1
|
Beckman JD, Zhang P, Nguyen J, Hebbel RP, Vercellotti GM, Belcher JD. Missing the mark(ers): circulating endothelial cells and endothelial-derived extracellular vesicles are elevated in sickle cell disease plasma. Front Immunol 2024; 15:1493904. [PMID: 39776915 PMCID: PMC11703723 DOI: 10.3389/fimmu.2024.1493904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Sickle cell disease (SCD) is a devastating hemolytic disease, marked by recurring bouts of painful vaso-occlusion, leading to tissue damage from ischemia/reperfusion pathophysiology. Central to this process are oxidative stress, endothelial cell activation, inflammation, and vascular dysfunction. The endothelium exhibits a pro-inflammatory, pro-coagulant, and enhanced permeability phenotype. We used flow cytometry to enumerate circulating endothelial cells (CECs, CD31+/CD45-/CD146+) in SCD and normal healthy control blood samples. Furthermore, we assessed CEC subtypes, including circulating endothelial progenitor cells (EPCs, CD31+/CD45-/CD146+/CD133+) and mature CECs (mCECs, CD31+/CD45-/CD146+/CD133-) with mCECs further subdivided into resting CECs (rCECs, VCAM-1-) and activated CECs (aCECs, VCAM-1+). As compared to healthy controls, total CECs and mCECs were elevated in SCD blood as compared to healthy control blood. Using the same markers along with size-based gating, we also used flow cytometry to enumerate endothelial-derived extracellular vesicles (EEVs) in plasma. We assessed EEV subtypes based on VCAM-1 expression, including activated EEVs (aEEVs, CD31+/CD45-/CD146+/CD133-/VCAM-1+) and resting EEVs (rEEVs, VCAM-1 negative), presumably derived from activated and resting endothelial cells, respectively. aEEVs were elevated in SCD patient plasma as compared to healthy controls. Importantly, in SCD patients, total EEVs and aEEVs were increased during self-reported pain crisis as compared to steady state. Plasma markers of endothelial cell activation including soluble E-selectin, P-selectin, VCAM-1, and ICAM-1 were elevated in SCD plasma. These data highlight strategies to detect SCD-related endothelial cell activation and demonstrate that endothelial cell activation markers may be useful to evaluate curative and non-curative therapies in SCD patients.
Collapse
Affiliation(s)
| | | | | | | | | | - John D. Belcher
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
2
|
da Silva Costa SM, Ito MT, da Cruz PRS, De Souza BB, Rios VM, Bertozzo VDHE, Camargo ACL, Viturino MGM, Lanaro C, de Albuquerque DM, do Canto AM, Saad STO, Ospina-Prieto S, Ozelo MC, Costa FF, de Melo MB. The molecular mechanism responsible for HbSC retinopathy may depend on the action of the angiogenesis-related genes ROBO1 and SLC38A5. Exp Biol Med (Maywood) 2024; 249:10070. [PMID: 39114443 PMCID: PMC11303203 DOI: 10.3389/ebm.2024.10070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
HbSC disease, a less severe form of sickle cell disease, affects the retina more frequently and patients have higher rates of proliferative retinopathy that can progress to vision loss. This study aimed to identify differences in the expression of endothelial cell-derived molecules associated with the pathophysiology of proliferative sickle cell retinopathy (PSCR). RNAseq was used to compare the gene expression profile of circulating endothelial colony-forming cells from patients with SC hemoglobinopathy and proliferative retinopathy (n = 5), versus SC patients without retinopathy (n = 3). Real-time polymerase chain reaction (qRT-PCR) was used to validate the RNAseq results. A total of 134 differentially expressed genes (DEGs) were found. DEGs were mainly associated with vasodilatation, type I interferon signaling, innate immunity and angiogenesis. Among the DEGs identified, we highlight the most up-regulated genes ROBO1 (log2FoldChange = 4.32, FDR = 1.35E-11) and SLC38A5 (log2FoldChange = 3.36 FDR = 1.59E-07). ROBO1, an axon-guided receptor, promotes endothelial cell migration and contributes to the development of retinal angiogenesis and pathological ocular neovascularization. Endothelial SLC38A5, an amino acid (AA) transporter, regulates developmental and pathological retinal angiogenesis by controlling the uptake of AA nutrient, which may serve as metabolic fuel for the proliferation of endothelial cells (ECs) and consequent promotion of angiogenesis. Our data provide an important step towards elucidating the molecular pathophysiology of PSCR that may explain the differences in ocular manifestations between individuals with hemoglobinopathies and afford insights for new alternative strategies to inhibit pathological angiogenesis.
Collapse
Affiliation(s)
| | - Mirta Tomie Ito
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| | | | - Bruno Batista De Souza
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| | - Vinicius Mandolesi Rios
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| | - Victor de Haidar e Bertozzo
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| | - Ana Carolina Lima Camargo
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| | | | - Carolina Lanaro
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas—UNICAMP, Campinas, Brazil
| | | | - Amanda Morato do Canto
- Departamento de Medicina Translacional, Faculdade de Ciências Médicas, Universidade Estadual de Campinas—UNICAMP, Campinas, Brazil
| | | | - Stephanie Ospina-Prieto
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas—UNICAMP, Campinas, Brazil
| | - Margareth Castro Ozelo
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas—UNICAMP, Campinas, Brazil
| | - Fernando Ferreira Costa
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas—UNICAMP, Campinas, Brazil
| | - Mônica Barbosa de Melo
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| |
Collapse
|
3
|
de Castro JNP, da Silva Costa SM, Camargo ACL, Ito MT, de Souza BB, de Haidar E Bertozzo V, Rodrigues TAR, Lanaro C, de Albuquerque DM, Saez RC, Saad STO, Ozelo MC, Cendes F, Costa FF, de Melo MB. Comparative transcriptomic analysis of circulating endothelial cells in sickle cell stroke. Ann Hematol 2024; 103:1167-1179. [PMID: 38386032 DOI: 10.1007/s00277-024-05655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Ischemic stroke (IS) is one of the most impairing complications of sickle cell anemia (SCA), responsible for 20% of mortality in patients. Rheological alterations, adhesive properties of sickle reticulocytes, leukocyte adhesion, inflammation and endothelial dysfunction are related to the vasculopathy observed prior to ischemic events. The role of the vascular endothelium in this complex cascade of mechanisms is emphasized, as well as in the process of ischemia-induced repair and neovascularization. The aim of the present study was to perform a comparative transcriptomic analysis of endothelial colony-forming cells (ECFCs) from SCA patients with and without IS. Next, to gain further insights of the biological relevance of differentially expressed genes (DEGs), functional enrichment analysis, protein-protein interaction network (PPI) construction and in silico prediction of regulatory factors were performed. Among the 2469 DEGs, genes related to cell proliferation (AKT1, E2F1, CDCA5, EGFL7), migration (AKT1, HRAS), angiogenesis (AKT1, EGFL7) and defense response pathways (HRAS, IRF3, TGFB1), important endothelial cell molecular mechanisms in post ischemia repair were identified. Despite the severity of IS in SCA, widely accepted molecular targets are still lacking, especially related to stroke outcome. The comparative analysis of the gene expression profile of ECFCs from IS patients versus controls seems to indicate that there is a persistent angiogenic process even after a long time this complication has occurred. Thus, this is an original study which may lead to new insights into the molecular basis of SCA stroke and contribute to a better understanding of the role of endothelial cells in stroke recovery.
Collapse
Affiliation(s)
- Júlia Nicoliello Pereira de Castro
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Sueli Matilde da Silva Costa
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Ana Carolina Lima Camargo
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Mirta Tomie Ito
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Bruno Batista de Souza
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Victor de Haidar E Bertozzo
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Thiago Adalton Rosa Rodrigues
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Carolina Lanaro
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | | | - Roberta Casagrande Saez
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Margareth Castro Ozelo
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Fernando Cendes
- Neuroimaging Laboratory, Department of Neurology, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Fernando Ferreira Costa
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Mônica Barbosa de Melo
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil.
| |
Collapse
|