1
|
Li JL, Zhu CH, Tian MM, Liu Y, Ma L, Tao LJ, Zheng P, Yu JQ, Liu N. Negative allosteric modulator of Group Ⅰ mGluRs: Recent advances and therapeutic perspective for neuropathic pain. Neuroscience 2024; 560:406-421. [PMID: 39368605 DOI: 10.1016/j.neuroscience.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Neuropathic pain (NP) is a widespread public health problem that existing therapeutic treatments cannot manage adequately; therefore, novel treatment strategies are urgently required. G-protein-coupled receptors are important for intracellular signal transduction, and widely participate in physiological and pathological processes, including pain perception. Group I metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, are predominantly implicated in central sensitization, which can lead to hyperalgesia and allodynia. Many orthosteric site antagonists targeting Group I mGluRs have been found to alleviate NP, but their poor efficacy, low selectivity, and numerous side effects limit their development in NP treatment. Here we reviewed the advantages of Group I mGluRs negative allosteric modulators (NAMs) over orthosteric site antagonists based on allosteric modulation mechanism, and the challenges and opportunities of Group I mGluRs NAMs in NP treatment. This article aims to elucidate the advantages and future development potential of Group I mGluRs NAMs in the treatment of NP.
Collapse
Affiliation(s)
- Jia-Ling Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Chun-Hao Zhu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Miao-Miao Tian
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Lin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Li-Jun Tao
- Department of Pharmacy, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China.
| | - Jian-Qiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China.
| | - Ning Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China; School of Basic Medical Science, Ningxia Medical University, Yinchuan 750000, China.
| |
Collapse
|
2
|
Stampelou M, Ladds G, Kolocouris A. Computational Workflow for Refining AlphaFold Models in Drug Design Using Kinetic and Thermodynamic Binding Calculations: A Case Study for the Unresolved Inactive Human Adenosine A 3 Receptor. J Phys Chem B 2024; 128:914-936. [PMID: 38236582 DOI: 10.1021/acs.jpcb.3c05986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A structure-based drug design pipeline that considers both thermodynamic and kinetic binding data of ligands against a receptor will enable the computational design of improved drug molecules. For unresolved GPCR-ligand complexes, a workflow that can apply both thermodynamic and kinetic binding data in combination with alpha-fold (AF)-derived or other homology models and experimentally resolved binding modes of relevant ligands in GPCR-homologs needs to be tested. Here, as test case, we studied a congeneric set of ligands that bind to a structurally unresolved G protein-coupled receptor (GPCR), the inactive human adenosine A3 receptor (hA3R). We tested three available homology models from which two have been generated from experimental structures of hA1R or hA2AR and one model was a multistate alphafold 2 (AF2)-derived model. We applied alchemical calculations with thermodynamic integration coupled with molecular dynamics (TI/MD) simulations to calculate the experimental relative binding free energies and residence time (τ)-random accelerated MD (τ-RAMD) simulations to calculate the relative residence times (RTs) for antagonists. While the TI/MD calculations produced, for the three homology models, good Pearson correlation coefficients, correspondingly, r = 0.74, 0.62, and 0.67 and mean unsigned error (mue) values of 0.94, 1.31, and 0.81 kcal mol-1, the τ-RAMD method showed r = 0.92 and 0.52 for the first two models but failed to produce accurate results for the multistate AF2-derived model. With subsequent optimization of the AF2-derived model by reorientation of the side chain of R1735.34 located in the extracellular loop 2 (EL2) that blocked ligand's unbinding, the computational model showed r = 0.84 for kinetic data and improved performance for thermodynamic data (r = 0.81, mue = 0.56 kcal mol-1). Overall, after refining the multistate AF2 model with physics-based tools, we were able to show a strong correlation between predicted and experimental ligand relative residence times and affinities, achieving a level of accuracy comparable to an experimental structure. The computational workflow used can be applied to other receptors, helping to rank candidate drugs in a congeneric series and enabling the prioritization of leads with stronger binding affinities and longer residence times.
Collapse
Affiliation(s)
- Margarita Stampelou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| |
Collapse
|
3
|
Mo Q, Zhang T, Wu J, Wang L, Luo J. Identification of thrombopoiesis inducer based on a hybrid deep neural network model. Thromb Res 2023; 226:36-50. [PMID: 37119555 DOI: 10.1016/j.thromres.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/01/2023]
Abstract
Thrombocytopenia is a common haematological problem worldwide. Currently, there are no relatively safe and effective agents for the treatment of thrombocytopenia. To address this challenge, we propose a computational method that enables the discovery of novel drug candidates with haematopoietic activities. Based on different types of molecular representations, three deep learning (DL) algorithms, namely recurrent neural networks (RNNs), deep neural networks (DNNs), and hybrid neural networks (RNNs+DNNs), were used to develop classification models to distinguish between active and inactive compounds. The evaluation results illustrated that the hybrid DL model exhibited the best prediction performance, with an accuracy of 97.8 % and Matthews correlation coefficient of 0.958 on the test dataset. Subsequently, we performed drug discovery screening based on the hybrid DL model and identified a compound from the FDA-approved drug library that was structurally divergent from conventional drugs and showed a potential therapeutic action against thrombocytopenia. The novel drug candidate wedelolactone significantly promoted megakaryocyte differentiation in vitro and increased platelet levels and megakaryocyte differentiation in irradiated mice with no systemic toxicity. Overall, our work demonstrates how artificial intelligence can be used to discover novel drugs against thrombocytopenia.
Collapse
Affiliation(s)
- Qi Mo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ting Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jianming Wu
- Basic Medical College, Southwest Medical University, Luzhou 646000, China.
| | - Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jiesi Luo
- Basic Medical College, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
4
|
Krishna Deepak RNV, Verma RK, Hartono YD, Yew WS, Fan H. Recent Advances in Structure, Function, and Pharmacology of Class A Lipid GPCRs: Opportunities and Challenges for Drug Discovery. Pharmaceuticals (Basel) 2021; 15:12. [PMID: 35056070 PMCID: PMC8779880 DOI: 10.3390/ph15010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023] Open
Abstract
Great progress has been made over the past decade in understanding the structural, functional, and pharmacological diversity of lipid GPCRs. From the first determination of the crystal structure of bovine rhodopsin in 2000, much progress has been made in the field of GPCR structural biology. The extraordinary progress in structural biology and pharmacology of GPCRs, coupled with rapid advances in computational approaches to study receptor dynamics and receptor-ligand interactions, has broadened our comprehension of the structural and functional facets of the receptor family members and has helped usher in a modern age of structure-based drug design and development. First, we provide a primer on lipid mediators and lipid GPCRs and their role in physiology and diseases as well as their value as drug targets. Second, we summarize the current advancements in the understanding of structural features of lipid GPCRs, such as the structural variation of their extracellular domains, diversity of their orthosteric and allosteric ligand binding sites, and molecular mechanisms of ligand binding. Third, we close by collating the emerging paradigms and opportunities in targeting lipid GPCRs, including a brief discussion on current strategies, challenges, and the future outlook.
Collapse
Affiliation(s)
- R. N. V. Krishna Deepak
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
| | - Ravi Kumar Verma
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
| | - Yossa Dwi Hartono
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Wen Shan Yew
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Hao Fan
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
| |
Collapse
|
5
|
Velloso JPL, Ascher DB, Pires DEV. pdCSM-GPCR: predicting potent GPCR ligands with graph-based signatures. BIOINFORMATICS ADVANCES 2021; 1:vbab031. [PMID: 34901870 PMCID: PMC8651072 DOI: 10.1093/bioadv/vbab031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 01/26/2023]
Abstract
MOTIVATION G protein-coupled receptors (GPCRs) can selectively bind to many types of ligands, ranging from light-sensitive compounds, ions, hormones, pheromones and neurotransmitters, modulating cell physiology. Considering their role in many essential cellular processes, they are one of the most targeted protein families, with over a third of all approved drugs modulating GPCR signalling. Despite this, the large diversity of receptors and their multipass transmembrane architectures make the identification and development of novel specific, and safe GPCR ligands a challenge. While computational approaches have the potential to assist GPCR drug development, they have presented limited performance and generalization capabilities. Here, we explored the use of graph-based signatures to develop pdCSM-GPCR, a method capable of rapidly and accurately screening potential GPCR ligands. RESULTS Bioactivity data (IC50, EC50, Ki and Kd) for individual GPCRs were curated. After curation, we used the data for developing predictive models for 36 major GPCR targets, across 4 classes (A, B, C and F). Our models compose the most comprehensive computational resource for GPCR bioactivity prediction to date. Across stratified 10-fold cross-validation and blind tests, our approach achieved Pearson's correlations of up to 0.89, significantly outperforming previous methods. Interpreting our results, we identified common important features of potent GPCRs ligands, which tend to have bicyclic rings, leading to higher levels of aromaticity. We believe pdCSM-GPCR will be an invaluable tool to assist screening efforts, enriching compound libraries and ranking candidates for further experimental validation. AVAILABILITY AND IMPLEMENTATION pdCSM-GPCR predictive models and datasets used have been made available via a freely accessible and easy-to-use web server at http://biosig.unimelb.edu.au/pdcsm_gpcr/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- João Paulo L Velloso
- Fundação Oswaldo Cruz, Instituto René Rachou, Belo Horizonte 30190-009, Brazil
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Melbourne 3052, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne 3052, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne 3004, Australia
- Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - David B Ascher
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Melbourne 3052, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne 3052, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne 3004, Australia
- Baker Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Melbourne 3052, Australia
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Douglas E V Pires
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Melbourne 3052, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne 3052, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne 3004, Australia
- School of Computing and Information Systems, University of Melbourne, Melbourne 3053, Australia
| |
Collapse
|