1
|
Rowe PS, McCarthy EM, Yu AL, Stubbs JR. Correction of Vascular Calcification and Hyperphosphatemia in CKD Rats Treated with ASARM Peptide. KIDNEY360 2022; 3:1683-1698. [PMID: 36514737 PMCID: PMC9717652 DOI: 10.34067/kid.0002782022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Background Abnormalities in calcium, phosphorus, PTH, vitamin D metabolism, bone, and vascular calcification occur in chronic kidney disease mineral bone disorder (CKD-MBD). Calciphylaxis, involving painful, ulcerative skin lesions, is also a major problem associated with CKD-MBD. There are no quality medical interventions to address these clinical issues. Bone ASARM peptides are strong inhibitors of mineralization and induce hypophosphatemia by inhibiting phosphate uptake from the gut. We hypothesize treatment of CKD-MBD rats with ASARM peptides will reverse hyperphosphatemia, reduce soft-tissue calcification, and prevent calciphylaxis. Methods To test our hypothesis, we assessed the effects of synthetic ASARM peptide in rats that had undergone a subtotal 5/6th nephrectomy (56NEPHREX), a rodent model of CKD-MBD. All rats were fed a high phosphate diet (2% Pi) to worsen mineral metabolism defects. Changes in serum potassium, phosphate, BUN, creatinine, PTH, FGF23, and calcium were assessed in response to 28 days of ASARM peptide infusion. Also, changes in bone quality, soft-tissue calcification, and expression of gut Npt2b (Slc34a2) were studied following ASARM peptide treatment. Results Rats that had undergone 56NEPHREX treated with ASARM peptide showed major improvements in hyperphosphatemia, blood urea nitrogen (BUN), and bone quality compared with vehicle controls. Also, ASARM-infused 56NEPHREX rats displayed improved renal, brain, and cardiovascular calcification. Notably, ASARM peptide infusion prevented the genesis of subdermal medial blood vessel calcification and calciphylaxis-like lesions in 56NEPHREX rats compared with vehicle controls. Conclusions ASARM peptide infusion corrects hyperphosphatemia and improves vascular calcification, renal calcification, brain calcification, bone quality, renal function, and skin mineralization abnormalities in 56NEPHREX rats. These findings confirm our hypothesis and support the utility of ASARM peptide treatment in patients with CKD-MBD.
Collapse
Affiliation(s)
- Peter S. Rowe
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ellen M. McCarthy
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Alan L. Yu
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jason R. Stubbs
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
2
|
Cauwenberghs N, Prunicki M, Sabovčik F, Perelman D, Contrepois K, Li X, Snyder MP, Nadeau KC, Kuznetsova T, Haddad F, Gardner CD. Temporal changes in soluble angiotensin-converting enzyme 2 associated with metabolic health, body composition, and proteome dynamics during a weight loss diet intervention: a randomized trial with implications for the COVID-19 pandemic. Am J Clin Nutr 2021; 114:1655-1665. [PMID: 34375388 PMCID: PMC8574695 DOI: 10.1093/ajcn/nqab243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Angiotensin-converting enzyme 2 (ACE2) serves protective functions in metabolic, cardiovascular, renal, and pulmonary diseases and is linked to COVID-19 pathology. The correlates of temporal changes in soluble ACE2 (sACE2) remain understudied. OBJECTIVES We explored the associations of sACE2 with metabolic health and proteome dynamics during a weight loss diet intervention. METHODS We analyzed 457 healthy individuals (mean ± SD age: 39.8 ± 6.6 y) with BMI 28-40 kg/m2 in the DIETFITS (Diet Intervention Examining the Factors Interacting with Treatment Success) study. Biochemical markers of metabolic health and 236 proteins were measured by Olink CVDII, CVDIII, and Inflammation I arrays at baseline and at 6 mo during the dietary intervention. We determined clinical and routine biochemical correlates of the diet-induced change in sACE2 (ΔsACE2) using stepwise linear regression. We combined feature selection models and multivariable-adjusted linear regression to identify protein dynamics associated with ΔsACE2. RESULTS sACE2 decreased on average at 6 mo during the diet intervention. Stronger decline in sACE2 during the diet intervention was independently associated with female sex, lower HOMA-IR and LDL cholesterol at baseline, and a stronger decline in HOMA-IR, triglycerides, HDL cholesterol, and fat mass. Participants with decreasing HOMA-IR (OR: 1.97; 95% CI: 1.28, 3.03) and triglycerides (OR: 2.71; 95% CI: 1.72, 4.26) had significantly higher odds for a decrease in sACE2 during the diet intervention than those without (P ≤ 0.0073). Feature selection models linked ΔsACE2 to changes in α-1-microglobulin/bikunin precursor, E-selectin, hydroxyacid oxidase 1, kidney injury molecule 1, tyrosine-protein kinase Mer, placental growth factor, thrombomodulin, and TNF receptor superfamily member 10B. ΔsACE2 remained associated with these protein changes in multivariable-adjusted linear regression. CONCLUSIONS Decrease in sACE2 during a weight loss diet intervention was associated with improvements in metabolic health, fat mass, and markers of angiotensin peptide metabolism, hepatic and vascular injury, renal function, chronic inflammation, and oxidative stress. Our findings may improve the risk stratification, prevention, and management of cardiometabolic complications.This trial was registered at clinicaltrials.gov as NCT01826591.
Collapse
Affiliation(s)
- Nicholas Cauwenberghs
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University, Stanford, CA, USA
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Mary Prunicki
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - František Sabovčik
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Dalia Perelman
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kévin Contrepois
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiao Li
- Department of Biochemistry, The Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Michael P Snyder
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Kari C Nadeau
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Tatiana Kuznetsova
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Francois Haddad
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Christopher D Gardner
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Stanford Prevention Research Center, Department of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
3
|
Casili G, Ardizzone A, Basilotta R, Lanza M, Filippone A, Paterniti I, Esposito E, Campolo M. The Protective Role of Prolyl Oligopeptidase (POP) Inhibition in Kidney Injury Induced by Renal Ischemia-Reperfusion. Int J Mol Sci 2021; 22:11886. [PMID: 34769337 PMCID: PMC8584363 DOI: 10.3390/ijms222111886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
Ischemia/reperfusion injury (IRI) is a complex pathophysiological process characterized by blood circulation disorder caused by various factors, such as traumatic shock, surgery, organ transplantation, and thrombus. Severe metabolic dysregulation and tissue structure destruction are observed upon restoration of blood flow to the ischemic tissue. The kidney is a highly perfused organ, sensitive to ischemia and reperfusion injury, and the incidence of renal IRI has high morbidity and mortality. Several studies showed that infiltration of inflammatory cells, apoptosis, and angiogenesis are important mechanisms involved in renal IRI. Despite advances in research, effective therapies for renal IRI are lacking. Recently it has been demonstrated the role of KYP2047, a selective inhibitor of prolyl oligopeptidase (POP), in the regulation of inflammation, apoptosis, and angiogenesis. Thus, this research focused on the role of POP in kidney ischemia/reperfusion (KI/R). An in vivo model of KI/R was performed and mice were subjected to KYP2047 treatment (intraperitoneal, 0.5, 1 and 5 mg/kg). Histological analysis, Masson's trichrome and periodic acid shift (PAS) staining, immunohistochemical and Western blots analysis, real-time PCR (RT-PCR) and ELISA were performed on kidney samples. Moreover, serum creatinine and blood urea nitrogen (BUN) were quantified. POP-inhibition by KYP2047 treatment, only at the doses of 1 and 5 mg/kg, significantly reduced renal injury and collagen amount, regulated inflammation through canonical and non-canonical NF-κB pathway, and restored renal function. Moreover, KYP2047 modulated angiogenesis markers, such as TGF-β and VEGF, also slowing down apoptosis. Interestingly, treatment with KYP2047 modulated PP2A activity. Thus, these findings clarified the role of POP inhibition in AKI, also offering novel therapeutic target for renal injury after KI/R.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31-98166 Messina, Italy; (G.C.); (A.A.); (R.B.); (M.L.); (A.F.); (I.P.); (M.C.)
| | | |
Collapse
|
4
|
Daza-Arnedo R, Rico-Fontalvo JE, Pájaro-Galvis N, Leal-Martínez V, Abuabara-Franco E, Raad-Sarabia M, Montejo-Hernández J, Cardona-Blanco M, Cabrales-Juan J, Uparella-Gulfo I, Montiel LS. Dipeptidyl Peptidase-4 Inhibitors and Diabetic Kidney Disease: A Narrative Review. Kidney Med 2021; 3:1065-1073. [PMID: 34939016 PMCID: PMC8664739 DOI: 10.1016/j.xkme.2021.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Diabetic kidney disease is one of the most frequent complications in patients with diabetes mellitus and affects morbidity and mortality. The recent therapies include oral hypoglycemic drugs that, in addition to optimizing glycemic control and reducing the risk of hypoglycemia, may affect the development and progression of diabetic kidney disease; these novel therapies include inhibitors of the enzyme dipeptidyl peptidase 4 (DPP-4), a group of oral hypoglycemic therapeutic agents that act at the level of the incretin system. DPP-4 inhibitors show additional pleiotropic effects in in vitro models, reducing inflammation, fibrosis, and oxidative damage, further suggesting potential kidney protective effects. Although existing trials suggest a possible benefit in the progression of diabetic kidney disease, further studies are needed to demonstrate kidney-specific benefits of DPP-4 inhibitors.
Collapse
Affiliation(s)
- Rodrigo Daza-Arnedo
- Nuevo Hospital Bocagrande, Comité de Nefrodiabetes, Asociación Colombiana de Nefrología, Cartagena, Colombia
| | | | | | | | | | - María Raad-Sarabia
- Departamento de Medicina Interna, Universidad del Sinú, Cartagena, Colombia
| | | | | | | | | | | |
Collapse
|
5
|
High-Fat Diets Modify the Proteolytic Activities of Dipeptidyl-Peptidase IV and the Regulatory Enzymes of the Renin-Angiotensin System in Cardiovascular Tissues of Adult Wistar Rats. Biomedicines 2021; 9:biomedicines9091149. [PMID: 34572336 PMCID: PMC8470673 DOI: 10.3390/biomedicines9091149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/17/2021] [Accepted: 09/01/2021] [Indexed: 01/02/2023] Open
Abstract
(1) Background: The replacement of diets high in saturated fat (SAFA) with monounsaturated fatty acids (MUFA) is associated with better cardiovascular function and is related to the modulation of the activity of the local renin–angiotensin system (RAS) and the collagenase activity of dipeptidyl peptidase IV (DPP-IV). The objective of the work was to verify the capacity of different types of dietary fat on the regulatory activities of RAS and DPP-IV. (2) Methods: Male Wistar rats were fed for 24 weeks with three different diets: the standard diet (S), the standard diet supplemented with virgin olive oil (20%) (VOO), or with butter (20%) plus cholesterol (0.1%) (Bch). The proteolytic activities were determined by fluorometric methods in the soluble (sol) and membrane-bound (mb) fractions of the left ventricle and atrium, aorta, and plasma samples. (3) Results: With the VOO diet, angiotensinase values were significantly lower than with the Bch diet in the aorta (GluAP and ArgAP (mb)), ventricle (ArgAP (mb)) and atrium (CysAP (sol)). Significant decreases in DPP-IV (mb) activity occurred with the Bch diet in the atrium and aorta. The VOO diet significantly reduced the activity of the cardiac damage marker LeuAP (mb) in the ventricle and aorta, except for LeuAP (sol) in the ventricle, which was reduced with the Bch diet. (4) Conclusions: The introduction into the diet of a source rich in MUFA would have a beneficial cardiovascular effect on RAS homeostasis and cardiovascular functional stability.
Collapse
|
6
|
Skoczynska A, Skoczynska M, Wojakowska A, Turczyn B, Gruszczynski L, Scieszka M. Urinary leucine aminopeptidase 3 in population environmentally exposed to airborne arsenic. Hum Exp Toxicol 2021; 40:1308-1319. [PMID: 33501841 DOI: 10.1177/0960327120988874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Environmental arsenic contamination is a major toxicological problem worldwide due to its carcinogenic and nephrotoxic potential. AIM The purpose of this observational study was to determine the suspected association between urinary arsenic (uAs) and urinary leucine (or leucyl) aminopeptidase 3 (uLAP3) to evaluate uLAP3 as a candidate biomarker of exposure to airborne arsenic. MATERIALS AND METHODS A total of 918 adults occupationally and/or environmentally exposed to airborne arsenic were enrolled in the study. Baseline information (age; sex; history of smoking; alcohol, fish and seafood consumption) was gathered. Total uAs concentrations [μg/L] of 918 subjects, as well as the sum of arsenic species (ΣiAs) in 259 subjects, were obtained. Urinary LAP3 was measured by an immune-enzymatic assay using an ELISA kit. Urinary creatinine concentration was assessed with the IB/lAB/1289 research protocol (version II, 2015-09-17). The values of uAs and uLAP3 were recalculated per unit of creatinine. The association between uAs and uLAP3 was assessed using a logistic regression model adjusted for confounders. RESULTS The study identified a positive correlation between the logarithm of uAs and the logarithm of uLAP3 in the study population (r = 0.1737, p < 0.0000) and between urinary creatinine and uLAP3 concentration not adjusted for creatinine level (r = 0.1871, p < 0.001). In the logistic regression model, there was also an association between increased (≥15 µg/L) uAs and decreased (below the 25th quartile) uLAP3 [OR uLAP3 = 1.22 (95% CI 1.03 to 1.44, p < 0.02)]. CONCLUSIONS These data suggest that urinary LAP3 may be a potential biomarker of arsenic exposure, which warrants further study.
Collapse
Affiliation(s)
- Anna Skoczynska
- Department of Internal and Occupational Medicine and Hypertension, 49550Wroclaw Medical University, Wroclaw, Poland
| | - Marta Skoczynska
- Department of Rheumatology and Internal Diseases, 49550Wroclaw Medical University, Wroclaw, Poland
| | - Anna Wojakowska
- Department of Internal and Occupational Medicine and Hypertension, 49550Wroclaw Medical University, Wroclaw, Poland
| | - Barbara Turczyn
- Department of Internal and Occupational Medicine and Hypertension, 49550Wroclaw Medical University, Wroclaw, Poland
| | | | | |
Collapse
|
7
|
Kubo A, Hidaka T, Nakayama M, Sasaki Y, Takagi M, Suzuki H, Suzuki Y. Protective effects of DPP-4 inhibitor on podocyte injury in glomerular diseases. BMC Nephrol 2020; 21:402. [PMID: 32948146 PMCID: PMC7501714 DOI: 10.1186/s12882-020-02060-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/08/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Dipeptidyl peptidase-4 (DPP-4) is a serine protease that inhibits the degradation of glucagon-like peptide 1. DPP-4 inhibitors are used worldwide to treat type 2 diabetes mellitus and were recently shown to have pleiotropic effects such as anti-oxidant, anti-inflammatory, and anti-fibrotic actions. DPP-4 inhibitors improve albuminuria and renal injury including glomerular damage independent of its hypoglycemic effect. Although DPP-4 is mainly expressed in the kidney, the physiological function of DPP-4 remains unclear. METHODS The localization of renal DPP-4 activity was determined in human renal biopsy specimens with glycyl-1-prolyl-4-methoxy-2-naphthylamide and the effects of a DPP-4 inhibitor were examined in human cultured podocyte. RESULTS DPP-4 activity under normal conditions was observed in some Bowman's capsular epithelial cells and proximal tubules, but not in the glomerulus. DPP-4 activity was observed in crescent formation in anti-neutrophil myeloperoxidase cytoplasmic antigen antibody nephritis, nodular lesions in diabetic nephropathy, and some podocytes in focal segmental glomerulosclerosis. Notably, the DPP-4 inhibitor saxagliptin suppressed DPP-4 activity in podocytes and the proximal tubules. To assess the effect of DPP-4 inhibitor on podocytes, human cultured podocytes were injured by Adriamycin, which increased DPP-4 activity; this activity was dose-dependently suppressed by saxagliptin. Treatment with saxagliptin maintained the structure of synaptopodin and RhoA. Saxagliptin also improved the detachment of podocytes. CONCLUSIONS DPP-4 activity induces degradation of synaptopodin and reduction of RhoA, resulting in destruction of the podocyte cytoskeleton. Saxagliptin may have pleiotropic effects to prevent podocyte injury.
Collapse
Affiliation(s)
- Ayano Kubo
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Teruo Hidaka
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Maiko Nakayama
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yu Sasaki
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Miyuki Takagi
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Department of Nephrology and Hypertension, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-City, Chiba, 279-0021, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
8
|
Bassendine MF, Bridge SH, McCaughan GW, Gorrell MD. COVID-19 and comorbidities: A role for dipeptidyl peptidase 4 (DPP4) in disease severity? J Diabetes 2020; 12:649-658. [PMID: 32394639 DOI: 10.1111/1753-0407.13052] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by a novel betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), similar to SARS-CoV and Middle East respiratory syndrome (MERS-CoV), which cause acute respiratory distress syndrome and case fatalities. COVID-19 disease severity is worse in older obese patients with comorbidities such as diabetes, hypertension, cardiovascular disease, and chronic lung disease. Cell binding and entry of betacoronaviruses is via their surface spike glycoprotein; SARS-CoV binds to the metalloprotease angiotensin-converting enzyme 2 (ACE2), MERS-CoV utilizes dipeptidyl peptidase 4 (DPP4), and recent modeling of the structure of SARS-CoV-2 spike glycoprotein predicts that it can interact with human DPP4 in addition to ACE2. DPP4 is a ubiquitous membrane-bound aminopeptidase that circulates in plasma; it is multifunctional with roles in nutrition, metabolism, and immune and endocrine systems. DPP4 activity differentially regulates glucose homeostasis and inflammation via its enzymatic activity and nonenzymatic immunomodulatory effects. The importance of DPP4 for the medical community has been highlighted by the approval of DPP4 inhibitors, or gliptins, for the treatment of type 2 diabetes mellitus. This review discusses the dysregulation of DPP4 in COVID-19 comorbid conditions; DPP4 activity is higher in older individuals and increased plasma DPP4 is a predictor of the onset of metabolic syndrome. DPP4 upregulation may be a determinant of COVID-19 disease severity, which creates interest regarding the use of gliptins in management of COVID-19. Also, knowledge of the chemistry and biology of DPP4 could be utilized to develop novel therapies to block viral entry of some betacoronaviruses, potentially including SARS-CoV-2.
Collapse
Affiliation(s)
- Margaret F Bassendine
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Simon H Bridge
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Geoffrey W McCaughan
- Centenary Institute and The University of Sydney Faculty of Medicine and Health, Sydney, Australia
| | - Mark D Gorrell
- Centenary Institute and The University of Sydney Faculty of Medicine and Health, Sydney, Australia
| |
Collapse
|
9
|
Shi C, Lu K, Xia H, Zhang P, Zhang B. Alteration and association between serum ACE2/ angiotensin(1-7)/Mas axis and oxidative stress in chronic kidney disease: A pilot study. Medicine (Baltimore) 2020; 99:e21492. [PMID: 32756181 PMCID: PMC7402882 DOI: 10.1097/md.0000000000021492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activation of the renin angiotensin system and renal oxidative stress (OS) are critical contributors in the progression of chronic kidney disease(CKD). Recent studies have confirmed that the angiotensin-converting enzyme 2-angiotensin (1-7)-Mas(ACE2/Ang(1-7)/Mas) axis, the important components of renin angiotensin system, protected kidneys against damage by antagonizing angiotensin II and attenuating OS in rats with several nephropathy models, but its effect needs to be further evaluated in clinic. In this study, we aimed to detected serum ACE2/Ang (1-7)/Mas axis, OS conditions and described its clinical associations in patients with CKD at different stages.A total of 48 patients with CKD and 6 healthy controls (CT) were enrolled, and serum angiotensin converting enzyme (ACE), ACE2, Ang (1-7), 8-hydroxy-2'-deoxyguanosine (8-OHdG) were determined by ELISA. Serum extracellular glutathione peroxidase(eGSH-Px) activity and renal functions were determined by the biochemical method.Serum ACE and ACE2 levels in CKD stages 3 to 5 and serum Ang(1-7) levels in CKD stages 4 to 5 without Ang II receptor blockers treatment significantly increased compared to those in the CT group. However, ACE2 was decreased and Ang(1-7) level increased in early CKD stage with Ang II receptor blockers treatment. Higher serum 8-OHdG levels and lower eGSH-Px activity were noted in CKD stages 4 to 5. Serum 8-OHdG level was correlated with serum ACE2, Ang(1-7) expression. Estimated glomerular filtration rate (eGFR) was correlated with serum ACE, ACE2, Ang(1-7), 8-OHdG, Hcy levels and serum eGSH-Px activity. Multiple-regression analysis eGFR was predicted by ACE, Hcy, eGSH-Px, and also can be predicted by ACE2, Ang(1-7), Hcy in CT subgroup.The ACE2/Ang(1-7)/Mas axis is associated with OS, and both them were associated with eGFR in the progression of CKD. Activation of ACE2/Ang(1-7)/Mas axis may have renoprotective effect and can be a potential therapeutic target in patients with early CKD stages.
Collapse
Affiliation(s)
- Chengqian Shi
- First clinical medical college
- The Second Affiliated Hospital
| | - Keda Lu
- The First Affiliated Hospital
| | | | | | - Bingbing Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Nicotera R, Casarella A, Longhitano E, Bolignano D, Andreucci M, De Sarro G, Cernaro V, Russo E, Coppolino G. Antiproteinuric effect of DPP-IV inhibitors in diabetic and non-diabetic kidney diseases. Pharmacol Res 2020; 159:105019. [PMID: 32553713 DOI: 10.1016/j.phrs.2020.105019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
Abstract
Diabetes Mellitus (DM) is a chronic and severe metabolic disease, characterized by chronic hyperglycemia due to insulin resistance and/or reduced insulin secretion. Concerning the non-insulin glucose-lowering therapy for diabetes, Dipeptidyl-peptidase-4 (DPP-4) inhibitors, members of the incretin family, represent new agents, capable of a glycemic control improvement with an advantageous safety profile, given the absence of weight gain, the low incidence of hypoglycemia and the good renal tolerance in patients suffering from chronic renal failure. In addition to demonstrating efficacy in glycemic control through inhibition of GLP-1 degradation, DPP-4 inhibitors (DPP-4is) seem to demonstrate pleiotropic effects, which also make them interesting in both diabetic and non-diabetic nephropathies, especially for their capacity of reducing proteinuria. Several studies about diabetic nephropathy on patients' cohorts and murine models have demonstrated a solid direct relationship between DPP-4 activity and urinary albumin excretion (UAE), thus confirming the capacity of DPP-4is to reduce proteinuria; the mechanism responsible for that effect was studied to assess if it was the result of a direct action on renal impairment or a secondary consequence of the better glycemic control related to these agents. As a result of these more in-depth studies, DPP-4is have demonstrated an improvement of renal inflammation markers and consequent proteinuria reduction, regardless of glucose concentrations. Considering the nephroprotective effects of DPP-4is might be glycemic independent, several studies were conducted to prove the validity of the same effects in non-diabetic nephropathies. Among these studies, DPP-4is demonstrated an improvement of various renal inflammatory markers on several models of non-diabetes dependent renal impairment, confirming their capacity to reduce proteinuria, independently from the action on glucose metabolism. The objective of this review is to present and discuss the so far demonstrated antiproteinuric effect of DPP-4is and their effects on diabetic and non-diabetic nephropathies.
Collapse
Affiliation(s)
- Ramona Nicotera
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | | | - Elisa Longhitano
- Renal Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Davide Bolignano
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Michele Andreucci
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | | | - Valeria Cernaro
- Renal Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Emilio Russo
- Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Giuseppe Coppolino
- Renal Unit, Department of Health Sciences, "Magna Graecia" University, Catanzaro, Italy.
| |
Collapse
|
11
|
Williams DM, Nawaz A, Evans M. Renal Outcomes in Type 2 Diabetes: A Review of Cardiovascular and Renal Outcome Trials. Diabetes Ther 2020; 11:369-386. [PMID: 31863343 PMCID: PMC6995804 DOI: 10.1007/s13300-019-00747-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
The development of chronic kidney disease (CKD) in people with diabetes is commonplace, and is frequently associated with a significant and unfavourable impact on patient outcomes along with a substantial economic burden. With the development of novel classes of drug therapies in diabetes, there has been a recent focus on cardiovascular safety measures, with dedicated cardiovascular outcome trials (CVOTs) carried out for all new diabetes medications. More recently, there has been a growing regulatory view that such trials should report more specific renal outcomes to ensure simpler comparability between drugs and drug classes. This article explores some of the possible mechanisms by which these drugs may improve renal function in people with diabetes, and it reviews important CVOTs that have reported renal outcomes to date. These include CVOTS of sodium-glucose cotransporter-2 inhibitors (EMPA-REG OUTCOME study, CANVAS study, CREDENCE trial, DECLARE-TIMI trial and DAPA-HF study), dipeptidyl peptidase-4 inhibitors (EXAMINE trial, SAVOR-TIMI 53, TECOS trial and CARMELINA trial) and glucagon-like peptide-1 analogues (ELIXA trial, LEADER trial, SUSTAIN-6 trial, PIONEER-6 trial, EXSCEL trial, HARMONY Outcomes study and the REWIND study). Ongoing cardiovascular and renal outcome studies such as Dapa-CKD, EMPA-KIDNEY, EMPEROR-Preserved and EMPEROR-Reduced are also discussed. The heterogeneity of patient characteristics and reported renal outcomes, which hinders comparisons between trials and drug classes, is highlighted. Novel classes of diabetes therapies present an important opportunity for nephroprotection beyond the blockade of the renin-angiotensin-aldosterone system in this high-risk group. Clinicians should be aware of such benefits when prescribing these medications for people with, and possibly those without, type 2 diabetes.
Collapse
Affiliation(s)
- David M Williams
- Department of Diabetes and Endocrinology, University Hospital Llandough, Cardiff, UK.
| | - Asif Nawaz
- Department of Diabetes and Endocrinology, University Hospital Llandough, Cardiff, UK
| | - Marc Evans
- Department of Diabetes and Endocrinology, University Hospital Llandough, Cardiff, UK
| |
Collapse
|
12
|
More than just an enzyme: Dipeptidyl peptidase-4 (DPP-4) and its association with diabetic kidney remodelling. Pharmacol Res 2019; 147:104391. [PMID: 31401210 DOI: 10.1016/j.phrs.2019.104391] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/04/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE OF THE REVIEW This review article discusses recent advances in the mechanism of dipeptidyl peptidase-4 (DPP-4) actions in renal diseases, especially diabetic kidney fibrosis, and summarizes anti-fibrotic functions of various DPP-4 inhibitors in diabetic nephropathy (DN). RECENT FINDINGS DN is a common complication of diabetes and is a leading cause of the end-stage renal disease (ESRD). DPP-4 is a member of serine proteases, and more than 30 substrates have been identified that act via several biochemical messengers in a variety of tissues including kidney. Intriguingly, DPP-4 actions on the diabetic kidney is a complex mechanism, and a variety of pathways are involved including increasing GLP-1/SDF-1, disrupting AGE-RAGE pathways, and integrin-β- and TGF-β-Smad-mediated signalling pathways that finally lead to endothelial to mesenchymal transition. Interestingly, an array of DPP-4 inhibitors is well recognized as oral drugs to treat type 2 diabetic (T2D) patients, which promote better glycemic control. Furthermore, recent experimental and preclinical data reveal that DPP-4 inhibitors may also exhibit protective effects in renal disease progression including anti-fibrotic effects in the diabetic kidney by attenuating above signalling cascade(s), either singly or as a combinatorial effect. In this review, we discussed the anti-fibrotic effects of DPP-4 inhibitors based on recent reports along with the possible mechanism of actions and future perspectives to underscore the beneficial effects of DPP-4 inhibitors in DN. SUMMARY With recent experimental, preclinical, and clinical evidence, we summarized DPP-4 activities and its mechanism of actions in diabetic kidney diseases. A knowledge gap of DPP-4 inhibition in controlling renal fibrosis in DN has also been postulated in this review for future research perspectives.
Collapse
|
13
|
Liu Y, Li L, Qiu M, Tan L, Zhang M, Li J, Zhu H, Jiang S, Su X, Li A. Renal and cerebral RAS interaction contributes to diabetic kidney disease. Am J Transl Res 2019; 11:2925-2939. [PMID: 31217864 PMCID: PMC6556645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
The diabetes mellitus has posed a grave threat on human health, and is bound to result in renal trauma by uncertain mechanisms. Increasing evidences indicated that the activation of the renin-angiotensin system plays a pivotal role during the progression of diabetic kidney disease. In streptozotocin (STZ)-induced type 1 diabetic rat model, the losartan (a selective angiotensin II type 1 (AT1) receptor antagonist) and tempol (4-Hydroxy-TEMPO, reactive oxygen species scavenger) were administrated through intracerebroventricular injection or intragastric gavage. Intracerebroventricular administration of clonidine or renal denervation was carried out to block sympathetic nerve traffic. Compared with non-diabetic rats, the reno-cerebral axis was over-activated, including activity of renin-angiotensin system (RAS), oxidative stress, and sympathetic activity in diabetic rats. Central blockade of RAS inhibited the central oxidative stress and sympathetic activity, which led to decrease of intrarenal RAS activity and oxidative stress. Meanwhile, central administration of tempol reduced brain RAS, thus downregulated renal RAS activity and oxidative stress. Importantly, oral administration by intragastric gavage of high dose of losartan and tempol achieved the same effect. The results suggested that there is a cross-talk between renal and cerebral RAS/reactive oxygen species, contributing to the progression of diabetic kidney disease. The subfornical organ, paraventricular nucleus, and supraoptic nucleus in the forebrain also play a key role in development and progression of renal trauma through reno-cerebral reflex axis.
Collapse
Affiliation(s)
- Yufeng Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
- Nephropathy Department, Tungwah Hospital of Sun Yat-sen UniversityDongguan 523110, China
| | - Lanying Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Minzi Qiu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Lishan Tan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Mengbi Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Jiawen Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Hongguo Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Shaoling Jiang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Xiaoyan Su
- Nephropathy Department, Tungwah Hospital of Sun Yat-sen UniversityDongguan 523110, China
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| |
Collapse
|
14
|
Zhang N, Cong X, Zhou D, Guo L, Yuan C, Xu D, Su C. Predictive significance of serum dipeptidyl peptidase-IV in papillary thyroid carcinoma. Cancer Biomark 2019; 24:7-17. [PMID: 30594915 DOI: 10.3233/cbm-170908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The significance of serum dipeptidyl peptidase-IV (DPP-IV) in papillary thyroid carcinoma (PTC) has not been elucidated. OBJECTIVE This study aimed to assess the role of serum DPP-IV in the carcinogenesis and prognosis of PTC. METHODS The serum DPP-IV concentration was measured in 171 male patients with PTC, 81 male patients with a benign thyroid nodule (BTN), and 52 male healthy controls (HCs). Multivariate logistic regression and Cox regression analyses were performed to evaluate the correlations between variables. Receiver operating characteristic (ROC) curves were used to calculate the diagnosis accuracy. RESULTS The ROC curve indicated a good performance of DPP-IV for discriminating PTC from BTN, with an area under the curve (AUC) of 0.881 (95% CI, 0.840-0.922). Serum DPP-IV demonstrated a modest performance in predicting nonstructurally persistent disease/recurrent disease (NSPRD) survival, with an AUC of 0.778 (95% CI, 0.635-0.922). A serum DPP-IV level ⩾ 250 nkat/L (HR, 6.529; 95% CI, 2.090-20.398; P= 0.001) and an advanced tumor, lymph node, metastasis (TNM) stage (HR, 4.677; 95% CI, 1.498-14.605; P= 0.008) were found to be independent factors for predicting SPRD. PTC patients with a DPP-IV level ⩾ 250 nkat/L had a worse outcome than those with a DPP-IV level < 250 nkat/L (P< 0.001). CONCLUSIONS Serum DPP-IV may be a predictive biomarker for PTC diagnosis and prognosis in Chinese male patients.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xiaoqiang Cong
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Dan Zhou
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Liang Guo
- Department of Pathology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Congwang Yuan
- Department of Pain, Yancheng First People's Hospital, Yancheng, Jiangsu 224000, China
| | - Dahai Xu
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Chang Su
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
15
|
Kartiko BH, Siswanto FM. Overtraining elevates serum protease level, increases renal p16INK4α gene expression and induces apoptosis in rat kidney. SPORT SCIENCES FOR HEALTH 2018. [DOI: 10.1007/s11332-018-0433-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Abstract
PURPOSE OF REVIEW The renin-angiotensin system (RAS) is a pivotal player in the physiology and pathophysiology of cardiovascular and renal systems. Discovery of angiotensin-converting enzyme 2 (ACE2), capable of cleaving RAS effector peptide angiotensin (Ang) II into biologically active Ang-(1-7), has increased the complexity of our knowledge of the RAS. ACE2 expression is abundant in the kidney and is thought to provide protection against injury. This review emphasizes current experimental and clinical findings that examine ACE2 in the context of kidney injury and its potential therapeutic impact for treatment of kidney disease. RECENT FINDINGS Clinical studies have reported upregulation of ACE2 in urine from diabetic patients, which may be reflective of pathological shedding of renal ACE2 as suggested by mechanistic experiments. Studies in experimental models have investigated the feasibility of pharmacological induction of ACE2 for improvement of renal function, inflammation, and fibrosis. SUMMARY Emerging concepts about the RAS indicate that ACE2 is a critical regulator of angiotensin peptide metabolism and the pathogenesis of renal disease. Human recombinant ACE2 is available and may be a practical clinical approach to enzyme replacement. Elucidating precise roles of ACE2 throughout disease progression will enrich our view of the RAS and help identify novel targets and appropriate strategies for intervention.
Collapse
|
17
|
Kanasaki K. The role of renal dipeptidyl peptidase-4 in kidney disease: renal effects of dipeptidyl peptidase-4 inhibitors with a focus on linagliptin. Clin Sci (Lond) 2018; 132:489-507. [PMID: 29491123 PMCID: PMC5828949 DOI: 10.1042/cs20180031] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggests that dipeptidyl peptidase-4 (DPP-4) inhibitors used to treat type 2 diabetes may have nephroprotective effects beyond the reduced renal risk conferred by glycemic control. DPP-4 is a ubiquitous protein with exopeptidase activity that exists in cell membrane-bound and soluble forms. The kidneys contain the highest levels of DPP-4, which is increased in diabetic nephropathy. DPP-4 inhibitors are a chemically heterogeneous class of drugs with important pharmacological differences. Of the globally marketed DPP-4 inhibitors, linagliptin is of particular interest for diabetic nephropathy as it is the only compound that is not predominantly excreted in the urine. Linagliptin is also the most potent DPP-4 inhibitor, has the highest affinity for this protein, and has the largest volume of distribution; these properties allow linagliptin to penetrate kidney tissue and tightly bind resident DPP-4. In animal models of kidney disease, linagliptin elicited multiple renoprotective effects, including reducing albuminuria, glomerulosclerosis, and tubulointerstitial fibrosis, independent of changes in glucagon-like peptide-1 (GLP-1) and glucose levels. At the molecular level, linagliptin prevented the pro-fibrotic endothelial-to-mesenchymal transition by disrupting the interaction between membrane-bound DPP-4 and integrin β1 that enhances signaling by transforming growth factor-β1 and vascular endothelial growth factor receptor-1. Linagliptin also increased stromal cell derived factor-1 levels, ameliorated endothelial dysfunction, and displayed unique antioxidant effects. Although the nephroprotective effects of linagliptin are yet to be translated to the clinical setting, the ongoing Cardiovascular and Renal Microvascular Outcome Study with Linagliptin in Patients with Type 2 Diabetes Mellitus (CARMELINA®) study will definitively assess the renal effects of this DPP-4 inhibitor. CARMELINA® is the only clinical trial of a DPP-4 inhibitor powered to evaluate kidney outcomes.
Collapse
Affiliation(s)
- Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|