1
|
Rotem-Bamberger S, Fahoum J, Keinan-Adamsky K, Tsaban T, Avraham O, Shalev DE, Chill JH, Schueler-Furman O. Structural insights into the role of the WW2 domain on tandem WW/PPxY-motif interactions of oxidoreductase WWOX. J Biol Chem 2022; 298:102145. [PMID: 35716775 PMCID: PMC9293652 DOI: 10.1016/j.jbc.2022.102145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Class I WW domains are present in many proteins of various functions and mediate protein interactions by binding to short linear PPxY motifs. Tandem WW domains often bind peptides with multiple PPxY motifs, but the interplay of WW–peptide interactions is not always intuitive. The WW domain–containing oxidoreductase (WWOX) harbors two WW domains: an unstable WW1 capable of PPxY binding and stable WW2 that cannot bind PPxY. The WW2 domain has been suggested to act as a WW1 domain chaperone, but the underlying mechanism of its chaperone activity remains to be revealed. Here, we combined NMR, isothermal calorimetry, and structural modeling to elucidate the roles of both WW domains in WWOX binding to its PPxY-containing substrate ErbB4. Using NMR, we identified an interaction surface between these two domains that supports a WWOX conformation compatible with peptide substrate binding. Isothermal calorimetry and NMR measurements also indicated that while binding affinity to a single PPxY motif is marginally increased in the presence of WW2, affinity to a dual-motif peptide increases 10-fold. Furthermore, we found WW2 can directly bind double-motif peptides using its canonical binding site. Finally, differential binding of peptides in mutagenesis experiments was consistent with a parallel N- to C-terminal PPxY tandem motif orientation in binding to the WW1–WW2 tandem domain, validating structural models of the interaction. Taken together, our results reveal the complex nature of tandem WW-domain organization and substrate binding, highlighting the contribution of WWOX WW2 to both protein stability and target binding.
Collapse
Affiliation(s)
- Shahar Rotem-Bamberger
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jamal Fahoum
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Tomer Tsaban
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orly Avraham
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Deborah E Shalev
- Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Jerusalem, Israel; Department of Pharmaceutical Engineering, Azrieli College of Engineering, Jerusalem, Israel
| | - Jordan H Chill
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel.
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Angiomotin Counteracts the Negative Regulatory Effect of Host WWOX on Viral PPxY-Mediated Egress. J Virol 2021; 95:JVI.00121-21. [PMID: 33536174 PMCID: PMC8103691 DOI: 10.1128/jvi.00121-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Filoviridae family members Ebola (EBOV) and Marburg (MARV) viruses and Arenaviridae family member Lassa virus (LASV) are emerging pathogens that can cause hemorrhagic fever and high rates of mortality in humans. A better understanding of the interplay between these viruses and the host will inform about the biology of these pathogens, and may lead to the identification of new targets for therapeutic development. Notably, expression of the filovirus VP40 and LASV Z matrix proteins alone drives assembly and egress of virus-like particles (VLPs). The conserved PPxY Late (L) domain motifs in the filovirus VP40 and LASV Z proteins play a key role in the budding process by mediating interactions with select host WW-domain containing proteins that then regulate virus egress and spread. To identify the full complement of host WW-domain interactors, we utilized WT and PPxY mutant peptides from EBOV and MARV VP40 and LASV Z proteins to screen an array of GST-WW-domain fusion proteins. We identified WW domain-containing oxidoreductase (WWOX) as a novel PPxY-dependent interactor, and we went on to show that full-length WWOX physically interacts with eVP40, mVP40 and LASV Z to negatively regulate egress of VLPs and of a live VSV/Ebola recombinant virus (M40). Interestingly, WWOX is a versatile host protein that regulates multiple signaling pathways and cellular processes via modular interactions between its WW-domains and PPxY motifs of select interacting partners, including host angiomotin (AMOT). Notably, we demonstrated recently that expression of endogenous AMOT not only positively regulates egress of VLPs, but also promotes egress and spread of live EBOV and MARV. Toward the mechanism of action, we show that the competitive and modular interplay among WWOX-AMOT-VP40/Z regulates VLP and M40 virus egress. Thus, WWOX is the newest member of an emerging group of host WW-domain interactors (e.g. BAG3; YAP/TAZ) that negatively regulate viral egress. These findings further highlight the complex interplay of virus-host PPxY/WW-domain interactions and their potential impact on the biology of both the virus and the host during infection.Author Summary Filoviruses (Ebola [EBOV] and Marburg [MARV]) and arenavirus (Lassa virus; LASV) are zoonotic, emerging pathogens that cause outbreaks of severe hemorrhagic fever in humans. A fundamental understanding of the virus-host interface is critical for understanding the biology of these viruses and for developing future strategies for therapeutic intervention. Here, we identified host WW-domain containing protein WWOX as a novel interactor with VP40 and Z, and showed that WWOX inhibited budding of VP40/Z virus-like particles (VLPs) and live virus in a PPxY/WW-domain dependent manner. Our findings are important to the field as they expand the repertoire of host interactors found to regulate PPxY-mediated budding of RNA viruses, and further highlight the competitive interplay and modular virus-host interactions that impact both the virus lifecycle and the host cell.
Collapse
|
3
|
Mahmud MAA, Noguchi M, Domon A, Tochigi Y, Katayama K, Suzuki H. Cellular Expression and Subcellular Localization of Wwox Protein During Testicular Development and Spermatogenesis in Rats. J Histochem Cytochem 2021; 69:257-270. [PMID: 33565365 DOI: 10.1369/0022155421991629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A well-known putative tumor suppressor WW domain-containing oxidoreductase (Wwox) is highly expressed in hormonally regulated tissues and is considered important for the normal development and function of reproductive organs. In this study, we investigated the cellular and subcellular localization of Wwox in normal testes during postnatal days 0-70 using Western blotting and immunohistochemistry. Wwox is expressed in testes at all ages. Immunohistochemistry showed that fetal-type and adult-type Leydig cells, immature and mature Sertoli cells, and germ cells (from gonocytes to step 17 spermatids) expressed Wwox except peritubular myoid cells, step 18-19 spermatids, and mature sperm. Wwox localized diffusely in the cytoplasm with focal intense signals in all testicular cells. These signals gradually condensed in germ cells with their differentiation and colocalized with giantin for cis-Golgi marker and partially with golgin-97 for trans-Golgi marker. Biochemically, Wwox was detected in isolated Golgi-enriched fractions. But Wwox was undetectable in the nucleus. This subcellular localization pattern of Wwox was also confirmed in single-cell suspension. These findings indicate that Wwox is functional in most cell types of testis and might locate into Golgi apparatus via interaction with Golgi proteins. These unique localizations might be related to the function of Wwox in testicular development and spermatogenesis.
Collapse
Affiliation(s)
- Md Abdullah Al Mahmud
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Anatomy & Histology, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Maki Noguchi
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Ayaka Domon
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yuki Tochigi
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kentaro Katayama
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Hiroetsu Suzuki
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
4
|
Lahav N, Rotem-Bamberger S, Fahoum J, Dodson EJ, Kraus Y, Mousa R, Metanis N, Friedler A, Schueler-Furman O. Phosphorylation of the WWOX Protein Regulates Its Interaction with p73. Chembiochem 2020; 21:1843-1851. [PMID: 32185845 DOI: 10.1002/cbic.202000032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/19/2020] [Indexed: 11/10/2022]
Abstract
We describe a molecular characterization of the interaction between the cancer-related proteins WWOX and p73. This interaction is mediated by the first of two WW domains (WW1) of WWOX and a PPXY-motif-containing region in p73. While phosphorylation of Tyr33 of WWOX and association with p73 are known to affect apoptotic activity, the quantitative effect of phosphorylation on this specific interaction is determined here for the first time. Using ITC and fluorescence anisotropy, we measured the binding affinity between WWOX domains and a p73 derived peptide, and showed that this interaction is regulated by Tyr phosphorylation of WW1. Chemical synthesis of the phosphorylated domains of WWOX revealed that the binding affinity of WWOX to p73 is decreased when WWOX is phosphorylated. This result suggests a fine-tuning of binding affinity in a differential, ligand-specific manner: the decrease in binding affinity of WWOX to p73 can free both partners to form new interactions.
Collapse
Affiliation(s)
- Noa Lahav
- The Institute of Chemistry, The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Shahar Rotem-Bamberger
- Department of Microbiology and Molecular Genetics, Institute of Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Medical School POB 12272, 91120, Jerusalem, Israel
| | - Jamal Fahoum
- Department of Microbiology and Molecular Genetics, Institute of Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Medical School POB 12272, 91120, Jerusalem, Israel
| | - Emma-Joy Dodson
- Department of Microbiology and Molecular Genetics, Institute of Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Medical School POB 12272, 91120, Jerusalem, Israel
| | - Yahel Kraus
- The Institute of Chemistry, The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Reem Mousa
- The Institute of Chemistry, The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Norman Metanis
- The Institute of Chemistry, The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Assaf Friedler
- The Institute of Chemistry, The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute of Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Medical School POB 12272, 91120, Jerusalem, Israel
| |
Collapse
|
5
|
Chen YA, Lu CY, Cheng TY, Pan SH, Chen HF, Chang NS. WW Domain-Containing Proteins YAP and TAZ in the Hippo Pathway as Key Regulators in Stemness Maintenance, Tissue Homeostasis, and Tumorigenesis. Front Oncol 2019; 9:60. [PMID: 30805310 PMCID: PMC6378284 DOI: 10.3389/fonc.2019.00060] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/21/2019] [Indexed: 12/29/2022] Open
Abstract
The Hippo pathway is a conserved signaling pathway originally defined in Drosophila melanogaster two decades ago. Deregulation of the Hippo pathway leads to significant overgrowth in phenotypes and ultimately initiation of tumorigenesis in various tissues. The major WW domain proteins in the Hippo pathway are YAP and TAZ, which regulate embryonic development, organ growth, tissue regeneration, stem cell pluripotency, and tumorigenesis. Recent reports reveal the novel roles of YAP/TAZ in establishing the precise balance of stem cell niches, promoting the production of induced pluripotent stem cells (iPSCs), and provoking signals for regeneration and cancer initiation. Activation of YAP/TAZ, for example, results in the expansion of progenitor cells, which promotes regeneration after tissue damage. YAP is highly expressed in self-renewing pluripotent stem cells. Overexpression of YAP halts stem cell differentiation and yet maintains the inherent stem cell properties. A success in reprograming iPSCs by the transfection of cells with Oct3/4, Sox2, and Yap expression constructs has recently been shown. In this review, we update the current knowledge and the latest progress in the WW domain proteins of the Hippo pathway in relevance to stem cell biology, and provide a thorough understanding in the tissue homeostasis and identification of potential targets to block tumor development. We also provide the regulatory role of tumor suppressor WWOX in the upstream of TGF-β, Hyal-2, and Wnt signaling that cross talks with the Hippo pathway.
Collapse
Affiliation(s)
- Yu-An Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Yu Lu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tian-You Cheng
- Department of Optics and Photonics, National Central University, Chungli, Taiwan
| | - Szu-Hua Pan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Fu Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan
| | - Nan-Shan Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States.,Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Liu CC, Ho PC, Lee IT, Chen YA, Chu CH, Teng CC, Wu SN, Sze CI, Chiang MF, Chang NS. WWOX Phosphorylation, Signaling, and Role in Neurodegeneration. Front Neurosci 2018; 12:563. [PMID: 30158849 PMCID: PMC6104168 DOI: 10.3389/fnins.2018.00563] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
Homozygous null mutation of tumor suppressor WWOX/Wwox gene leads to severe neural diseases, metabolic disorders and early death in the newborns of humans, mice and rats. WWOX is frequently downregulated in the hippocampi of patients with Alzheimer’s disease (AD). In vitro analysis revealed that knockdown of WWOX protein in neuroblastoma cells results in aggregation of TRAPPC6AΔ, TIAF1, amyloid β, and Tau in a sequential manner. Indeed, TRAPPC6AΔ and TIAF1, but not tau and amyloid β, aggregates are present in the brains of healthy mid-aged individuals. It is reasonable to assume that very slow activation of a protein aggregation cascade starts sequentially with TRAPPC6AΔ and TIAF1 aggregation at mid-ages, then caspase activation and APP de-phosphorylation and degradation, and final accumulation of amyloid β and Tau aggregates in the brains at greater than 70 years old. WWOX binds Tau-hyperphosphorylating enzymes (e.g., GSK-3β) and blocks their functions, thereby supporting neuronal survival and differentiation. As a neuronal protective hormone, 17β-estradiol (E2) binds WWOX at an NSYK motif in the C-terminal SDR (short-chain alcohol dehydrogenase/reductase) domain. In this review, we discuss how WWOX and E2 block protein aggregation during neurodegeneration, and how a 31-amino-acid zinc finger-like Zfra peptide restores memory loss in mice.
Collapse
Affiliation(s)
- Chan-Chuan Liu
- Department of Cell Biology and Anatomy, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Pei-Chuan Ho
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - I-Ting Lee
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Yu-An Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Hsien Chu
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chih-Chuan Teng
- Department of Nursing, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chun-I Sze
- Department of Cell Biology and Anatomy, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Ming-Fu Chiang
- Department of Neurosurgery, Mackay Memorial Hospital, Mackay Medicine, Nursing and Management College, Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan
| | - Nan-Shan Chang
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States.,Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Huang SS, Chang NS. Phosphorylation/de-phosphorylation in specific sites of tumor suppressor WWOX and control of distinct biological events. Exp Biol Med (Maywood) 2018; 243:137-147. [PMID: 29310447 DOI: 10.1177/1535370217752350] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abnormal differentiation and growth of hematopoietic stem cells cause the development of hematopoietic diseases and hematopoietic malignancies. However, the molecular events underlying leukemia development are not well understood. In our recent study, we have demonstrated that calcium ionophore and phorbol ester force the differentiation of T lymphoblastic leukemia. The event involves a newly identified IκBα/WWOX/ERK signaling, in which WWOX is Ser14 phosphorylated. Additional evidence also reveals that pS14-WWOX is involved in enhancing cancer progression and metastasis and facilitating neurodegeneration. In this mini-review, we update the current knowledge for the functional roles of WWOX under physiological and pathological settings, and provide new insights regarding pS14-WWOX in T leukemia cell maturation, and switching the anticancer pY33-WWOX to pS14-WWOX for cancer promotion and disease progression. Impact statement WWOX was originally designated as a tumor suppressor. However, human newborns deficient in WWOX do not spontaneously develop tumors. Activated WWOX with Tyr33 phosphorylation is present in normal tissues and organs. However, when pY33-WWOX is overly induced under stress conditions, it becomes apoptotic to eliminate damaged cells. Notably, WWOX with Ser14 phosphorylation is upregulated in the lesions of cancer, as well as in the brain hippocampus and cortex with Alzheimer's disease. Suppression of pS14-WWOX by Zfra reduces cancer growth and mitigates Alzheimer's disease progression, suggesting that pS14-WWOX facilitates disease progression. pS14-WWOX can be regarded as a marker of disease progression.
Collapse
Affiliation(s)
- Shenq-Shyang Huang
- 1 Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC.,2 Graduate Program of Biotechnology in Medicine, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Nan-Shan Chang
- 1 Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC.,3 Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.,4 Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan, ROC
| |
Collapse
|
8
|
Abu-Remaileh M, Joy-Dodson E, Schueler-Furman O, Aqeilan RI. Pleiotropic Functions of Tumor Suppressor WWOX in Normal and Cancer Cells. J Biol Chem 2015; 290:30728-35. [PMID: 26499798 DOI: 10.1074/jbc.r115.676346] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WW domain-containing oxidoreductase (WWOX), originally marked as a likely tumor suppressor gene, has over the years become recognized for its role in a much wider range of cellular activities. Phenotypic effects displayed in animal studies, along with resolution of WWOX's architecture, fold, and binding partners, point to the protein's multifaceted biological functions. Results from a series of complementary experiments seem to indicate WWOX's involvement in metabolic regulation. More recently, clinical studies involving cases of severe encephalopathy suggest that WWOX also plays a part in controlling CNS development, further expanding our understanding of the breadth and complexity of WWOX behavior. Here we present a short overview of the various approaches taken to study this dynamic gene, emphasizing the most recent findings regarding WWOX's metabolic- and CNS-associated functions and their underlying molecular basis.
Collapse
Affiliation(s)
| | - Emma Joy-Dodson
- Microbiology & Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel 91120
| | - Ora Schueler-Furman
- Microbiology & Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel 91120
| | - Rami I Aqeilan
- From the Departments of Immunology & Cancer Research and
| |
Collapse
|