1
|
Zeng X, Cai Y, Wu M, Chen H, Sun M, Yang H. An overview of current advances in perinatal alcohol exposure and pathogenesis of fetal alcohol spectrum disorders. J Neurodev Disord 2024; 16:20. [PMID: 38643092 PMCID: PMC11031898 DOI: 10.1186/s11689-024-09537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
The adverse use of alcohol is a serious global public health problem. Maternal alcohol consumption during pregnancy usually causes prenatal alcohol exposure (PAE) in the developing fetus, leading to a spectrum of disorders known as fetal alcohol spectrum disorders (FASD) and even fetal alcohol syndrome (FAS) throughout the lifelong sufferers. The prevalence of FASD is approximately 7.7 per 1,000 worldwide, and is even higher in developed regions. Generally, Ethanol in alcoholic beverages can impair embryonic neurological development through multiple pathways leading to FASD. Among them, the leading mechanism of FASDs is attributed to ethanol-induced neuroinflammatory damage to the central nervous system (CNS). Although the underlying molecular mechanisms remain unclear, the remaining multiple pathological mechanisms is likely due to the neurotoxic damage of ethanol and the resultant neuronal loss. Regardless of the molecular pathway, the ultimate outcome of the developing CNS exposed to ethanol is almost always the destruction and apoptosis of neurons, which leads to the reduction of neurons and further the development of FASD. In this review, we systematically summarize the current research progress on the pathogenesis of FASD, which hopefully provides new insights into differential early diagnosis, treatment and prevention for patents with FASD.
Collapse
Affiliation(s)
- Xingdong Zeng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Yongle Cai
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Mengyan Wu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Haonan Chen
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China.
| | - Hao Yang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China.
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
2
|
Yadav D, Ostrea EM, Cheng CT, Kisseih E, Maddipati KR, Thomas RL. Effect of docosahexaenoic acid and olive oil supplementation on pup weight in alcohol-exposed pregnant rats. Front Pediatr 2024; 12:1334285. [PMID: 38638591 PMCID: PMC11024321 DOI: 10.3389/fped.2024.1334285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Background Low birth weight has been observed in offspring of alcoholic mothers due likely to unresolved inflammation and oxidative injury. Dietary lipids play a role in inflammation and its resolution. The primary objective was to investigate the effect of DHA and olive oil on the birth weight of pups born to alcohol-exposed dams. Methods Pregnant rats were randomized to the control or three treatment (alcohol) groups. From gestational days (GD) 8-19, the control group received daily olive oil and malto/dextrose, whereas groups 2 and 3 received olive oil and low-dose alcohol or high-dose alcohol, respectively. Group 4 received daily DHA and high-dose alcohol. The dam's blood was collected on GD 15 and 20 for cytokine analysis. Dams were sacrificed on GD 20. The mean birth weight of pups was compared by one-way ANOVA with post hoc Duncan's test. Results There was a significant increase in the pups' mean birth weight in the high-dose alcohol/DHA and high-dose alcohol/olive oil. Higher pro-inflammatory cytokines (IL-1β and IL-12p70) were noted in the alcohol-exposed dams. Conclusions DHA and olive oil supplementation in alcohol-exposed pregnant rats significantly increased their pups' birth weight despite having high pro-inflammatory cytokines. The mechanism of this effect remains to be determined.
Collapse
Affiliation(s)
- Deepak Yadav
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Enrique M. Ostrea
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Charlie T. Cheng
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Esther Kisseih
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Krishna R. Maddipati
- Bioactive Lipids Research Program, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ronald L. Thomas
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
3
|
Gagné V, Boucher N, Desgagné-Penix I. Cannabis Roots: Therapeutic, Biotechnological and Environmental Aspects. Cannabis Cannabinoid Res 2024; 9:35-48. [PMID: 38252502 DOI: 10.1089/can.2023.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Since the legalization of recreational cannabis in Canada in 2018, the number of licenses for this crop has increased significantly, resulting in an increase in waste generated. Nevertheless, cannabis roots were once used for their therapeutic properties, indicating that they could be valued today rather than dismissed. This review will focus on both traditional therapeutic aspects and potential use of roots in modern medicine while detailing the main studies on active phytomolecules found in cannabis roots. The environmental impact of cannabis cultivation and current knowledge of the root-associated microbiome are also presented as well as their potential applications in biotechnology and phytoremediation. Thus, several high added-value applications of cannabis roots resulting from scientific advances in recent years can be considered to remove them from discarded residues.
Collapse
Affiliation(s)
- Valérie Gagné
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, Trois- Rivières, Québec, Canada
| | - Nathalie Boucher
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, Trois- Rivières, Québec, Canada
- Plant Biology Research Group, Trois-Rivières, Québec, Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, Trois- Rivières, Québec, Canada
- Plant Biology Research Group, Trois-Rivières, Québec, Canada
| |
Collapse
|
4
|
Asiedu B, Lembede BW, Nyakudya TT, Chivandi E. Orally administered zingerone does not mitigate alcohol-induced hepatic oxidative stress in growing Sprague Dawley rat pups. Drug Chem Toxicol 2022:1-10. [PMID: 35734876 DOI: 10.1080/01480545.2022.2085740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Neonatal alcohol exposure (NAE) can induce oxidative stress. We determined whether zingerone (ZO), a phytochemical with anti-oxidant activity, can mitigate the negative impact of neonatal alcohol-induced oxidative stress. Seventy ten-day-old Sprague-Dawley rat pups (35 male, 35 female) were randomly assigned and administered the following treatment regimens daily from postnatal day (PND) 12-21: group 1 - nutritive milk (NM), group 2 - NM +1 g/kg ethanol (Eth), group 3 - NM + 40 mg/kg ZO, group 4 - NM + Eth + ZO. Growth performance, blood glucose and plasma triglycerides (TGs), total cholesterol, HDL-cholesterol, leptin and insulin concentration were determined. Cytochrome p450E21(CYP2E1) and thiobarbituric acid (TBARS); markers of hepatic oxidative stress and catalase, superoxide dismutase (SOD) and total glutathione (GSH), anti-oxidant markers of the pups were determined. Oral administration of ethanol (NM + Eth), zingerone (NM + ZO) and combined ethanol and zingerone (NM + Eth + ZO) did not affect the growth performance and insulin and leptin concentration of the rats (p > 0.05). Ethanol significantly reduced plasma TGs concentration of female rats (p = 0.04 vs control). However, ethanol and/or its combination with zingerone decreased hepatic GSH (p = 0.02 vs control) and increased CYP2E1 (p = 0.0002 vs control) activity in male rat pups. Zingerone had no effect (p > 0.05 vs control) on the rats' CYP2E1, GSH, SOD and catalase activities. Neonatal alcohol administration elicited hepatic oxidative stress in male rat pups only, showing sexual dimorphism. Zingerone (NM + ZO) prevented an increase in CYP2E1 activity and a decrease in GSH concentration but did not prevent the alcohol-induced hepatic oxidative stress in the male rat pups.
Collapse
Affiliation(s)
- Bernice Asiedu
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Busisani Wiseman Lembede
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Trevor Tapiwa Nyakudya
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Gezina, South Africa
| | - Eliton Chivandi
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| |
Collapse
|
5
|
Harris JC, Leggio L, Farokhnia M. Blood Biomarkers of Alcohol Use: A Scoping Review. CURRENT ADDICTION REPORTS 2021; 8:500-508. [PMID: 37274945 PMCID: PMC10237590 DOI: 10.1007/s40429-021-00402-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 11/24/2022]
Abstract
Purpose of Review Understanding whether a person has consumed alcohol or not, as well as quantitative assessment of alcohol use, are often based on self-reported measures, which may be subject to recall bias, among other challenges. Although not without limitations, blood biomarkers may complement self-reported assessments to provide a more accurate determination of the presence and quantity of alcohol use. The aim of this review is to provide a critical overview of the current knowledge and research on biomarkers of alcohol use, with a particular focus on blood tests. Recent Findings This scoping review summarizes the published work on blood tests currently used in clinical practice, including phosphatidyl ethanol (PEth), fatty acid ethyl ester (FAEE), carbohydrate-deficient transferrin (CDT), total serum sialic acid (TSA), mean corpuscular volume (MCV), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma glutamyl transpeptidase (GGT), and cholesteryl ester transfer protein (CETP). Emerging blood biomarkers with a potential use to assess alcohol drinking are also briefly reviewed, including N-Acetyl-β-Hexosaminidase (Beta-Hex), macrophage migration inhibitory factor (MIF), and D-dopachrome tautomerase (DDT). We discuss the aforementioned biomarkers in the context of their clinical implications, characteristics, strengths, and limitations. Summary The available blood biomarkers considerably vary in the time period in which they detect alcohol use and the amount of alcohol they are sensitive to. While currently available biomarkers provide useful information, especially in combination with self-reported measures, future work is needed to identify more sensitive and specific blood biomarkers for different levels and patterns of alcohol use. Integration of such biomarkers into clinical practice and research will increase the accuracy and richness of the data and may guide more effective and targeted strategies for prevention, diagnosis, and treatment of excessive alcohol use.
Collapse
Affiliation(s)
- Julia C. Harris
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD 21224, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD 21224, USA
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Medicine, Division of Addiction Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, Georgetown University Medical Center, Washington DC, USA
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD 21224, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21224, USA
| |
Collapse
|