Chemotherapy or Radiation Therapy: A Retrospective Study. Integr Cancer Ther 2020; 19:1534735420926583. [PMID: 32449629 PMCID: PMC7249570 DOI: 10.1177/1534735420926583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/25/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
Background: The combination of herbal medicine with conventional treatment increases the survival rate of cancer patients, but the effect is not great. Hyperthermia may have a synergistic effect with herbal medicine alongside conventional medicine. Objective: To monitor the efficacy of hyperthermia together with Gun-Chil-Jung (GCJ) capsule for event-free survival (EFS) and overall survival (OS) for the treatment of various cancers. Methods: We collected data retrospectively on 54 cancer patients of all stages. They were divided into 4 groups according to each hyperthermia or GCJ treatment period. Hyperthermia with 0.46 MHz radiofrequency wave was applied a power of 50 to 100 W for 70 minutes. GCJ capsules were administered orally 3 times a day. Results: The median follow-up was 13.4 months, and 25 (55.6%) patients showed disease-related events. Hyperthermia with GCJ treatment was administered in combination group (n = 36, 66.7%) and traditional Korean medicine-only group (n = 17, 31.5%). The median EFS was 190 days, and the median OS was 390 days. The group of hyperthermia 7 times or fewer and GCJ more than 28 days showed longer EFS and OS. The analysis of superiority between hyperthermia and GCJ showed no significant difference (EFS, P = .55; OS, P = .364). Conclusions: The combination of hyperthermia 1 to 2 times a week with GCJ treatment may improve survival of cancer patients treated or being treated with conventional cancer therapies.
Collapse
Affiliation(s)
- Hyeong Joon Jun
- Seoul Korean Medicine Hospital of
Daejeon University, Seoul, Republic of Korea
| | - So-Jung Park
- Dunsan Korean Medicine Hospital of
Daejeon University, Daejeon, Republic of Korea
| | - Hwi-Joong Kang
- Seoul Korean Medicine Hospital of
Daejeon University, Seoul, Republic of Korea
| | - Ga-Young Lee
- Cheonan Korean Medicine Hospital of
Daejeon University, Cheonan, Republic of Korea
| | - Namhun Lee
- Cheonan Korean Medicine Hospital of
Daejeon University, Cheonan, Republic of Korea
| | - Ji Hye Park
- Seoul Korean Medicine Hospital of
Daejeon University, Seoul, Republic of Korea
| | - Hwa-Seung Yoo
- Seoul Korean Medicine Hospital of
Daejeon University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Oberacker E, Kuehne A, Oezerdem C, Nadobny J, Weihrauch M, Beck M, Zschaeck S, Diesch C, Eigentler TW, Waiczies H, Ghadjar P, Wust P, Winter L, Niendorf T. Radiofrequency applicator concepts for thermal magnetic resonance of brain tumors at 297 MHz (7.0 Tesla). Int J Hyperthermia 2020; 37:549-563. [PMID: 32484019 PMCID: PMC8352381 DOI: 10.1080/02656736.2020.1761462] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 04/02/2020] [Accepted: 04/17/2020] [Indexed: 12/28/2022] Open
Abstract
Purpose: Thermal intervention is a potent sensitizer of cells to chemo- and radiotherapy in cancer treatment. Glioblastoma multiforme (GBM) is a potential clinical target, given the cancer's aggressive nature and resistance to current treatment options. The annular phased array (APA) technique employing electromagnetic waves in the radiofrequency (RF) range allows for localized temperature increase in deep seated target volumes (TVs). Reports on clinical applications of the APA technique in the brain are still missing. Ultrahigh field magnetic resonance (MR) employs higher frequencies than conventional MR and has potential to provide focal temperature manipulation, high resolution imaging and noninvasive temperature monitoring using an integrated RF applicator (ThermalMR). This work examines the applicability of RF applicator concepts for ThermalMR of brain tumors at 297 MHz (7.0 Tesla).Methods: Electromagnetic field (EMF) simulations are performed for clinically realistic data based on GBM patients. Two algorithms are used for specific RF energy absorption rate based thermal intervention planning for small and large TVs in the brain, aiming at maximum RF power deposition or RF power uniformity in the TV for 10 RF applicator designs.Results: For both TVs , the power optimization outperformed the uniformity optimization. The best results for the small TV are obtained for the 16 element interleaved RF applicator using an elliptical antenna arrangement with water bolus. The two row elliptical RF applicator yielded the best result for the large TV.Discussion: This work investigates the capacity of ThermalMR to achieve targeted thermal interventions in model systems resembling human brain tissue and brain tumors.
Collapse
Affiliation(s)
- Eva Oberacker
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Physics, Faculty of Mathematics and Natural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Celal Oezerdem
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jacek Nadobny
- Clinic for Radiation Oncology, Charité Universitätsmedizin, Berlin, Germany
| | - Mirko Weihrauch
- Clinic for Radiation Oncology, Charité Universitätsmedizin, Berlin, Germany
| | - Marcus Beck
- Clinic for Radiation Oncology, Charité Universitätsmedizin, Berlin, Germany
| | - Sebastian Zschaeck
- Clinic for Radiation Oncology, Charité Universitätsmedizin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Cecilia Diesch
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thomas Wilhelm Eigentler
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Chair of Medical Engineering, Technische Universität Berlin, Berlin, Germany
| | | | - Pirus Ghadjar
- Clinic for Radiation Oncology, Charité Universitätsmedizin, Berlin, Germany
| | - Peter Wust
- Clinic for Radiation Oncology, Charité Universitätsmedizin, Berlin, Germany
| | - Lukas Winter
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Physikalisch Technische Bundesanstalt, Braunschweig, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- MRI.TOOLS GmbH, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
23
|
Fiorentini G, Sarti D, Gadaleta CD, Ballerini M, Fiorentini C, Garfagno T, Ranieri G, Guadagni S. A Narrative Review of Regional Hyperthermia: Updates From 2010 to 2019. Integr Cancer Ther 2020; 19:1534735420932648. [PMID: 33054425 PMCID: PMC7570290 DOI: 10.1177/1534735420932648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
The role of hyperthermia (HT) in cancer therapy and palliative care has been discussed for years in the literature. There are plenty of articles that show good feasibility of HT and its efficacy in terms of tumor response and survival improvements. Nevertheless, HT has never gained enough interest among oncologists to become a standard therapy in clinical practice. The main advantage of HT is the enhancement of chemotherapy (CHT), radiotherapy (RT), chemoradiotherapy (CRT), and immunotherapy benefits. This effect has been confirmed in several types of tumors: esophageal, gastrointestinal, pancreas, breast, cervix, head and neck, and bladder cancers, and soft tissue sarcoma. HT effects include oxygenation and perfusion changes, DNA repair inhibition and immune system activation as a consequence of new antigen exposure. The literature shows a wide variety of randomized, nonrandomized, and observational studies and both prospective and retrospective data to confirm the advantage of HT association to CHT and RT. There are still many ongoing trials on this subject. This article summarizes the available literature on HT in order to update the current knowledge on HT use in association with RT and/or CHT from 2010 up to 2019.
Collapse
Affiliation(s)
- Giammaria Fiorentini
- Azienda Ospedaliera “Ospedali Riuniti Marche Nord,” Pesaro, Italy
- Private Clinic Ravenna33, Ravenna, Italy
| | - Donatella Sarti
- Azienda Ospedaliera “Ospedali Riuniti Marche Nord,” Pesaro, Italy
| | - Cosmo Damiano Gadaleta
- Department of Interventional and Integrated Medical Oncology, National Cancer Research Centre, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | | | | | | | - Girolamo Ranieri
- Department of Interventional and Integrated Medical Oncology, National Cancer Research Centre, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | | |
Collapse
|
24
|
Wust P, Ghadjar P, Nadobny J, Beck M, Kaul D, Winter L, Zschaeck S. Physical analysis of temperature-dependent effects of amplitude-modulated electromagnetic hyperthermia. Int J Hyperthermia 2019; 36:1246-1254. [DOI: 10.1080/02656736.2019.1692376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Peter Wust
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jacek Nadobny
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus Beck
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - David Kaul
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lukas Winter
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
25
|
Yang J, Hu Y, Wu J, Kong S. Effects of IGFBP-3 and GalNAc-T14 on proliferation and cell cycle of glioblastoma cells and its mechanism. ACTA ACUST UNITED AC 2019; 72:218-226. [PMID: 31713889 DOI: 10.1111/jphp.13187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/21/2019] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The purpose of this study was to determine the effects of IGFBP-3 and GalNAc-T14 on the proliferation and cell cycle of glioblastoma cells and to explore the mechanisms of action. METHODS U87MG and U251MG glioblastoma cells were treated with recombinant human IGFBP-3 (rhIGFBP-3). Furthermore, IGFBP-3-overexpressed cells and cells co-overexpressing IGFBP-3 and GalNAc-T14 were constructed by transfection. Cell viability, cell colony formation ability, cell cycle and protein expression were determined by MTT assay, colony formation assay, flow cytometry and Western blotting, respectively. KEY FINDINGS Both rhIGFBP-3 treatment and overexpression of IGFBP-3 induced the proliferation, colony formation, and G1/S phase transformation of U87MG and U251MG cells. In addition, the expression of cyclinE, CDK2 and p-ERK1/2 proteins was up-regulated in the cells. In cells co-overexpressing, IGFBP-3 and GalNAc-T14, cell proliferation, colony formation and G1/S phase transformation were inhibited, and the expression of CyclinE, CDK2 and p-ERK1/2 was significantly down-regulated, when compared with IGFBP-3-overexpressed cells. CONCLUSIONS IGFBP-3 can promote the proliferation, colony formation and G1/S phase transformation of U87MG and U251MG cells, which may be related to the activation of ERK signalling pathway and the up-regulation of cyclinE and CDK2 proteins. Furthermore, our study demonstrated that GalNAc-T14 can inhibit the functions of IGFBP-3.
Collapse
Affiliation(s)
- Jiao Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuhua Hu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianliang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shiqi Kong
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
26
|
Szasz AM, Minnaar CA, Szentmártoni G, Szigeti GP, Dank M. Review of the Clinical Evidences of Modulated Electro-Hyperthermia (mEHT) Method: An Update for the Practicing Oncologist. Front Oncol 2019; 9:1012. [PMID: 31737558 PMCID: PMC6837995 DOI: 10.3389/fonc.2019.01012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Modulated electro-hyperthermia (mEHT) is a variation of the conventional hyperthermia which selectively targets the malignant cell membranes in order to heat the malignant tissue and sensitize the tissue to oncology treatments. Although widely applied, the formulation of guidelines for the use thereof is still in progress for many tumors. Aim: In this paper we review the literature on the effects of mEHT in cancer patients on local disease control and survival. Methodology: Our review on data presents the collected experience with capacitive hyperthermia treatments with the EHY-2000+ device (OncoTherm Ltd., Germany). A literature search was conducted in Pubmed and articles were grouped and discussed according to: trial type, animal studies, in vitro studies, and reviews. Search results from Conference Abstracts; Trial Registries; Thesis and Dissertations and the Oncothermia Journal were included in the discussions. Results: Modulated electro-hyperthermia is a safe form of hyperthermia which has shown to effectively sensitizes deep tumors, regardless of the thickness of the adipose layers. The technology has demonstrated equal benefits compared to other forms of hyperthermia for a variety of tumors. Given the effective heating ability to moderate temperatures, the improved tumor perfusion, and ability to increase drug absorption, mEHT is a safe and effective heating technology which can be easily applied to sensitize tumors which have demonstrated benefits with the addition of hyperthermia. Modulated electro-hyperthermia also appears to improve local control and survival rates and appears to induce an abscopal (systemic) response to ionizing radiation. Conclusion: Based on clinical studies, the method mEHT is a feasible hyperthermia technology for oncological applications. Concomitant utilization of mEHT is supported by the preclinical and clinical data.
Collapse
Affiliation(s)
| | | | | | - Gyula P. Szigeti
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Magdolna Dank
- Cancer Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
27
|
Fiorentini G, Sarti D, Casadei V, Milandri C, Dentico P, Mambrini A, Nani R, Fiorentini C, Guadagni S. Modulated Electro-Hyperthermia as Palliative Treatment for Pancreatic Cancer: A Retrospective Observational Study on 106 Patients. Integr Cancer Ther 2019; 18:1534735419878505. [PMID: 31561722 PMCID: PMC6767725 DOI: 10.1177/1534735419878505] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/09/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Pancreatic adenocarcinoma has a poor prognosis, resulting in a <10% survival rate at 5 years. Modulated electro-hyperthermia (mEHT) has been increasingly used for pancreatic cancer palliative care and therapy. Objective: To monitor the efficacy and safety of mEHT for the treatment of advanced pancreatic cancer. Methods: We collected data retrospectively on 106 patients affected by stage III-IV pancreatic adenocarcinoma. They were divided into 2 groups: patients who did not receive mEHT (no-mEHT) and patients who were treated with mEHT. We performed mEHT applying a power of 60 to 150 W for 40 to 90 minutes. The mEHT treatment was associated with chemotherapy and/or radiotherapy for 33 (84.6%) patients, whereas 6 (15.4%) patients received mEHT alone. The patients of the no-mEHT group received chemotherapy and/or radiotherapy in 55.2% of cases. Results: Median age of the sample was 65.3 years (range = 31-80 years). After 3 months of therapy, the mEHT group had partial response in 22/34 patients (64.7%), stable disease in 10/34 patients (29.4%), and progressive disease in 2/34 patients (8.3%). The no-mEHT group had partial response in 3/36 patients (8.3%), stable disease in 10/36 patients (27.8%), and progressive disease in 23/36 patients (34.3%). The median overall survival of the mEHT group was 18.0 months (range = 1.5-68.0 months) and 10.9 months (range = 0.4-55.4 months) for the non-mEHT group. Conclusions: mEHT may improve tumor response and survival of pancreatic cancer patients.
Collapse
Affiliation(s)
| | - Donatella Sarti
- Azienda Ospedaliera “Ospedali Riuniti
Marche Nord,” Pesaro, Italy
| | - Virginia Casadei
- Azienda Ospedaliera “Ospedali Riuniti
Marche Nord,” Pesaro, Italy
| | | | | | | | - Roberto Nani
- University of Milano Bicocca, ASST Papa
Giovanni XXIII, Bergamo, Italy
| | | | | |
Collapse
|