1
|
Jayashree P, Kalpita M, Judith T, Singh AS, Ashwin K. Role of MicroRNA in Hypoxic Tumours and their Potential as Biomarkers for Early Detection of Cancer. Curr Mol Med 2024; 24:525-536. [PMID: 38310548 DOI: 10.2174/0115665240268661231128094831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 02/06/2024]
Abstract
Hypoxia is a pathophysiological condition characterized by oxygen deficiency in tissues, which negatively affects normal biological functions. It is a typical microenvironment character of almost all solid tumours. Noncoding RNA are small functional RNA molecules that regulate gene expression at chromatin and posttranscriptional levels. Micro-RNAs (miRNAs) are a type of noncoding RNA and are ~12-22 nucleotides long that are crucial in regulating gene expression by partnering with the mRNAs of protein-coding genes. It is widely reported that miRs play an important role in various key processes and pathways during tumour formation, as well as advancement in hypoxic tumors by influencing the HIF pathway. The role of miRNAs in hypoxic tumours, namely in pancreatic, kidney, breast, lung and colorectal, are described. These miRNAs have immense potential as diagnostic and prognostic biomarkers for early cancer detection.
Collapse
Affiliation(s)
- Pawar Jayashree
- Department of Biotechnology and Microbiology, VPM's B. N. Bandodkar College of Science, Mumbai University, Mumbai, Maharashtra, India
| | - Mulye Kalpita
- Department of Biotechnology and Microbiology, VPM's B. N. Bandodkar College of Science, Mumbai University, Mumbai, Maharashtra, India
| | - Talker Judith
- Department of Biotechnology and Microbiology, VPM's B. N. Bandodkar College of Science, Mumbai University, Mumbai, Maharashtra, India
| | - Ahirwar Sonu Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, (M.P.), India
| | - Kotnis Ashwin
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, (M.P.), India
| |
Collapse
|
2
|
Cui X, Wang J, Fan C, Jiang H, Li W. Astragalosides inhibit proliferation of fibroblast-like synoviocytes in experimental arthritis by modulating LncRNA S56464.1/miR-152-3p/Wnt1 signaling axis. Int J Rheum Dis 2023; 26:1547-1556. [PMID: 37317788 DOI: 10.1111/1756-185x.14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
AIM Astragalus membranaceus (Fisch.) Bunge., the dried root of the plant A. membranaceus, is widely used in the treatment of rheumatoid arthritis (RA) in many Chinese herbal remedies. Astragalosides (AST) is the primary medicinal ingredient of A. membranaceus and has a therapeutic effect on RA, but the specific mechanism of this effect has yet to be elucidated. METHODS In this study, MTT and flow cytometry were used to determine the effects of AST on fibroblast-like synoviocyte (FLS) proliferation and cell cycle progression. Additionally, real-time quantitative polymerase chain reaction and Western blotting were used to determine the effects of AST on the LncRNA S56464.1/miR-152-3p/Wnt1 signaling axis and on critical genes that are essential to the Wnt pathway. RESULTS The data showed that after the administration of AST, FLS proliferation and LncRNA S56464.1, β-catenin, C-myc, Cyclin D1, and p-GSK-3β(Ser9)/GSK-3β expression were significantly reduced, and miR-152 and SFRP4 expression was notably increased. CONCLUSION These results suggest that AST can inhibit FLS proliferation by modulating the LncRNA S56464.1/miR-152-3p/Wnt1 signaling axis and that AST may be a potential therapeutic drug for RA.
Collapse
Affiliation(s)
- Xiaoya Cui
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jing Wang
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chang Fan
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hui Jiang
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- College of Basic Medical, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, Anhui, China
| | - Weiping Li
- College of Basic Medical, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
3
|
Alvizi L, Brito LA, Kobayashi GS, Bischain B, da Silva CBF, Ramos SLG, Wang J, Passos-Bueno MR. m ir152 hypomethylation as a mechanism for non-syndromic cleft lip and palate. Epigenetics 2022; 17:2278-2295. [PMID: 36047706 PMCID: PMC9665146 DOI: 10.1080/15592294.2022.2115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCLP), the most common human craniofacial malformation, is a complex disorder given its genetic heterogeneity and multifactorial component revealed by genetic, epidemiological, and epigenetic findings. Epigenetic variations associated with NSCLP have been identified; however, functional investigation has been limited. Here, we combined a reanalysis of NSCLP methylome data with genetic analysis and used both in vitro and in vivo approaches to dissect the functional effects of epigenetic changes. We found a region in mir152 that is frequently hypomethylated in NSCLP cohorts (21-26%), leading to mir152 overexpression. mir152 overexpression in human neural crest cells led to downregulation of spliceosomal, ribosomal, and adherens junction genes. In vivo analysis using zebrafish embryos revealed that mir152 upregulation leads to craniofacial cartilage impairment. Also, we suggest that zebrafish embryonic hypoxia leads to mir152 upregulation combined with mir152 hypomethylation and also analogous palatal alterations. We therefore propose that mir152 hypomethylation, potentially induced by hypoxia in early development, is a novel and frequent predisposing factor to NSCLP.
Collapse
Affiliation(s)
- Lucas Alvizi
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | - Luciano Abreu Brito
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | | | - Bárbara Bischain
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | | | | | - Jaqueline Wang
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | - Maria Rita Passos-Bueno
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| |
Collapse
|
4
|
Zhao X, Zhou HB, Liu J, Xie J, Hu R. Apigenin suppresses proliferation, invasion, and epithelial-mesenchymal transition of cervical carcinoma cells by regulation of miR-152/BRD4 axis. Kaohsiung J Med Sci 2021; 37:583-593. [PMID: 33611824 DOI: 10.1002/kjm2.12370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 01/01/2023] Open
Abstract
The present study aimed to investigate the role of apigenin and the molecular mechanism of miR-152-5p and bromodomain containing 4 (BRD4) in the proliferation, invasion, and epithelial-mesenchymal transition (EMT) of cervical carcinoma cells. Quantitative real-time PCR was used to detect the transfection efficiency and the expression of miR-152-5p and BRD4. Western blotting was conducted to evaluate the protein level of BRD4, E-cadherin, N-cadherin, and MMP9. Luciferase reporter assay was performed to confirm whether miR-152-5p bound to BRD4. MTT and Transwell invasion assay were applied to determine the cell proliferation and invasion, respectively. MiR-152-5p was downregulated and BRD4 was upregulated in cervical carcinoma tissue. Besides, miR-152-5p could directly bind to BRD4 in Hela and CaSki cells. In addition, apigenin inhibited proliferation, invasion, and EMT of Hela and CaSki cells by regulating miR-152-5p/BRD4 axis. Apigenin suppresses proliferation, invasion, and induced EMT of cervical carcinoma cells by regulation of miR-152-5p/BRD4 axis.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Obstetrics and Gynecology, The first Affiliated Hospital of University of South China, Hengyang, China
| | - Hua-Bo Zhou
- Department of Intensive Care Unit, Hengyang City Central Hospital, Hengyang, China
| | - Jie Liu
- Department of Obstetrics and Gynecology, The first Affiliated Hospital of University of South China, Hengyang, China
| | - Jing Xie
- Department of Obstetrics and Gynecology, The first Affiliated Hospital of University of South China, Hengyang, China
| | - Rong Hu
- Department of Radiology, The first Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
5
|
Li B, Guo X, Li N, Chen Q, Shen J, Huang X, Huang G, Wang F. WNT1, a target of miR-34a, promotes cervical squamous cell carcinoma proliferation and invasion by induction of an E-P cadherin switch via the WNT/β-catenin pathway. Cell Oncol (Dordr) 2020; 43:489-503. [PMID: 32301035 PMCID: PMC7214512 DOI: 10.1007/s13402-020-00506-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Persistent infection with high-risk human papillomavirus (HR-HPV) is thought to play a prominent role in the initiation and progression of almost all cases of cervical cancer. Previously, we and others found that microRNA 34a (miR-34a) may be regulated by HR-HPV E6 to contribute to the development of cervical cancer. Here, we aimed to identify the oncogenic potential and clinical significance of a known miR-34a target, WNT1, in cervical squamous cell carcinoma (SCC) development and to investigate the associated mechanisms underlying cervical SCC cell proliferation and invasion. Methods WNT1 and miR-34a expression levels were assessed in primary cervical lesions using immunohistochemistry and qRT-PCR, respectively. The cellular effects and the expression of its associated genes were examined in cervical SCC-derived Siha and Caski cells after siRNA-WNT1 (downregulation) or miR-34a mimic (upregulation) treatment. A cervical SCC xenograft mouse model was used to investigate the in vivo effects of miR-34a overexpression. HPV-16 E6/E7 expression was inhibited by gene promoter siRNA targeting, after which the levels of miR-34a and WNT1 were examined. Results WNT1 protein upregulation was found to be associated with a poor prognosis in cervical SCC patients. In vitro assays in Siha and Caski cells revealed that WNT1 downregulation decreased cell proliferation and invasion, inhibited WNT/β-catenin activation and affected the expression of E-cadherin and P-cadherin. MiR-34a upregulation resulted in decreased WNT1 expression. An inverse correlation between miR-34a and WNT1 expression was also observed in primary cervical SCC tissues. In addition, we found that MiR-34a could regulate an E-cadherin to P-cadherin switch (E-P cadherin switch) to inhibit cell proliferation and tumorigenesis in vitro and in vivo via inactivation of the WNT1/β-catenin pathway. Finally, we found that decreased HPV-16 E6/E7 expression resulted in miR-34a upregulation and WNT1 downregulation in Siha and Caski cells. Conclusions From our results we conclude that WNT1, as a target of miR-34a, can promote cervical SCC cell proliferation and invasion by induction of an E-P cadherin switch via the WNT1/β-catenin pathway. Our results may provide new options for the treatment of patients with cervical SCC. Electronic supplementary material The online version of this article (10.1007/s13402-020-00506-8) contains supplementary material, which is available to authorized users.
Collapse
MESH Headings
- Adult
- Animals
- Cadherins/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/virology
- Cell Line, Tumor
- Cell Proliferation
- Disease-Free Survival
- Down-Regulation/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/metabolism
- Multivariate Analysis
- Neoplasm Invasiveness
- Oncogene Proteins, Viral/metabolism
- Prognosis
- RNA, Small Interfering/metabolism
- Repressor Proteins/metabolism
- Up-Regulation/genetics
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/pathology
- Uterine Cervical Neoplasms/virology
- Wnt Signaling Pathway
- Wnt1 Protein/metabolism
Collapse
Affiliation(s)
- Baohua Li
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Xuedong Guo
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Na Li
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Qin Chen
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Junhua Shen
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaoxiu Huang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Genping Huang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Fenfen Wang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
6
|
Yang D, Zhang Q. miR-152 may function as an early diagnostic and prognostic biomarker in patients with cervical intraepithelial neoplasia and patients with cervical cancer. Oncol Lett 2019; 17:5693-5698. [PMID: 31186794 DOI: 10.3892/ol.2019.10233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 02/15/2019] [Indexed: 12/11/2022] Open
Abstract
Previous studies have demonstrated that circulating miRNAs are effective biomarkers of various types of cancer. It has also been indicated that miR-152 is upregulated in cervical cancer. However, whether miR-152 may be used as an early detection method for patients with cervical cancer is yet to be elucidated. The results of the current study demonstrated that miR-152 levels were the lowest in healthy controls, high in patients with cervical intraepithelial neoplasia (CIN), and the highest in patients with cervical cancer. Furthermore, miR-152 levels in peripheral blood were higher in patients with high-grade CIN compared with those with low-grade CIN. It was also demonstrated that miR-152 levels increased as the clinical stage of cervical cancer advanced. Compared with healthy controls, squamous cell carcinoma antigen (SSC-Ag) levels were significantly higher in patients with cervical cancer. However, no significant differences were identified in patients with CIN, indicating that SCC-Ag could not be used for the early detection of CIN. In contrast, miR-152 was elevated along with SCC-Ag in patients with CIN and cervical cancer. Receiver operating characteristic (ROC) analysis demonstrated that miR-152 preferentially distinguished patients with CIN (95% confidence interval, 0.688-0.973; P<0.001) and patients with cervical cancer (95% confidence interval, 0.817-0.996; P<0.001) from healthy controls. Additionally, miR-152 levels were markedly reduced in patients with cervical cancer who received chemotherapy (28 patients) or chemotherapy and radiation therapy (22 patients). In conclusion, the level of miR-153 in peripheral blood may be utilized as an effective biomarker for the early detection of cervical cancer, thus decreasing the requirement for invasive cervical biopsies. Furthermore, it may be utilized to predict the most effective form of treatment for patients with cervical cancer.
Collapse
Affiliation(s)
- Dongmei Yang
- Department Two of Gynecology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Qiumei Zhang
- Outpatient Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
7
|
Nahand JS, Taghizadeh-Boroujeni S, Karimzadeh M, Borran S, Pourhanifeh MH, Moghoofei M, Bokharaei-Salim F, Karampoor S, Jafari A, Asemi Z, Tbibzadeh A, Namdar A, Mirzaei H. microRNAs: New prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. J Cell Physiol 2019; 234:17064-17099. [PMID: 30891784 DOI: 10.1002/jcp.28457] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
Cervical cancer is as a kind of cancer beginning from the cervix. Given that cervical cancer could be observed in women who infected with papillomavirus, regular oral contraceptives, and multiple pregnancies. Early detection of cervical cancer is one of the most important aspects of the therapy of this malignancy. Despite several efforts, finding and developing new biomarkers for cervical cancer diagnosis are required. Among various prognostic, diagnostic, and therapeutic biomarkers, miRNA have been emerged as powerful biomarkers for detection, treatment, and monitoring of response to therapy in cervical cancer. Here, we summarized various miRNAs as an employable platform for prognostic, diagnostic, and therapeutic biomarkers in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Taghizadeh-Boroujeni
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Brujen, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Tbibzadeh
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Afshin Namdar
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Macharia LW, Wanjiru CM, Mureithi MW, Pereira CM, Ferrer VP, Moura-Neto V. MicroRNAs, Hypoxia and the Stem-Like State as Contributors to Cancer Aggressiveness. Front Genet 2019; 10:125. [PMID: 30842790 PMCID: PMC6391339 DOI: 10.3389/fgene.2019.00125] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that play key regulatory roles in cancer acting as both oncogenes and tumor suppressors. Due to their potential roles in improving cancer prognostic, predictive, diagnostic and therapeutic approaches, they have become an area of intense research focus in recent years. Several studies have demonstrated an altered expression of several miRNAs under hypoxic condition and even shown that the hypoxic microenvironment drives the selection of a more aggressive cancer cell population through cellular adaptations referred as the cancer stem-like cell. These minor fractions of cells are characterized by their self-renewal abilities and their ability to maintain the tumor mass, suggesting their crucial roles in cancer development. This review aims to highlight the interconnected role between miRNAs, hypoxia and the stem-like state in contributing to the cancer aggressiveness as opposed to their independent contributions, and it is based in four aggressive tumors, namely glioblastoma, cervical, prostate, and breast cancers.
Collapse
Affiliation(s)
- Lucy Wanjiku Macharia
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Muriithi Wanjiru
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Valéria Pereira Ferrer
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Association between miRNA-152 polymorphism and risk of preeclampsia susceptibility. Arch Gynecol Obstet 2018; 299:475-480. [DOI: 10.1007/s00404-018-4979-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022]
|
10
|
Zhang H, Lu Y, Wang S, Sheng X, Zhang S. MicroRNA-152 Acts as a Tumor Suppressor MicroRNA by Inhibiting Krüppel-Like Factor 5 in Human Cervical Cancer. Oncol Res 2018; 27:335-340. [PMID: 30131089 PMCID: PMC7848453 DOI: 10.3727/096504018x15252202178408] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aberrant expression of microRNA-152 (miR-152) is frequently observed in human cancers including ovarian cancer, breast cancer, prostate cancer, and gastric cancer. However, its expression and functional role in cervical cancer (CC) are poorly understood. Also, the association between miR-152 and Krüppel-like factor 5 (KLF5) expression in CC remains unclear. In this study, analyzing the expression of miR-152 by quantitative real-time PCR (qRT-PCR) revealed it was sharply reduced in CC tissues and cell lines. In addition, the negative correlation of miR-152 expression and KLF5 expression was observed. The dual-luciferase reporter assay validated that KLF5 was a target of miR-152. In vitro functional assays revealed that miR-152 could inhibit cell proliferation and cell cycle progression through regulating the expression of KLF5. Taken together, our study suggested that miR-152 functions as a tumor suppressor in CC, and the miR-152/KLF5 axis may provide novel therapeutic targets for CC treatment.
Collapse
Affiliation(s)
- Haiyan Zhang
- Department of Gynecology, Affiliated Qilu Hospital of Shandong University, Lixia District, Jinan, Shandong, P.R. China
| | - Yanxia Lu
- Department of Gynecology Ward-3, Linyi People's Hospital, Linyi, Hedong District, Linyi, Shandong, P.R. China
| | - Surong Wang
- Department of Gynecology Ward-3, Linyi People's Hospital, Linyi, Hedong District, Linyi, Shandong, P.R. China
| | - Xiugui Sheng
- Department of Gynecology, Cancer Hospital Chinese Academy of Medical Sciences, Chaoyang District, Beijing, P.R. China
| | - Shiqian Zhang
- Department of Gynecology, Affiliated Qilu Hospital of Shandong University, Lixia District, Jinan, Shandong, P.R. China
| |
Collapse
|
11
|
Guo J, Du J, Fei D, Xing J, Liu J, Lu H. miR‑152 inhibits rheumatoid arthritis synovial fibroblast proliferation and induces apoptosis by targeting ADAM10. Int J Mol Med 2018; 42:643-650. [PMID: 29693139 DOI: 10.3892/ijmm.2018.3636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/05/2018] [Indexed: 11/05/2022] Open
Abstract
miR‑152 has been reported to be downregulated in rheumatoid arthritis (RA). However, the functional significance and molecular mechanisms underlying the role of miR‑152 in RA remain largely unknown. The present study aimed to explore the functional role and the underlying mechanisms of miR‑152 in RA. The expression of miR‑152 in serum, synovial tissues, and fibroblast‑like synoviocytes (FLS) from patients with RA and healthy controls was detected by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). Cell proliferation, cell cycle phase distribution and apoptosis of FLS were measured by Cell Counting Kit‑8 and flow cytometry assays. The effects of miR‑152 on the production of pro‑inflammatory cytokines, including tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β, IL‑6 and IL‑8, were examined by ELISA. The target gene of miR‑152 was discovered by miRNA‑target prediction bioinformatics analysis, and confirmed by dual‑luciferase reporter assay, RT‑qPCR and western blotting. Spearman's correlation analysis was performed to assess the relationship between miR‑152 expression and a disintegrin and metalloproteinase domain‑containing protein 10 (ADAM10). The results demonstrated that miR‑152 expression levels were significantly decreased in RA serum, synovial tissues and RA‑FLS compared with healthy controls. Overexpression of miR‑152 significantly inhibited cell proliferation, promoted cell apoptosis, and decreased TNF‑α, IL‑1β, IL‑6 and IL‑8 production in RA‑FLS cells. Additionally, ADAM10 was demonstrated to be a target of miR‑152, and expression of the two genes was significantly negatively correlated. Of note, restoration of ADAM10 expression partially reversed the effects of miR‑152 on cell proliferation and apoptosis in RA‑FLS. Thus, miR‑152 may serve as a potential target for therapeutic intervention in RA.
Collapse
Affiliation(s)
- Jialong Guo
- Department of Rheumatology and Immunology, The China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Juan Du
- Department of Rheumatology and Immunology, The China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dan Fei
- Ultrasonographic Department, The China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Jie Xing
- Ultrasonographic Department, The China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Jinxiang Liu
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Honghua Lu
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
12
|
Ma C, Han J, Dong D, Wang N. MicroRNA-152 Suppresses Human Osteosarcoma Cell Proliferation and Invasion by Targeting E2F Transcription Factor 3. Oncol Res 2017; 26:765-773. [PMID: 28810933 PMCID: PMC7844728 DOI: 10.3727/096504017x15021536183535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MicroRNA-152 (miR-152) expression has been reported to be downregulated in osteosarcoma (OS). However, the role of miR-152 in OS is not well documented. In the present study, we aimed to explore the function and underlying mechanism of miR-152 in OS. We found that miR-152 was underexpressed in OS tissues and cell lines. Decreased miR-152 was inversely correlated with lymph node metastasis and advanced clinical stage. Overexpression of miR-152 significantly inhibited cell proliferation, colony formation, migration, and invasion of OS cells. Bioinformatics analyses showed that miR-152 directly targeted E2F transcription factor 3 (E2F3), as further confirmed by a dual-luciferase reporter assay. E2F3 expression was upregulated and inversely correlated with miR-152 expression level in human OS tissues. Moreover, the inhibitory effects of miR-152 on OS growth and invasion were attenuated by E2F3 overexpression. Taken together, our findings indicated that miR-152 reduced OS growth and invasion by targeting E2F3 and provided new evidence of miR-152 as a potential therapeutic target for OS.
Collapse
Affiliation(s)
- Chao Ma
- The First Hospital of Jilin University, Changchun, P.R. China
| | - Jinfeng Han
- The First Hospital of Jilin University, Changchun, P.R. China
| | - Dong Dong
- The First Hospital of Jilin University, Changchun, P.R. China
| | - Nanya Wang
- The First Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
13
|
Nie L, Zhao YB, Pan JL, Lei Y, Liu M, Long Y, Zhang JH, Hu Y, Xu MQ, Yuan DZ, Yue LM. Progesterone-Induced miR-152 Inhibits the Proliferation of Endometrial Epithelial Cells by Downregulating WNT-1. Reprod Sci 2017; 24:1444-1453. [PMID: 28122483 DOI: 10.1177/1933719116689595] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Progesterone (P4) is an important ovarian hormone that inhibits estrogen-dependent proliferation of endometrial epithelial cells (EECs). miR-152 has been reported to be a cell cycle regulator. In this study, we first demonstrated that P4 induced the expression of miR-152 in ovariectomized mice and Ishikawa cell. miR-152 was detected in the human endometrial cell lines that were stably transfected with P4 receptor. Results showed that P4 induced its expression through its receptor B subtype. Then, using the specific miRNA mimic and inhibitor, we proved that miR-152 impeded G1/S transition in the cell cycle of EECs and inhibited cellular proliferation via downregulating WNT-1 in mice and human endometrial cancer cell lines (Ishikawa, HEC-1-b, and KLE). miR-152 induced by P4 is an important inhibitor for the proliferation of EECs. miR-152 may be an important tumor suppressor microRNA in endometrial cancer.
Collapse
Affiliation(s)
- Li Nie
- 1 Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - You-Bo Zhao
- 1 Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Jun-Li Pan
- 1 Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Yi Lei
- 1 Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Min Liu
- 1 Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Yun Long
- 1 Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Jin-Hu Zhang
- 1 Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Ying Hu
- 2 Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ming-Qian Xu
- 1 Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Dong-Zhi Yuan
- 1 Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Li-Min Yue
- 1 Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
14
|
miR-152 functions as a tumor suppressor in colorectal cancer by targeting PIK3R3. Tumour Biol 2016; 37:10075-84. [DOI: 10.1007/s13277-016-4888-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/19/2016] [Indexed: 12/20/2022] Open
|