1
|
Léger L, Budin-Verneuil A, Cacaci M, Benachour A, Hartke A, Verneuil N. β-Lactam Exposure Triggers Reactive Oxygen Species Formation in Enterococcus faecalis via the Respiratory Chain Component DMK. Cell Rep 2020; 29:2184-2191.e3. [PMID: 31747593 DOI: 10.1016/j.celrep.2019.10.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 09/19/2019] [Accepted: 10/18/2019] [Indexed: 01/15/2023] Open
Abstract
Whereas the primary actions of β-lactams are well characterized, their downstream effects are less well understood. Although their targets are extracellular, β-lactams stimulate respiration in Escherichia coli leading to increased intracellular accumulation of reactive oxygen species (ROS). Here, we show that β-lactams over a large concentration range trigger a strong increase in ROS production in Enterococcus faecalis under aerobic, but not anaerobic, conditions. Both amoxicillin, to which the bacterium is susceptible, and cefotaxime, to which E. faecalis is resistant, triggers this response. This stimulation of ROS formation depends mainly on demethylmenaquinone (DMK), a component of the E. faecalis respiratory chain, but in contrast to E. coli is observed only in the absence of respiration. Our results suggest that in E. faecalis, β-lactams increase electron flux through the respiratory chain, thereby stimulating the auto-oxidation of reduced DMK in the absence of respiration, which triggers increased extracellular ROS production.
Collapse
Affiliation(s)
- Loïc Léger
- UR Risques Microbiens, Normandie Univ, UNICAEN, U2RM, 14000 Caen, France
| | | | - Margherita Cacaci
- Università Cattolica del Sacro Cuore, Instituto di Microbiologia, Rome, Italy
| | - Abdellah Benachour
- UR Risques Microbiens, Normandie Univ, UNICAEN, U2RM, 14000 Caen, France
| | - Axel Hartke
- UR Risques Microbiens, Normandie Univ, UNICAEN, U2RM, 14000 Caen, France.
| | - Nicolas Verneuil
- UR Risques Microbiens, Normandie Univ, UNICAEN, U2RM, 14000 Caen, France
| |
Collapse
|
2
|
Kawano A, Ishikawa H, Mutoh M, Kubota H, Matsuda K, Tsuji H, Matsumoto K, Nomoto K, Tanaka R, Nakamura T, Wakabayashi K, Sakai T. Higher enterococcus counts indicate a lower risk of colorectal adenomas: a prospective cohort study. Oncotarget 2018; 9:21459-21467. [PMID: 29765552 PMCID: PMC5940372 DOI: 10.18632/oncotarget.25130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/24/2018] [Indexed: 01/08/2023] Open
Abstract
Intestinal bacteria play an important role in human health. This prospective cohort study aimed to investigate the relationship between the abundance of different intestinal bacteria and the risk of developing colorectal cancer (CRC). Fecal samples from CRC patients (n = 157) were collected at the start of the study wherein patients subsequently underwent endoscopy to remove polyps. Gut bacteria were isolated by using specific culture methods and the fecal counts of various bacteria were quantified by reverse-transcription-quantitative-PCR (RT-qPCR) assays. The obtained data were subjected to cohort analysis in relation to the incidence of colorectal adenomas after 4 years of intervention. No relationship was detected between the counts of major intestinal bacteria and the incidence of colorectal adenomas. However, interestingly, a significant negative correlation was noted between colorectal adenoma incidence and the counts of bacteria grown on Columbia blood agar base (COBA) (P = 0.007). The risk ratio of colorectal adenomas was 0.58 (95% CI: 0.35–0.96) in the group with the highest bacterial count compared to the lowest. Bacteria grown on COBA were more abundant in older patients, non-smoking patients, and patients with a lower body mass index. The RT-qPCR results revealed a significantly lower colorectal adenoma incidence in subjects with higher enterococcal count as compared to subjects with a lower count, with a risk ratio of 0.47 (95% CI: 0.30–0.76). Correlation of a higher enterococci count with a lower risk of CRC development suggests that certain Enterococcus strains may have adenoma suppressive effects.
Collapse
Affiliation(s)
- Atsuko Kawano
- Institute of Gastroenterology, Zenjinkai Shimin-no-Mori Hospital, Miyazaki, Japan
| | - Hideki Ishikawa
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihiro Mutoh
- Epidemiology and Prevention Group, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | | | - Kazunori Matsuda
- Yakult Honsha European Research Center for Microbiology, ESV, Gent Zwijnaarde, Belgium
| | | | | | | | | | | | - Keiji Wakabayashi
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Toshiyuki Sakai
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Han S, Gao J, Zhou Q, Liu S, Wen C, Yang X. Role of intestinal flora in colorectal cancer from the metabolite perspective: a systematic review. Cancer Manag Res 2018; 10:199-206. [PMID: 29440929 PMCID: PMC5798565 DOI: 10.2147/cmar.s153482] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer is one of the most common human malignant tumors. Recent research has shown that colorectal cancer is a dysbacteriosis-induced disease; however, the role of intestinal bacteria in colorectal cancer is unclear. This review explores the role of intestinal flora in colorectal cancer. In total, 57 articles were included after identification and screening. The pertinent literature on floral metabolites in colorectal cancer from three metabolic perspectives - including carbohydrate, lipid, and amino acid metabolism - was analyzed. An association network regarding the role of intestinal flora from a metabolic perspective was constructed by analyzing the previous literature to provide direction and insight for further research on intestinal flora in colorectal cancer.
Collapse
Affiliation(s)
- Shuwen Han
- Department of Medical Oncology, Huzhou Central Hospital
| | - Jianlan Gao
- Department of Medical Oncology, Huzhou Central Hospital
| | - Qing Zhou
- Department of Critical Care Medicine, Huzhou Central Hospital
| | | | - Caixia Wen
- Medical College of Nursing, Huzhou University
| | - Xi Yang
- Department of Intervention and Radiotherapy, Huzhou Central Hospital, Huzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
4
|
Abstract
For years the human microbiota has been implicated in the etiology of colorectal cancer (CRC). However, identifying the molecular mechanisms for how aneuploidy and chromosomal instability (CIN) arise in sporadic and colitis-associated CRC has been difficult. In this Addendum we review recent work from our laboratory that explore mechanisms by which intestinal commensals polarize colon macrophages to an M1 phenotype to generate a bystander effect (BSE) that leads to mutations, spindle malfunction, cell cycle arrest, tetraploidy, and aneuploidy in epithelial cells. BSE represents the application of a phenomenon initially described in the radiation biology field. The result of commensal-driven BSE on colon epithelial cells is aneuploidy, chromosomal instability (CIN), expression of stem cell and tumor stem cell markers and, ultimately, malignant transformation. Our findings provide a conceptual framework for integrating the microbiota with aging, cyclooxygenase (COX)-2, and inflammation as risk factors for CRC.
Collapse
Affiliation(s)
- Xingmin Wang
- Department of Radiation Oncology; University of Oklahoma Health Sciences Center; Oklahoma City, OK USA
| | - Mark M Huycke
- Department of Medicine; University of Oklahoma Health Sciences Center; Oklahoma City, OK USA,The Muchmore Laboratories for Infectious Diseases Research; Oklahoma City VA Health Care System; Oklahoma City, OK USA,Correspondence to: Mark M Huycke;
| |
Collapse
|
5
|
Use of rapid-scan EPR to improve detection sensitivity for spin-trapped radicals. Biophys J 2014; 105:338-42. [PMID: 23870255 DOI: 10.1016/j.bpj.2013.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 11/24/2022] Open
Abstract
The short lifetime of superoxide and the low rates of formation expected in vivo make detection by standard continuous wave (CW) electron paramagnetic resonance (EPR) challenging. The new rapid-scan EPR method offers improved sensitivity for these types of samples. In rapid-scan EPR, the magnetic field is scanned through resonance in a time that is short relative to electron spin relaxation times, and data are processed to obtain the absorption spectrum. To validate the application of rapid-scan EPR to spin trapping, superoxide was generated by the reaction of xanthine oxidase and hypoxanthine with rates of 0.1-6.0 μM/min and trapped with 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO). Spin trapping with BMPO to form the BMPO-OOH adduct converts the very short-lived superoxide radical into a more stable spin adduct. There is good agreement between the hyperfine splitting parameters obtained for BMPO-OOH by CW and rapid-scan EPR. For the same signal acquisition time, the signal/noise ratio is >40 times higher for rapid-scan than for CW EPR. Rapid-scan EPR can detect superoxide produced by Enterococcus faecalis at rates that are too low for detection by CW EPR.
Collapse
|
6
|
Mechanism of copper surface toxicity in vancomycin-resistant enterococci following wet or dry surface contact. Appl Environ Microbiol 2011; 77:6049-59. [PMID: 21742916 DOI: 10.1128/aem.00597-11] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Contaminated touch surfaces have been implicated in the spread of hospital-acquired infections, and the use of biocidal surfaces could help to reduce this cross-contamination. In a previous study we reported the death of aqueous inocula of pathogenic Enterococcus faecalis or Enterococcus faecium isolates, simulating fomite surface contamination, in 1 h on copper alloys, compared to survival for months on stainless steel. In our current study we observed an even faster kill of over a 6-log reduction of viable enterococci in less than 10 min on copper alloys with a "dry" inoculum equivalent to touch contamination. We investigated the effect of copper(I) and copper(II) chelation and the quenching of reactive oxygen species on cell viability assessed by culture and their effects on genomic DNA, membrane potential, and respiration in situ on metal surfaces. We propose that copper surface toxicity for enterococci involves the direct or indirect action of released copper ionic species and the generation of superoxide, resulting in arrested respiration and DNA breakdown as the first stages of cell death. The generation of hydroxyl radicals by the Fenton reaction does not appear to be the dominant instrument of DNA damage. The bacterial membrane potential is unaffected in the early stages of wet and dry surface contact, suggesting that the membrane is not compromised until after cell death. These results also highlight the importance of correct surface cleaning protocols to perpetuate copper ion release and prevent the chelation of ions by contaminants, which could reduce the efficacy of the surface.
Collapse
|
7
|
Abu-El-Saad AASA. Immunomodulating effect of inositol hexaphosphate against Aeromonas hydrophila-endotoxin. Immunobiology 2007; 212:179-92. [PMID: 17412285 DOI: 10.1016/j.imbio.2007.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 12/25/2006] [Accepted: 01/17/2007] [Indexed: 11/19/2022]
Abstract
The present study was carried out to evaluate the effect of inositol hexaphosphate (IP6) administration on endotoxemia as an example of the systemic inflammatory response. Mice were divided into three groups as follows: First group, remained as a naive group injected intraperitoneally (i.p.) with PBS (pH 7.4; 0.2 ml/mice) at intervals parallel to the treated groups. The second group was injected i.p. with the lipopolysaccharide (LPS) of Aeromonas hydrophila once a week for four weeks at a dose of LPS suspension: 20 mg/kg mice/week. The third group was injected with the same LPS dose and synergistically intubated with IP6 three times a week for four weeks at a total dose of 4 0mg/kg. At different experimental periods (1, 2, 3 and 4 weeks), six animals from each group were sacrificed under mild diethyl ether anesthesia. Blood and sera were taken for the estimation of phagocytic activity, electrophoretic pattern of proteins and immunoglobulin levels. Also, a slice of liver was homogenized to estimate the respiratory burst enzymes activities and nitric acid synthesis. Histopathological changes of hepatic tissues were investigated. In the LPS-treated group, marked increase in the phagocytic activities and nitric oxide synthesis, and a decrease in hepatocyte catalase, total peroxidase and superoxide dismutase activities were observed. The histopathological features revealed a degeneration and highly mitotic division within the hepatic nuclei in addition to some karyomegaly and nuclear pyknosis. During the treatment period, liver sections of the LPS+IP6 group showed somewhat regenerative features. Reduction in the toxicity of free radicals by IP6 was observed and the IP6 effect seemed to be responsible for the observed ameliorative influence.
Collapse
|
8
|
Kopáni M, Celec P, Danisovic L, Michalka P, Biró C. Oxidative stress and electron spin resonance. Clin Chim Acta 2005; 364:61-6. [PMID: 16125687 DOI: 10.1016/j.cca.2005.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 05/06/2005] [Accepted: 05/06/2005] [Indexed: 12/16/2022]
Abstract
The body constantly reacts with oxygen as part of the energy producing processes of cells. Oxidative stress is a dysbalance between the production of free radicals as products of these reactions and antioxidant properties of cells. The factors influencing the production of free radicals are physical agents, chemical agents and biological agents. Free radicals are paramagnetic molecules with short time-period for their detection by electron spin resonance (ESR) spectroscopy. The free radical stabilization can be gained by freezing a solution of an organic radical or bonding to spin trapping agents. The spin trapping agents are diamagnetic compounds which rapidly scavenge transient radicals to form stable paramagnetic spin adducts radicals. Because this secondary radical retains an unpaired electron, it can often be detected by electron spin resonance. From ESR spectra can be obtained structural information and kinetic information, information about the formation and decay of the radicals. To study the process of free radical generation is an important step towards reducing the deteriorating effects of oxidative stress.
Collapse
Affiliation(s)
- Martin Kopáni
- Comenius University, School of Medicine, Institute of Pathology, Sasinkova 4, 811 08 Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|