1
|
Bakan B, Jonckheere AC, Decaesteker T, Marain NF, Murugadoss S, Karabay Yavasoglu NU, Şahar U, Şenay RH, Akgöl S, Göksel Ö, Hoet PHM, Vanoirbeek JAJ. Impact of a Polymer-Based Nanoparticle with Formoterol Drug as Nanocarrier System In Vitro and in an Experimental Asthmatic Model. TOXICS 2023; 11:974. [PMID: 38133375 PMCID: PMC10747207 DOI: 10.3390/toxics11120974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
The implementation of nanotechnology in pulmonary delivery systems might result in better and more specific therapy. Therefore, a nano-sized drug carrier should be toxicologically inert and not induce adverse effects. We aimed to investigate the responses of a polymer nano drug carrier, a lysine poly-hydroxyethyl methacrylate nanoparticle (NP) [Lys-p(HEMA)], loaded with formoterol, both in vitro and in vivo in an ovalbumin (OVA) asthma model. The successfully synthesized nanodrug formulation showed an expectedly steady in vitro release profile. There was no sign of in vitro toxicity, and the 16HBE and THP-1 cell lines remained vital after exposure to the nanocarrier, both loaded and unloaded. In an experimental asthma model (Balb/c mice) of ovalbumin sensitization and challenge, the nanocarrier loaded and unloaded with formoterol was tested in a preventive strategy and compared to treatment with the drug in a normal formulation. The airway hyperresponsiveness (AHR) and pulmonary inflammation in the bronchoalveolar lavage (BAL), both cellular and biochemical, were assessed. The application of formoterol as a regular drug and the unloaded and formoterol-loaded NP in OVA-sensitized mice followed by a saline challenge was not different from the control group. Yet, both the NP formulation and the normal drug application led to a more deteriorated lung function and increased lung inflammation in the OVA-sensitized and -challenged mice, showing that the use of the p(HEMA) nanocarrier loaded with formoterol needs more extensive testing before it can be applied in clinical settings.
Collapse
Affiliation(s)
- Buket Bakan
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, 3000 Leuven, Belgium; (B.B.); (P.H.M.H.)
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum 25240, Turkey
| | - Anne-Charlotte Jonckheere
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Tatjana Decaesteker
- BREATH, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium (N.F.M.)
| | - Nora F. Marain
- BREATH, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium (N.F.M.)
| | - Sivakumar Murugadoss
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, 3000 Leuven, Belgium; (B.B.); (P.H.M.H.)
| | | | - Umut Şahar
- Department of Biology, Faculty of Science, Ege University, Izmir 35100, Turkey; (N.U.K.Y.); (U.Ş.)
| | - Raziye Hilal Şenay
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100, Turkey; (R.H.Ş.); (S.A.)
| | - Sinan Akgöl
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100, Turkey; (R.H.Ş.); (S.A.)
| | - Özlem Göksel
- Laboratory of Occupational & Environmental Respiratory Diseases and Asthma, Ege University, Izmir 35040, Turkey;
| | - Peter H. M. Hoet
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, 3000 Leuven, Belgium; (B.B.); (P.H.M.H.)
| | - Jeroen A. J. Vanoirbeek
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, 3000 Leuven, Belgium; (B.B.); (P.H.M.H.)
| |
Collapse
|
2
|
Liang S, Zhao Y, Chen G, Wang C. Isoorientin ameliorates OVA-induced asthma in a murine model of asthma. Exp Biol Med (Maywood) 2022; 247:1479-1488. [PMID: 35658632 PMCID: PMC9493767 DOI: 10.1177/15353702221094505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Allergic asthma which is induced by ovalbumin (OVA) is a chronic airway inflammation disease. Isoorientin (Iso) is a natural C-glucosyl flavone with many biological properties. We aimed to evaluate the effectiveness of Iso on OVA-induced allergic asthma. A total of 30 C57BL/6 mice were randomly divided into five groups: control group, OVA group, Dex (dexamethasone, 10 mg/kg) group, low-dose Iso group (Iso-L, 25 mg/kg), and high-dose Iso group (Iso-H, 50 mg/kg). The serum and bronchoalveolar lavage fluid (BALF) were collected for biochemical parameters, the lung tissue was collected for hematoxylin-eosin (H&E) staining, immunohistochemistry (IHC), and western blot. The levels of IL-4, IL-5, IL-13, malondialdehyde (MDA), NO, and reactive oxygen species (ROS) in Iso-L and Iso-H groups were significantly lower than that in model group (p < 0.05). Simultaneously, the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity were higher than that in model group (p < 0.05). Iso significantly ameliorated airway hyperresponsiveness. Meanwhile, H&E staining revealed that mice treated with Iso resulted in the ameliorated inflammatory cell infiltration and a reduction in interstitial thickening. The nuclear factor erythroid 2-like 2 (Nrf2) and HO-1 protein expression in Iso-L and Iso-H groups were enhanced over that in model group, while p-NF-κB-p65 and p-IκB-α protein expression was decreased (p < 0.05). Our research indicated that Iso alleviated the OVA-induced allergic asthma, and this effect can be explained by the modulation of Nrf2/HO-1 and NF-κB signaling pathway; thus, the results providing a therapeutic rationale for the treatment of Iso on allergic asthma.
Collapse
|
3
|
Shaikh-Omar A, Murad HA, Alotaibi NM. Rectal roflumilast improves trinitrobenzenesulfonic acid-induced chronic colitis in rats. Braz J Med Biol Res 2022; 55:e11877. [PMID: 35239781 PMCID: PMC8905672 DOI: 10.1590/1414-431x2021e11877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022] Open
Abstract
Roflumilast, a highly selective oral phosphodiesterase IV inhibitor, exerts anti-inflammatory and anti-fibrotic effects. Oral roflumilast causes gastrointestinal side effects, especially vomiting, which could be reduced by administering roflumilast via off-label routes. Inhaled roflumilast reportedly improved inflammatory and histopathological changes in asthmatic mice. The current study investigated the effects of oral and rectal roflumilast on trinitrobenzenesulfonic acid (TNBS)-induced chronic colitis in rats, an experimental model resembling human Crohn's disease. Five groups of rats (n=8) were used: normal control, TNBS-induced colitis, and three TNBS-treated colitic groups, which received oral sulfasalazine (500 mg·kg-1·day-1), oral roflumilast (5 mg·kg-1·day-1), or rectal roflumilast (5 mg·kg-1·day-1) for 15 days after colitis induction. Then, the following were assessed: the colitis activity score, tumor necrosis factor (TNF)-α, interleukin (IL)-2, and IL-6 serum levels, colonic length, and myeloperoxidase, malonaldehyde, and glutathione levels. Histological examinations employed H&E, Masson trichrome, and PAS stains in addition to immunostaining for KI-67 and TNF-α. The TNBS-induced colitis rats showed significant increases in disease activity scores, serum TNF-α, IL-2, and IL-6 levels, and colonic myeloperoxidase and malonaldehyde content. They also showed significant decreases in colonic length and glutathione levels in addition to histopathological and immunohistochemical changes. All the treatments significantly improved all these changes. Sulfasalazine provided the greatest improvement, followed by oral roflumilast, and then rectal roflumilast. In conclusion, both oral and rectal roflumilast partially improved TNBS-induced chronic colitis, suggesting the potential of roflumilast as an additional treatment for Crohn's disease.
Collapse
Affiliation(s)
- A Shaikh-Omar
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Dr. Najla Bint Saud Al Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - H A Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - N M Alotaibi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Kawagoe J, Maeda Y, Kikuchi R, Takahashi M, Fuchikami JI, Tsuji T, Kono Y, Abe S, Yamaguchi K, Koyama N, Nakamura H, Aoshiba K. Differential effects of dexamethasone and roflumilast on asthma in mice with or without short cigarette smoke exposure. Pulm Pharmacol Ther 2021; 70:102052. [PMID: 34214693 DOI: 10.1016/j.pupt.2021.102052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/03/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023]
Abstract
Appropriate drug treatment for smoking asthmatics is uncertain because most smokers with asthma are less sensitive to treatment with glucocorticoids compared with non-smokers with asthma. We hypothesized that roflumilast (Rof), a selective phosphodiesterases-4 inhibitor regarded as an add-on therapy for chronic obstructive pulmonary disease, might be more effective than glucocorticoids for improving asthma in smokers. To investigate this hypothesis, we compared the therapeutic effects of dexamethasone (Dex) and Rof in a mouse model of ovalbumin-induced asthma with or without concurrent cigarette smoke (CS) exposure for 2 weeks. We found that recurrent asthma attacks increased lung tissue resistance. CS exposure in asthmatic mice decreased the central airway resistance, increased lung compliance, and attenuated airway hyper-responsiveness (AHR). CS exposure in asthmatic mice also increased the number of neutrophils and macrophages in the bronchoalveolar fluid. Treatment with Dex in asthmatic mice without CS exposure reduced airway resistance, AHR and airway eosinophilia. In asthmatic mice with CS exposure, however, Dex treatment unexpectedly increased lung tissue resistance and restored AHR that had been otherwise suppressed. Dex treatment in asthmatic mice with CS exposure inhibited eosinophilic inflammation but conversely exacerbated neutrophilic inflammation. On the other hand, treatment with Rof in asthmatic mice without CS exposure reduced airway resistance and airway eosinophilia, although the inhibitory effect of Rof on AHR was unremarkable. In asthmatic mice with CS exposure, Rof treatment did not exacerbate lung tissue resistance but modestly restored AHR, without any significant effects on airway inflammation. These results suggest that CS exposure mitigates sensitivity to both Dex and Rof. In asthmatic mice with CS exposure, Dex is still effective in reducing eosinophilic inflammation but increases lung tissue resistance, AHR and neutrophilic inflammation. Rof is ineffective in improving lung function and inflammation in asthmatic mice with CS exposure. This study did not support our initial hypothesis that Rof might be more effective than glucocorticoids for improving asthma in smokers. However, glucocorticoids may have a detrimental effect on smoking asthmatics.
Collapse
Affiliation(s)
- Junichiro Kawagoe
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki 300-0395, Japan; Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Yuki Maeda
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki 300-0395, Japan.
| | - Ryota Kikuchi
- Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Maki Takahashi
- CMIC Pharma Science Co.,Ltd., Bioresearch Center, 10221 Kobuchisawa-cho, Hokuto-shi, Yamanashi, 408-0044, Japan.
| | - Jun-Ichi Fuchikami
- CMIC Pharma Science Co.,Ltd., Bioresearch Center, 10221 Kobuchisawa-cho, Hokuto-shi, Yamanashi, 408-0044, Japan.
| | - Takao Tsuji
- Otsuki Municipal Hospital, 1225 Hanasaki, Otsuki-machi, 401-0015 Yamanashi, Japan.
| | - Yuta Kono
- Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Shinji Abe
- Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Kazuhiro Yamaguchi
- Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Nobuyuki Koyama
- Department of Clinical Oncology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki 300-0395, Japan.
| | - Hiroyuki Nakamura
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki 300-0395, Japan.
| | - Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki 300-0395, Japan.
| |
Collapse
|
5
|
Kawamatawong T. Phosphodiesterase-4 Inhibitors for Non-COPD Respiratory Diseases. Front Pharmacol 2021; 12:518345. [PMID: 34434103 PMCID: PMC8381854 DOI: 10.3389/fphar.2021.518345] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
Abstract
Selective phosphodiesterase (PDE) inhibitors are a class of nonsteroid anti-inflammatory drugs for treating chronic inflammatory diseases. Modulation of systemic and airway inflammation is their pivotal mechanism of action. Furthermore, PDE inhibitors modulate cough reflex and inhibit airway mucus secretion. Roflumilast, a selective PDE4 inhibitor, has been extensively studied for the efficacy and safety in chronic obstructive pulmonary disease (COPD) patients. According to the mechanisms of action, the potential roles of PDE inhibitors in treating chronic respiratory diseases including severe asthma, asthma-COPD overlap (ACO), noncystic fibrosis bronchiectasis, and chronic cough are discussed. Since roflumilast inhibits airway eosinophilia and neutrophilia in COPD patients, it reduces COPD exacerbations in the presence of chronic bronchitis in addition to baseline therapies. The clinical studies in asthma patients have shown the comparable efficacy of roflumilast to inhaled corticosteroids for improving lung function. However, the clinical trials of roflumilast in severe asthma have been limited. Although ACO is common and is also associated with poor outcomes, there is no clinical trial regarding its efficacy in patients with ACO despite a promising role in reducing COPD exacerbation. Since mucus hypersecretion is a result of neutrophil secretagogue in patients with chronic bronchitis, experimental studies have shown that PDE4s are regulators of the cystic fibrosis transmembrane conductance regulator (CFTR) in human airway epithelial cells. Besides, goblet cell hyperplasia is associated with an increased expression of PDE. Bronchiectasis and chronic bronchitis are considered neutrophilic airway diseases presenting with mucus hypersecretion. They commonly coexist and thus lead to severe disease. The role of roflumilast in noncystic fibrosis bronchiectasis is under investigation in clinical trials. Lastly, PDE inhibitors have been shown modulating cough from bronchodilation, suppressing transient receptors potential (TRP), and anti-inflammatory properties. Hence, there is the potential role of the drug in the management of unexplained cough. However, clinical trials for examining its antitussive efficacy are pivotal. In conclusion, selective PDE4 inhibitors may be potential treatment options for chronic respiratory diseases apart from COPD due to their promising mechanisms of action.
Collapse
Affiliation(s)
- Theerasuk Kawamatawong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Enlo-Scott Z, Bäckström E, Mudway I, Forbes B. Drug metabolism in the lungs: opportunities for optimising inhaled medicines. Expert Opin Drug Metab Toxicol 2021; 17:611-625. [DOI: 10.1080/17425255.2021.1908262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zachary Enlo-Scott
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Erica Bäckström
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ian Mudway
- MRC Centre for Environment and Health, School of Population Health & Environmental Sciences, Imperial College London, London, United Kingdom; National Institute for Health Research, Health Protection Research Units in Chemical and Radiation Threats and Hazards and Environmental Exposures and Health, Imperial College London, London, UK
| | - Ben Forbes
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| |
Collapse
|
7
|
Shastri MD, Chong WC, Dua K, Peterson GM, Patel RP, Mahmood MQ, Tambuwala M, Chellappan DK, Hansbro NG, Shukla SD, Hansbro PM. Emerging concepts and directed therapeutics for the management of asthma: regulating the regulators. Inflammopharmacology 2020; 29:15-33. [PMID: 33152094 DOI: 10.1007/s10787-020-00770-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/17/2020] [Indexed: 12/19/2022]
Abstract
Asthma is a common, heterogeneous and serious disease, its prevalence has steadily risen in most parts of the world, and the condition is often inadequately controlled in many patients. Hence, there is a major need for new therapeutic approaches. Mild-to-moderate asthma is considered a T-helper cell type-2-mediated inflammatory disorder that develops due to abnormal immune responses to otherwise innocuous allergens. Prolonged exposure to allergens and persistent inflammation results in myofibroblast infiltration and airway remodelling with mucus hypersecretion, airway smooth muscle hypertrophy, and excess collagen deposition. The airways become hyper-responsive to provocation resulting in the characteristic wheezing and obstructed airflow experienced by patients. Extensive research has progressed the understanding of the underlying mechanisms and the development of new treatments for the management of asthma. Here, we review the basis of the disease, covering new areas such as the role of vascularisation and microRNAs, as well as associated potential therapeutic interventions utilising reports from animal and human studies. We also cover novel drug delivery strategies that are being developed to enhance therapeutic efficacy and patient compliance. Potential avenues to explore to improve the future of asthma management are highlighted.
Collapse
Affiliation(s)
- Madhur D Shastri
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Wai Chin Chong
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia.,Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.,Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gregory M Peterson
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Rahul P Patel
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Malik Q Mahmood
- Faculty of Health, School of Medicine, Deakin University, Melbourne, Australia
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Belfast, Northern Ireland, UK
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.,Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia. .,Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia. .,Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
8
|
Bodkhe S, Nikam M, Sherje AP, Khan T, Suvarna V, Patel K. Current insights on clinical efficacy of roflumilast for treatment of COPD, asthma and ACOS. Int Immunopharmacol 2020; 88:106906. [PMID: 33182057 DOI: 10.1016/j.intimp.2020.106906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022]
Abstract
Phosphodiesterase-4 inhibitors (PDE4) are of great interest for the treatment of airway inflammatory diseases due to its broad anti-inflammatory effects. Roflumilast is a selective PDE4 inhibitor that inhibits pulmonary and systemic inflammation and rallies symptoms in airway diseases. Asthma and COPD are common chronic airway inflammatory diseases having incompletely illustrious pathophysiology and clinical manifestations. Recently, the condition called Asthma- COPD Overlap (ACO) has been evolved having the overlapping symptoms of both diseases. The newly discovered PDE4 inhibitor, roflumilast has exposed its potential in the treatment of Asthma, COPD and ACOS. Its mechanism of action in airway inflammatory diseases are said to be exerts by elevating intracellular cAMP and shows its anti-inflammatory action. Roflumilast, a promising therapeutic approach in inflammatory airway diseases, has many significant outcomes. In this review, we have provided various promising clinical evidences of roflumilast in COPD and asthma. However, there is no published clinical evidence to date for the role of roflumilast in ACOS. Nevertheless, there are therapeutic mechanisms that provide a reference for clinical application for ACOS.
Collapse
Affiliation(s)
- Shradha Bodkhe
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Mayuri Nikam
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Atul P Sherje
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India.
| | - Tabassum Khan
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Vasanti Suvarna
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Kavit Patel
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| |
Collapse
|
9
|
Darwesh MAS, Abd Alhaleem IS, Al-Obaidy MWS. The Correlation Between Asthma Severity and Neutrophil to Lymphocyte Ratio. EUROPEAN JOURNAL OF MEDICAL AND HEALTH SCIENCES 2020; 2. [DOI: 10.24018/ejmed.2020.2.2.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Background—The prognosis is essential in management and follows up of asthmatic patients. Neutrophil to lymphocyte ratio is considered as the common prognostic marker for many diseases especially the asthma.
Aim of study—To assess the relationship between asthma severity and neutrophil to lymphocyte ratio in comparison to healthy controls.
Patients and methods—This study is a cross sectional study conducted in Respiratory Consultancy Clinic in Baghdad Teaching Hospital in Medical City during the period from 1st of October, 2018 to 31st of March, 2019 on sample of 50 asthmatic patients and 50 healthy controls. The diagnosis of asthma was confirmed by the supervisor through clinical symptoms, signs, spirometery with reversibility test (according to GINA guideline.).
Results—A highly significant difference was observed between asthmatic cases and controls regarding age (p<0.001). A significant association was observed between obesity and asthmatic cases (p=0.001). There was a highly significant association between high neutrophil/lymphocyte ratio and asthmatic cases (p<0.001). The neutrophil/lymphocyte ratio was significantly increased with advanced age, females, severe and uncontrolled asthma.
Conclusions—The neutrophil to lymphocyte ratio is useful biomarker in assessment of asthma severity.
Collapse
|
10
|
Ijaz HM, Chowdhury W, Lodhi MU, Gulzar Q, Rahim M. A Case of Persistent Asthma Resistant to Available Treatment Options: Management Dilemma. Cureus 2019; 11:e4194. [PMID: 31106094 PMCID: PMC6504033 DOI: 10.7759/cureus.4194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Asthma affects nearly 300 million people worldwide, with 250,000 associated deaths annually. An estimated 5%-10% of patients have severe asthma, while only 1%-2% presented with treatment-resistant or refractory asthma. Currently, the endotype of asthma is divided into T-helper type 2 (Th2) high and Th2-low inflammation endotypes. The Th2-high endotype is characterized by eosinophilic asthma, while the Th2-low endotype is associated with neutrophilia and a pauci-granulocytic profile. The Th2-low endotype carries a high resistance to corticosteroid and bronchodilator therapy, and these patients typically have a severe and acute-onset of symptoms. We present a 57-year-old nonsmoking female with recurrent intensive care unit (ICU) admissions for severe acute asthma exacerbations, resistant to bronchodilator and steroid treatment, requiring mechanical ventilation. Currently, the guidelines for treating neutrophil-predominant Th2-low inflammation asthma have not been established. This creates a management dilemma when encountered with such a patient in clinical practice. We aim to propose targeted treatment options for these severe and potentially fatal asthma patients, with reference to current literature.
Collapse
Affiliation(s)
- Hasnan M Ijaz
- Internal Medicine, Raleigh General Hospital, Beckley, USA
| | | | | | - Qamar Gulzar
- Internal Medicine, Raleigh General Hospital, Beckley, USA
| | - Mustafa Rahim
- Internal Medicine, West Virginia University School of Medicine, Morgantown, USA
| |
Collapse
|
11
|
Zhang X, Chen Y, Fan L, Ye J, Fan J, Xu X, You D, Liu S, Chen X, Luo P. Pharmacological mechanism of roflumilast in the treatment of asthma-COPD overlap. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2371-2379. [PMID: 30122895 PMCID: PMC6078181 DOI: 10.2147/dddt.s165161] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Asthma-COPD overlap (ACO) is a type of incomplete obstructive airway disease that has a high incidence and mortality. Nevertheless, there is currently no clear definition of ACO and no effective intervention. The newly discovered phosphodiesterase-4 inhibitor, roflumilast, has shown initial efficacy for treating asthma, COPD, and ACO. The mechanism of roflumilast, however, remains unclear, and there has been no interpretation through systematic review to date. The determination of a definite mechanism of roflumilast will guide the clinician's decisions regarding medication use, standardized diagnosis, and treatment guidelines. For this reason, we have systematically reviewed the therapeutic mechanism of roflumilast for ACO and provided reference for the clinical application of roflumilast in ACO.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Respiratory Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China, ,
| | - Yuqing Chen
- Department of Respiratory Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China, ,
| | - Liyu Fan
- Department of Respiratory Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China, ,
| | - Jiaqi Ye
- Department of Respiratory Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China, ,
| | - Junsheng Fan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xinjie Xu
- Department of Respiratory Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China, ,
| | - Danming You
- Department of Respiratory Medicine, Nangfang Hospital of Southern Medical University, Guangzhou, China
| | - Sihan Liu
- Department of Respiratory Medicine, Nangfang Hospital of Southern Medical University, Guangzhou, China
| | - Xin Chen
- Department of Respiratory Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China, ,
| | - Peng Luo
- Department of Respiratory Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China, ,
| |
Collapse
|
12
|
Mahmoud AA, Elkasabgy NA, Abdelkhalek AA. Design and characterization of emulsified spray dried alginate microparticles as a carrier for the dually acting drug roflumilast. Eur J Pharm Sci 2018; 122:64-76. [PMID: 29928985 DOI: 10.1016/j.ejps.2018.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/19/2018] [Accepted: 06/15/2018] [Indexed: 12/22/2022]
Abstract
Roflumilast is a selective inhibitor of phosphodiesterase-4 isoenzyme in lung cells. Having psychiatric adverse reactions when administered orally affects negatively the patients' adherence to the drug. This work aimed to prepare emulsified spray dried alginate microparticles for the pulmonary delivery of roflumilast. Sodium alginate was used as microparticle-forming material, isopropyl myristate as an oil, Tween®80 as surfactant and calcium beta-glycerophosphate as cross-linking agent to enhance the mechanical properties of the particles. The prepared particles were evaluated for their encapsulation efficiency, particle size and in-vitro drug release. From the studied carriers, beta-cyclodextrin (CD) was the best regarding giving formulation with smaller particle size and more sustained drug release. The inhalation profile of CD-based microparticles was investigated using Anderson cascade impactor. The aerosolization profile of CD-based microparticles suggested their efficiency to deliver the drug deep in the lung. The CD-based microparticles possessed more inhibitory effects on the viability of A549 cells and on the pro-inflammatory cytokines (TNF-α, IL-6 and IL-10) compared to the pure drug. Hence, CD-based microparticles could regulate the tumorigenesis besides tumor-associated inflammation. Finally, CD-based microparticles showed more sustained bronchodilatation properties in healthy human volunteers when compared to Ventolin®HFA. CD-based microparticles proved to be a promising carrier for inhaled roflumilast in human.
Collapse
Affiliation(s)
- Azza A Mahmoud
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt; Department of Pharmaceutical Technology, Pharmaceutical and Drug Industries Research Division, National Research Center, Dokki, Cairo, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt.
| | - Abdelfattah A Abdelkhalek
- Department of Microbiology of Supplementry General Science, Faculty of Oral & Dental Medicine, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
13
|
Tanaka KI, Yamakawa N, Yamashita Y, Asano T, Kanda Y, Takafuji A, Kawahara M, Takenaga M, Fukunishi Y, Mizushima T. Identification of Mepenzolate Derivatives With Long-Acting Bronchodilatory Activity. Front Pharmacol 2018; 9:344. [PMID: 29692733 PMCID: PMC5902689 DOI: 10.3389/fphar.2018.00344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/26/2018] [Indexed: 11/21/2022] Open
Abstract
The standard treatment for chronic obstructive pulmonary disease is a combination of anti-inflammatory drugs and bronchodilators. We recently found that mepenzolate bromide (MP), an antagonist for human muscarinic M3 receptor (hM3R), has both anti-inflammatory and short-acting bronchodilatory activities. To obtain MP derivatives with longer-lasting bronchodilatory activity, we synthesized hybrid compounds based on MP and two other muscarinic antagonists with long-acting bronchodilatory activity glycopyrronium bromide (GC) and aclidinium bromide (AD). Of these three synthesized hybrid compounds (MP-GC, GC-MP, MP-AD) and MP, MP-AD showed the highest affinity for hM3R and had the longest lasting bronchodilatory activity, which was equivalent to that of GC and AD. Both MP-GC and MP-AD exhibited an anti-inflammatory effect equivalent to that of MP, whereas, in line with GC and AD, GC-MP did not show this effect. We also confirmed that administration of MP-AD suppressed elastase-induced pulmonary emphysema in a mouse model. These findings provide important information about the structure-activity relationship of MP for both bronchodilatory and anti-inflammatory activities.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishi-Tokyo, Japan
| | | | - Yasunobu Yamashita
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Teita Asano
- Institute of Medical Science, School of Medicine, St. Marianna University, Kawasaki, Japan
| | - Yuki Kanda
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishi-Tokyo, Japan
| | - Ayaka Takafuji
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishi-Tokyo, Japan
| | - Masahiro Kawahara
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishi-Tokyo, Japan
| | - Mitsuko Takenaga
- Institute of Medical Science, School of Medicine, St. Marianna University, Kawasaki, Japan
| | - Yoshifumi Fukunishi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | | |
Collapse
|
14
|
Luo J, Yang L, Yang J, Yang D, Liu BC, Liu D, Liang BM, Liu CT. Efficacy and safety of phosphodiesterase 4 inhibitors in patients with asthma: A systematic review and meta-analysis. Respirology 2018; 23:467-477. [PMID: 29502338 DOI: 10.1111/resp.13276] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/26/2017] [Accepted: 01/31/2018] [Indexed: 02/05/2023]
Abstract
Phosphodiesterase 4 (PDE4) inhibitors are a novel medication approved for airway inflammatory diseases including chronic obstructive pulmonary disease. Their role and application in asthma are controversial and not defined. A comprehensive search was performed in major databases (1946-2016) using the keywords: 'phosphodiesterase 4 inhibitor' or 'roflumilast' and 'asthma'. Placebo-controlled trials reporting lung function, airway hyperresponsiveness by direct challenge, asthma control and exacerbations, and adverse events were included. Random or fixed-effects models were used to calculate odds ratios (OR) and mean differences between the two treatment groups. Statistical analyses were conducted using Mann-Whitney U-tests and Cochrane systematic review software, Review Manager. Seventeen studies were included in the systematic review, of which 14 studies were included in the meta-analysis. Except for significant statistical heterogeneity in pre- and post-challenge predicted percentage of forced expiratory volume in 1 s (FEV1 %; I2 = 72%, χ2 = 3.35, P = 0.06), there was no heterogeneity in outcome measures. Roflumilast (500 μg) significantly improved FEV1 (mean difference: 0.05, 95% CI: 0.01-0.09, Z = 2.50, P = 0.01), peak expiratory flow, asthma control and exacerbations, but showed variable effects on airway responsiveness to methacholine and a 20% fall in FEV1 .Of note, PDE4 inhibitors were accompanied with significantly higher adverse events such as headache (OR: 3.99, 95% CI: 1.65-9.66, Z = 3.07, P = 0.002) and nausea (OR: 5.53, 95% CI: 1.38-22.17, Z = 2.41, P = 0.02). In patients with mild asthma, oral PDE4 inhibitors can be considered as an alternative treatment to regular bronchodilators and inhaled controllers.
Collapse
Affiliation(s)
- Jian Luo
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China, China
| | - Ling Yang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China, China
| | - Jing Yang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China, China
| | - Dan Yang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China, China
| | - Bi-Cui Liu
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China, China
| | - Dan Liu
- Department of Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - Bin-Miao Liang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China, China
| | - Chun-Tao Liu
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China, China
| |
Collapse
|
15
|
Urbanova A, Medvedova I, Kertys M, Mikolka P, Kosutova P, Mokra D, Mokrý J. Dose dependent effects of tadalafil and roflumilast on ovalbumin-induced airway hyperresponsiveness in guinea pigs. Exp Lung Res 2017; 43:407-416. [PMID: 29220595 DOI: 10.1080/01902148.2017.1386735] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Chronic obstructive diseases of airways associated with cough and/or airway smooth muscle hyperresponsiveness are usually treated with bronchodilating and anti-inflammatory drugs. Recently, selective phosphodiesterase (PDE) 4 inhibitors have been introduced into the therapy of chronic obstructive pulmonary disease. Several studies have demonstrated their ability to influence the airway reactivity and eosinophilic inflammation by increasing the intracellular cAMP concentrations also in bronchial asthma. Furthermore, the expression of PDE5 in several immune cells suggests perspectives of PDE5 inhibitors in the therapy of inflammation, as well. PURPOSE The aim of this study was to assess the dose-dependent effects of PDE4 and PDE5 inhibitors in allergic inflammation. Therefore, the effects of 7-days administration of PDE4 inhibitor roflumilast and PDE5 inhibitor tadalafil at two different doses in experimentally-induced allergic inflammation were evaluated. MATERIALS AND METHODS In the study, male adult guinea pigs were used. Control group was non-sensitized. Other animals were sensitized with ovalbumin over two weeks and thereafter treated intraperitoneally for 7 days with roflumilast or tadalafil (daily dose 0.5 mg/kg or 1.0 mg/kg b.w.), or with vehicle. RESULTS Both roflumilast and tadalafil reduced specific airway resistance after nebulization of histamine (marker of in vivo airway reactivity) at both doses used. The in vitro airway reactivity to cumulative doses of acetylcholine was significantly reduced for roflumilast at higher dose, predominantly in the lung tissue strips. Histamine-induced contractile responses were significantly influenced in both lung and tracheal tissue strips, predominantly at the higher doses. Tadalafil led to a decrease in contractile responses induced by both acetylcholine and histamine, with more significant effects in the lung tissue strips. These changes were associated with decreased numbers of circulating leukocytes and eosinophils and concentrations of interleukin (IL)-4, IL-5 and TNF-α in the lung homogenate. CONCLUSIONS The selective PDE4 and PDE5 inhibitors alleviated allergic airway inflammation, with more significant effects at the higher doses.
Collapse
Affiliation(s)
- Anna Urbanova
- a Department of Pharmacology , Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava , Martin , Slovakia.,b Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava , Martin , Slovakia
| | - Ivana Medvedova
- a Department of Pharmacology , Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava , Martin , Slovakia.,b Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava , Martin , Slovakia
| | - Martin Kertys
- a Department of Pharmacology , Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava , Martin , Slovakia.,b Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava , Martin , Slovakia
| | - Pavol Mikolka
- b Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava , Martin , Slovakia.,c Department of Physiology , Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava , Martin , Slovakia
| | - Petra Kosutova
- b Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava , Martin , Slovakia.,c Department of Physiology , Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava , Martin , Slovakia
| | - Daniela Mokra
- b Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava , Martin , Slovakia.,c Department of Physiology , Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava , Martin , Slovakia
| | - Juraj Mokrý
- a Department of Pharmacology , Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava , Martin , Slovakia.,b Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava , Martin , Slovakia
| |
Collapse
|
16
|
Advanced Role of Neutrophils in Common Respiratory Diseases. J Immunol Res 2017; 2017:6710278. [PMID: 28589151 PMCID: PMC5447318 DOI: 10.1155/2017/6710278] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/22/2017] [Accepted: 04/16/2017] [Indexed: 12/18/2022] Open
Abstract
Respiratory diseases, always being a threat towards the health of people all over the world, are most tightly associated with immune system. Neutrophils serve as an important component of immune defense barrier linking innate and adaptive immunity. They participate in the clearance of exogenous pathogens and endogenous cell debris and play an essential role in the pathogenesis of many respiratory diseases. However, the pathological mechanism of neutrophils remains complex and obscure. The traditional roles of neutrophils in severe asthma, chronic obstructive pulmonary diseases (COPD), pneumonia, lung cancer, pulmonary fibrosis, bronchitis, and bronchiolitis had already been reviewed. With the development of scientific research, the involvement of neutrophils in respiratory diseases is being brought to light with emerging data on neutrophil subsets, trafficking, and cell death mechanism (e.g., NETosis, apoptosis) in diseases. We reviewed all these recent studies here to provide you with the latest advances about the role of neutrophils in respiratory diseases.
Collapse
|