1
|
Chen C, Ren H, Li H, Deng Y, Cui Q, Zhu J, Zhang S, Yu J, Wang H, Yu X, Yang S, Hu X, Peng Y. Identification of crucial modules and genes associated with backfat tissue development by WGCNA in Ningxiang pigs. Front Genet 2023; 14:1234757. [PMID: 37662841 PMCID: PMC10469685 DOI: 10.3389/fgene.2023.1234757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Fat deposition is an economically important trait in pigs. Ningxiang pig, one of the four famous indigenous breeds in China, is characterized by high fat content. The underlying gene expression pattern in different developmental periods of backfat tissue remains unclear, and the purpose of this investigation is to explore the potential molecular regulators of backfat tissue development in Ningxiang pigs. Backfat tissue (three samples for each stage) was initially collected from different developmental stages (60, 120, 180, 240, 300, and 360 days after birth), and histological analysis and RNA sequencing (RNA-seq) were then conducted. Fragments per kilobase of transcript per million (FPKM) method was used to qualify gene expressions, and differentially expressed genes (DEGs) were identified. Furthermore, strongly co-expressed genes in modules, which were named by color, were clustered by Weighted gene co-expression network analysis (WGCNA) based on dynamic tree cutting algorithm. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment were subsequently implemented, and hub genes were described in each module. Finally, QPCR analysis was employed to validate RNA-seq data. The results showed that adipocyte area increased and adipocyte number decreased with development of backfat tissue. A total of 1,024 DEGs were identified in five comparison groups (120 days vs. 60 days, 180 days vs. 120 days, 240 days vs. 180 days, 300 days vs. 240 days, and 360 days vs. 300 days). The turquoise, red, pink, paleturquoise, darkorange, and darkgreen module had the highest correlation coefficient with 60, 120, 180, 240, 300, and 360 days developmental stage, while the tan, black and turquoise module had strong relationship with backfat thickness, adipocyte area, and adipocyte number, respectively. Thirteen hub genes (ACSL1, ACOX1, FN1, DCN, CHST13, COL1A1, COL1A2, COL6A3, COL5A1, COL14A1, OAZ3, DNM1, and SELP) were recognized. ACSL1 and ACOX1 might perform function in the early developmental stage of backfat tissue (60 days), and FN1, DCN, COL1A1, COL1A2, COL5A1, COL6A3, and COL14A1 have unignorable position in backfat tissue around 120 days developmental stage. Besides, hub genes SELP and DNM1 in modules significantly associated with backfat thickness and adipocyte area might be involved in the process of backfat tissue development. These findings contribute to understand the integrated mechanism underlying backfat tissue development and promote the progress of genetic improvement in Ningxiang pigs.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pig Breeding, Key Laboratory of Conservation and Genetic Analysis of Indigenous Pigs, Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Huibo Ren
- Department of Pig Breeding, Key Laboratory of Conservation and Genetic Analysis of Indigenous Pigs, Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Huali Li
- Department of Pig Breeding, Key Laboratory of Conservation and Genetic Analysis of Indigenous Pigs, Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Yuan Deng
- Department of Pig Breeding, Key Laboratory of Conservation and Genetic Analysis of Indigenous Pigs, Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Qingming Cui
- Department of Pig Breeding, Key Laboratory of Conservation and Genetic Analysis of Indigenous Pigs, Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Ji Zhu
- Department of Pig Breeding, Key Laboratory of Conservation and Genetic Analysis of Indigenous Pigs, Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Siyang Zhang
- Hunan Liushahe Ecological Animal Husbandry Co, Ltd., Changsha, China
| | - Jine Yu
- Hunan Liushahe Ecological Animal Husbandry Co, Ltd., Changsha, China
| | - Huiming Wang
- Hunan Liushahe Ecological Animal Husbandry Co, Ltd., Changsha, China
| | - Xiaodan Yu
- Hunan Liushahe Ecological Animal Husbandry Co, Ltd., Changsha, China
| | - Shiliu Yang
- Hunan Liushahe Ecological Animal Husbandry Co, Ltd., Changsha, China
| | - Xionggui Hu
- Department of Pig Breeding, Key Laboratory of Conservation and Genetic Analysis of Indigenous Pigs, Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Yinglin Peng
- Department of Pig Breeding, Key Laboratory of Conservation and Genetic Analysis of Indigenous Pigs, Hunan Institute of Animal and Veterinary Science, Changsha, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
2
|
Identification of key sex-specific pathways and genes in the subcutaneous adipose tissue from pigs using WGCNA method. BMC Genom Data 2022; 23:35. [PMID: 35538407 PMCID: PMC9086418 DOI: 10.1186/s12863-022-01054-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/04/2022] [Indexed: 02/08/2023] Open
Abstract
Background Adipose tissues (ATs), including visceral ATs (VATs) and subcutaneous ATs (SATs), are crucial for maintaining energy and metabolic homeostasis. SATs have been found to be closely related to obesity and obesity-induced metabolic disease. Some studies have shown a significant association between subcutaneous fat metabolism and sexes. However, the molecular mechanisms for this association are still unclear. Here, using the pig as a model, we investigated the systematic association between the subcutaneous fat metabolism and sexes, and identified some key sex-specific pathways and genes in the SATs from pigs. Results The results revealed that 134 differentially expressed genes (DEGs) were identified in female and male pigs from the obese group. A total of 17 coexpression modules were detected, of which six modules were significantly correlated with the sexes (P < 0.01). Among the significant modules, the greenyellow module (cor = 0.68, P < 9e-06) and green module (cor = 0.49, P < 0.003) were most significantly positively correlated with the male and female, respectively. Functional analysis showed that one GO term and four KEGG pathways were significantly enriched in the greenyellow module while six GO terms and six KEGG pathways were significantly enriched in the green module. Furthermore, a total of five and two key sex-specific genes were identified in the two modules, respectively. Two key sex-specific pathways (Ras-MAPK signaling pathway and type I interferon response) play an important role in the SATs of males and females, respectively. Conclusions The present study identified some key sex-specific pathways and genes in the SATs from pigs, which provided some new insights into the molecular mechanism of being involved in fat formation and immunoregulation between pigs of different sexes. These findings may be beneficial to breeding in the pig industry and obesity treatment in medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01054-w.
Collapse
|
3
|
Structural characteristics of small-molecule inhibitors targeting FTO demethylase. Future Med Chem 2021; 13:1475-1489. [PMID: 34240624 DOI: 10.4155/fmc-2021-0132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies have shown that the FTO gene is closely related to obesity and weight gain in humans. FTO is an N6-methyladenosine demethylase and is linked to an increased risk of obesity and a variety of diseases, such as acute myeloid leukemia, type 2 diabetes, breast cancer, glioblastoma and cervical squamous cell carcinoma. In light of the significant role of FTO, the development of small-molecule inhibitors targeting the FTO protein provides not only a powerful tool for grasping the active site of FTO but also a theoretical basis for the design and synthesis of drugs targeting the FTO protein. This review focuses on the structural characteristics of FTO inhibitors and discusses the occurrence of obesity and cancer caused by FTO gene overexpression.
Collapse
|
4
|
Liu Z, Ru L, Ma Z. Low Expression of ADCY4 Predicts Worse Survival of Lung Squamous Cell Carcinoma Based on Integrated Analysis and Immunohistochemical Verification. Front Oncol 2021; 11:637733. [PMID: 34178627 PMCID: PMC8225293 DOI: 10.3389/fonc.2021.637733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose The molecular mechanism underlying the carcinogenesis and development of lung squamous cell carcinoma (LUSC) has not been sufficiently elucidated. This analysis was performed to find pivotal genes and explore their prognostic roles in LUSC. Methods A microarray dataset from GEO (GSE19188) and a TCGA-LUSC dataset were used to identify differentially co-expressed genes through Weighted Gene Co-expression Network Analysis (WGCNA) and differential gene expression analysis. We conducted functional enrichment analyses of differentially co-expressed genes and established a protein-protein interaction (PPI) network. Then, we identified the top 10 hub genes using the Maximal Clique Centrality (MCC) algorithm. We performed overall survival (OS) analysis of these hub genes among LUSC cases. GSEA analyses of survival-related hub genes were conducted. Ultimately, the GEO and The Human Protein Atlas (THPA) databases and immunohistochemistry (IHC) results from the real world were used to verify our findings. Results A list of 576 differentially co-expressed genes were selected. Functional enrichment analysis indicated that regulation of vasculature development, cell-cell junctions, actin binding and PPAR signaling pathways were mainly enriched. The top 10 hub genes were selected according to the ranking of MCC scores, and 5 genes were closely correlated with OS of LUSC. Additionally, GSEA analysis showed that spliceosome and cell adhesion molecules were associated with the expression of GNG11 and ADCY4, respectively. The GSE30219 and THPA databases and IHC results from the real world indicated that although GNG11 was not detected, ADCY4 was obviously downregulated in LUSC tissues at the mRNA and protein levels. Conclusions This analysis showed that survival-related hub genes are highly correlated to the tumorigenesis and development of LUSC. Additionally, ADCY4 is a candidate therapeutic and prognostic biomarker of LUSC.
Collapse
Affiliation(s)
- Zhicong Liu
- Department of Respiratory Medicine, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Lixin Ru
- Department of Radiation Oncology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Zhenchao Ma
- Department of Radiation Oncology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China.,Department of Radiation Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Identification of pivotal genes associated with the prognosis of gastric carcinoma through integrated analysis. Biosci Rep 2021; 41:228128. [PMID: 33754626 PMCID: PMC8047542 DOI: 10.1042/bsr20203676] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Detecting and diagnosing gastric cancer (GC) during its early period remains greatly difficult. Our analysis was performed to detect core genes correlated with GC and explore their prognostic values. METHODS Microarray datasets from the Gene Expression Omnibus (GEO) (GSE54129) and The Cancer Genome Atlas (TCGA)-stomach adenocarcinoma (STAD) datasets were applied for common differentially co-expressed genes using differential gene expression analysis and Weighted Gene Co-expression Network Analysis (WGCNA). Functional enrichment analysis and protein-protein interaction (PPI) network analysis of differentially co-expressed genes were performed. We identified hub genes via the CytoHubba plugin. Prognostic values of hub genes were explored. Afterward, Gene Set Enrichment Analysis (GSEA) was used to analyze survival-related hub genes. Finally, the tumor-infiltrating immune cell (TIC) abundance profiles were estimated. RESULTS Sixty common differentially co-expressed genes were found. Functional enrichment analysis implied that cell-cell junction organization and cell adhesion molecules were primarily enriched. Hub genes were identified using the degree, edge percolated component (EPC), maximal clique centrality (MCC), and maximum neighborhood component (MNC) algorithms, and serpin family E member 1 (SERPINE1) was highly associated with the prognosis of GC patients. Moreover, GSEA demonstrated that extracellular matrix (ECM) receptor interactions and pathways in cancers were correlated with SERPINE1 expression. CIBERSORT analysis of the proportion of TICs suggested that CD8+ T cell and T-cell regulation were negatively associated with SERPINE1 expression, showing that SERPINE1 may inhibit the immune-dominant status of the tumor microenvironment (TME) in GC. CONCLUSIONS Our analysis shows that SERPINE1 is closely correlated with the tumorigenesis and progression of GC. Furthermore, SERPINE1 acts as a candidate therapeutic target and prognostic biomarker of GC.
Collapse
|
6
|
Fan X, Jin Z, Liu Y, Chen Y, Konno K, Zhu B, Dong X. Effects of super-chilling storage on shelf-life and quality indicators of Coregonus peled based on proteomics analysis. Food Res Int 2021; 143:110229. [PMID: 33992343 DOI: 10.1016/j.foodres.2021.110229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 11/17/2022]
Abstract
The advantages of super-chilling storage at -2 °C for maintaining the quality of Coregonus peled muscle were investigated using the rigor-mortis index (RM), ATP-related compounds, K-value, muscle hardness, impedance measurement, and total viable count. The results indicated that the softening of fish muscle and increase in K-value were substantially suppressed following storage at -2 °C compared to that at 0 °C. In particular, the hardness of fish muscle stored for 6 days at -2 °C was much higher than that of the samples stored for 2 days at 0 °C. The K-value increased to 81% after 6 days at 0 °C, while increased to 57% at -2 °C. The impedance changed in a biphasic manner throughout the storage period. The initial increase accompanied by the progression of RM was followed by a gradual decrease. However, this decrease was much slower at -2 °C than 0 °C. Furthermore, proteomics analysis demonstrated that the mechanism of fish freshness changes between the two storage temperatures. Differentially abundant proteins between the samples stored at two temperatures were mainly involved in the cellular component and molecular function (GO pathway) as well as collagen digestion (KEGG pathway), which might be related to muscle textural properties. Therefore, super-chilling storage is a possible method for maintaining the freshness of Coregonus peled.
Collapse
Affiliation(s)
- Xinru Fan
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Zheng Jin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yu Liu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yuewen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Kunihiko Konno
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xiuping Dong
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|